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Abstract
Dual-energy computed tomography (CT) offers the poten-

tial to recognize material properties by decomposing sinograms
into Compton and photoelectric bases and subsequently recon-
structing the Compton and photoelectric images. However, the
presence of high density materials such as metal can distort the
reconstructed images, leading to inaccurate material character-
ization. In this paper, we present a reconstruction technique to
reduce noise and metal artifacts in dual-energy CT images by
exploiting (1) statistical correlation between measurements and
decomposed sinograms, (2) intra-image correlation between de-
composed images, and (3) inter-image sparsity. The algorithm is
based on minimizing weighted least squares with edge-preserving
total variation regularization and is solved using split-Bregman
iterative techniques. Using experimental data acquired from a
commercial scanner, we demonstrate that the proposed algorithm
significantly reduces noise and metal artifacts compared to the
baseline approaches of filtered back projection and competing it-
erative reconstructions algorithms.

Introduction
Computed tomography (CT) imaging with X-rays is a non

destructive way of imaging volumes, with broad applications in
medical, industrial and security. When an X-ray beam travels
through an object, the beam gets attenuated based on the object
material properties, characterized by the energy-dependent linear
attenuation coefficient (LAC). The object can be identified by re-
constructing the LAC at different spatial locations, which is esti-
mated from the photon intensities measured at multiple detectors
using CT reconstruction algorithms.

In conventional CT algorithms, the reconstruction is based
on a monochromatic approximation of the photons generated by
an X-ray source. However, common X-ray sources generate pho-
tons at multiple energies, with spectral distribution corresponding
to a Bremsstrahlung spectrum. Since detectors are either energy
integrating detectors or photon counting detectors, they measure
an average statistic over all the photons received. Thus, the CT
reconstruction estimates an average linear attenuation coefficient.
This leads to beam hardening artifacts [1] and difficulty in rec-
ognizing different materials. As an alternative, dual-energy X-
ray projection systems were developed, where the transmission
properties of two different source energy spectra are measured at
each detector. In such systems, one can compute linear attenua-
tion coefficients at two different average energies, which provides
a better characterization of the energy-dependent LAC properties
of materials and leads to improved material recognition. How-
ever, the reconstructed individual average attenuation images still
suffer from significant artifacts due to the monochromatic approx-
imations and the high attenuation caused by the presence of dense

materials.
In order to account for the polychromatic nature of the X-

ray sources and alleviate the beam-hardening artifacts, a com-
mon approach used in dual-energy reconstruction is to expand the
energy-dependent linear attenuation coefficients of materials in
terms of two basis functions, and reconstruct the coefficients of
these basis functions at different spatial locations [2, 3]. A com-
mon set of basis functions used are photoelectric absorption and
Compton scatter functions, corresponding to two of the primary
energy-dependent physical processes that lead to the loss of pho-
tons on the path from source to detector. Starting from the mea-
sured values at each detector for the two spectral excitations, one
can exploit knowledge of the source-detector spectral character-
istics to estimate equivalent Compton and photoelectric measure-
ments at each detector. The resulting photoelectric and Compton
sinograms are subsequently processed by CT reconstruction algo-
rithms such as filtered back-projection (FBP) [2, 4] to generate
volumetric Compton and photoelectric coefficient images. How-
ever, the presence of metal or other dense materials significantly
distorts the reconstructed images, particularly the photoelectric
image, as the photoelectric absorption rate at lower energies is
significantly higher in metal, and is difficult to estimate given the
detector measurements.

In the conventional single-energy spectrum setting, common
approaches to correct metal artifacts are based on interpolating
the metal regions of the sinogram projection data or on post-
processing the corrupted images [5, 6]. However, there has been
little work focusing on alleviating metal artifacts in dual-energy
imaging using basis decompositions.

One interesting approach for enhancing the quality of dual-
energy images is to exploit the structure similarity between the
Compton and photoelectric images. In [7], the authors proposed
an iterative model-based joint inversion framework to estimate
both photoelectric and Compton coefficients directly from the
dual-energy measurements. They proposed to stabilize the pho-
toelectric image using patch-based regularization based on the
previous iteration’s Compton image estimation. However, metal
induced streaks were clearly visible in final Compton and photo-
electric images estimated, and the proposed method is computa-
tionally inefficient. In [8], the authors proposed a joint reconstruc-
tion method based on the Mumford-Shah functional to jointly es-
timate the Compton image, the photoelectric image, and the im-
age boundary field from the decomposed sinograms with the use
of Tiknohov regularization terms. This method is referred to as
structure preserving dual energy (SPDE) inversion method. This
method requires the estimation of the third volumetric field (the
boundary field), and shows limited success in reducing the metal
artifacts, as the estimation depends on the Compton and photo-
electric sinogram decompositions.
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In this paper we present a model-based iterative algorithm
to reduce the effects of noise and metal artifacts in dual-energy
CT images, based on edge-preserving total variation (EPTV) reg-
ularization. In [9], the authors proposed an iterative CT recon-
struction algorithm with EPTV regularization. The idea behind
the EPTV is to perform smoothing only on non-edge parts of the
image and it is realized by introducing a penalty weight to the
original TV norm. We extend this idea for dual-energy CT re-
constructions, exploiting the fact the edges are common for both
Compton and photoelectric images. Edges are identified using an
initial reconstruction of the high energy image, avoiding errors
introduced in the decompositions into photoelectric and Compton
sinograms. Once the edges are found, we reconstruct the Comp-
ton and the photoelectric images using EPTV regularization such
that the edges in both images are not smoothed.

Even though the noise and metal artifacts in Compton images
can be mitigated with EPTV regularization, the metal artifacts in
photoelectric images cannot be corrected only by EPTV. When
data is highly corrupted, the decomposition into photoelectric and
Compton bases is ill-conditioned, and the resulting estimated in-
verse error covariance is nearly singular in the direction of the
photoelectric coefficient. To account for this, we use the inverse
photoelectric covariance to down-weight the photoelectric coeffi-
cient estimates in the photoelectric sinograms. Down-weighting
the photoelectric sinogram was also proposed in the SPDE inver-
sion method [8]. However, the weighting matrix they proposed
was based on the high-energy sinogram, and had no direct rela-
tionship to the photoelectric sinogram.

We apply split-Bregman techniques [10] to solve the final
optimization problem of minimizing weighted least squares with
edge-preserving total variation regularization. We provide exper-
imental validation with dual-energy data acquired from a com-
mercial scanner with images that contain significant metal scatter.
We show that the proposed method is superior over the state-of-
practice filtered back projection method used in the commercial
scanner as well as TV iterative reconstruction techniques and the
SPDE inversion method.

The rest of the paper is organized as follows: we give an
overview of dual-energy X-ray image formation, followed by a
detailed description of the proposed algorithm. Next we present
our experiments and conclude with a discussion of results and
some ideas for future work.

Measurement Model
Dual-energy CT systems capture two measurements of the

scene acquired with two different X-ray spectral distributions.
According to the Beer-Lambert law the expected photon counts
along X-ray path L j is modeled as

Ii( j) =
∫

I0wi(E)e
−
∫

L j
µ(r,E)dl

dE (1)

Here i = 1,2 denotes the system spectrum index, while j =
1,2, ..M denotes the detector index, where the total number of
detectors are M. The rest of the terms are: E is the energy level,
r is the spatial location, µ(r,E) is the linear attenuation coeffi-
cient (LAC) at energy E and position r along the X-ray path L j,
wi(E) is the ith normalized spectrum at energy E and includes the
energy-dependent source strength and detector sensitivity, and I0

is the source intensity. When dealing with photon counting de-
tectors, the actual received counts at detector j, Zi( j), divided by
the counts obtained from a clear path from the X-ray source to
the detector, can be modelled as a Poisson process with the mean
given by (1) , ignoring the effects of background radiation. We
use as measurements the negative log of the normalized intensity
or photon counts, referred to as sinograms. Let si( j) denote the
ith energy sinogram at detector j, defined as

si( j) =−ln(
Zi( j)
Z0( j)

) (2)

where Z0( j) are the expected photon counts from a direct path
with no attenuation on projection L j. Within the energy range of
medical and security CT imaging (20 to 150 keV), the main phys-
ical processes that lead to photon loss in the ray path from source
to detector attenuation are Compton scatter and photoelectric ab-
sorption. Thus, the energy-dependent LAC of many materials can
be approximated in terms of Compton scatter and photoelectric
absorption basis functions, as [2]

µ(r,E) = xc(r) fc(E)+ xp(r) fp(E) (3)

where xc(r) and xp(r) are the Compton and photoelectric coeffi-
cients of the material at spatial location r respectively, and fc(E)
is the energy-dependent Compton scatter basis functions which is
approximated by the Klein-Nishina function [2]

fc(α) =
1+α

α2

(2(1+α)

1+2α
− 1

α
ln(1+2α)

)
+

1
2α

ln(1+2α)− 1+3α

(1+2α)2

and fp(E) is the photoelectric absorption basis function, approxi-
mated by

fp(E) =
1

E3 .

Using the basis decomposition in (3), the expected value of
normalized counts in (1) can be written as

Ii( j) =
∫

wi(E)e
−(
∫

L j
xc(r) fc(E)+xp(r) fp(E)dl)

dE (4)

The Compton and photoelectric projections at each detector
are defined as yc( j) =

∫
L j

xc(r)dl and yp( j) =
∫

L j
xp(r)dl respec-

tively. The first step in dual-energy basis material reconstruction
is to decompose the high and low energy sinograms s1( j),s2( j)
into Compton and photoelectric sinograms yc( j),yp( j). We do
this using a nonlinear least squares minimization, where we min-
imize

min
yc,yp

2

∑
i=1

Zi( j)(si( j)+ ln
∫

wi(E)e−yc fc(E)−yp fp(E)dE)2 (5)

Here we use the measured counts as an approximation to the in-
verse variance of the measurements, as in [11]. In this paper,
we generate the estimates yc( j),yp( j) by solving the above min-
imization problem (5) using a non-linear Gauss-Newton method
[12]. Thereafter, the sinograms and the respective coefficients can
be linearly modeled using the forward projection matrix A as,

yc = Axc (6)
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yp = Axp (7)

The most widely used approach for reconstructing xc and
xp is to apply filtered back-projection (FBP) on (6) and (7) re-
spectively. In the presence of metal in the image, this can create
significant distortions, as we will show in our examples.

Proposed Method
In this section we discuss the algorithm proposed to reduce

the noise and metal artifacts in dual-energy CT images. The
framework is a model-based iterative reconstruction algorithm to
minimize weighted least squares with edge-preserving total vari-
ation regularization (EPTV). We exploit (1) statistical correla-
tion between measurements and decomposed sinograms, (2) intra-
image correlation between decomposed images, and (3) inter-
image sparsity. The general solution is as,

x̂c = argmin
xc≥0

1
2
||yc−Axc||2Wyc

+ τcR(xc) (8)

x̂p = argmin
xp≥0

1
2
||yp−Axp||2Wyp

+ τpR(xp) (9)

for Compton and photoelectric coefficients respectively. Here
R(xc) and R(xp) are the regularization terms, τc and τp are the
regularization parameters, and Wyc,Wyp are weighting terms for
the data fidelity. In the following subsections, we describe how
the parameters for each problem are selected.

Covariance Matrices of Basis Sinograms
Since the proposed solution is built on the estimated basis

sinograms yc and yp, we first consider the errors associated with
estimating these quantities. Using approximations based on non-
linear estimation, the inverse covariance matrices of the estimated
parameters yc( j),yp( j) at detector j associated with a maximum
likelihood estimator is given by

P = JT
[

Z1( j) 0
0 Z2( j)

]
J (10)

where J is the Jacobian matrix of the transformation[
f1(yc,yp)
f2(yc,yp)

]
=

[
− ln

∫
w1(E)e−yc fc(E)−yp fp(E)dE

− ln
∫

w2(E)e−yc fc(E)−yp fp(E)dE

]
We found that in the presence of metal, the inverse covari-

ance matrices are nearly singular with high condition numbers, as
shown in Fig. 3 in the results section below. We also noted that
the direction of the minimum eigenvalue corresponds closely to
the photoelectric coefficient, indicating that the estimates of this
coefficient have very high variance. This agrees with the fact that
the higher attenuation in dense materials such as metal prevents
most of the low energy photons from reaching the detector, and
make it difficult to reliably estimate the photoelectric coefficients
at lower energies, where that effect is best observed . To account
for this phenomenon, we apply explicit weighting Wyp( j) to each
detector j in the photoelectric sinogram, with weights defined as
the (2,2) element of the matrix in (10) for each j. This results
in the diagonal weighting matrix Wyp used in (9). We can apply a
similar process to obtain a weight Wyc for the Compton sinograms
in (8). However, Compton values are much better behaved, and
additional weighting will not make much difference in the recon-
struction quality.

Edge-Preserving Total Variation Regularization
The idea behind the EPTV regularization is to perform

smoothing only on non-edge parts of the image. We accomplish
this as in [9], by penalty weight modifying the total variation (TV)
norm in the regularization. We use the TV norm to obtain sharp
smoothing, as opposed to the L2 regularization norm used in [8].
Specifically, we use the anisotropic TV [10], as

R(x) = ||Dhx||1 + ||Dvx||1 (11)

where Dh and Dv are horizontal and vertical gradient operators ap-
proximated by the finite differences. To avoid blurring the edges,
we add a penalty weight, so the regularization term becomes,

R(x) = ||WhDhx||1 + ||WvDvx||1 (12)

where Wh and Wv are diagonal matrices with weights for hori-
zontal and vertical directions respectively.

In order to assign the penalty weights we first need to locate
the edges. Since when doing basis decomposition there is a possi-
bility of losing information and introducing additional errors, we
identify the edges based on a reconstruction of the high-energy
image, which has higher signal-to-noise ratio compared with the
low energy image, and the higher energy photons are more likely
to reach the detectors. We reconstruct the high-energy image via
an iterative algorithm, minimizing weighted least squares with TV
regularization as follows.

x̂high = argmin
xhigh≥0

1
2
||shigh−Axhigh||2W +τ||Dhxhigh||1+τ||Dvxhigh||1

(13)

with W = diag(Zhigh). Once we reconstruct the high-energy im-
age the penalty weights are assigned as,

wv = exp(−(|Dvxhigh|)/σ) (14)

wh = exp(−(|Dhxhigh|)/σ) (15)

where σ is the controlling parameter. Once the penalty weights
are assigned, the optimization problems in (8) and (9) are defined.

Optimization Approach
Based on the above discussion, the final solutions for Comp-

ton and photoelectric coefficients are obtained from the following
optimization problems.

x̂c = argmin
xc≥0

1
2
||yc−Axc||22 +τc||WhDhxc||1 +τc||WvDvxc||1

(16)

x̂p = argmin
xp≥0

1
2
||yp−Axp||2Wyp

+τp||WhDhxp||1+τp||WvDvxp||1

(17)

Problems (16) and (17), as well as (13) are convex but non-
differentiable functions and hence cannot be solved in closed form
solutions. For computational efficacy and numerical stability we
chose to use split-Bregman techniques [10] to solve each of the
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problems. Here we describe the problem (17) as an example, and
the other sub-problems can be similarly implemented. To enable
Bregman splitting we introduce two auxiliary variables dh and dv
such that dh = WhDhxp and dv = WvDvxp. This reformulates the
problem as,

(x̂p, d̂h, d̂v) = argmin
xp,dh,dv

1
2 ||yp−Axp||2Wyp

+ τp||dh||1 + τp||dv||1

+
λp
2 ||dh−WhDhxp||22 +

λp
2 ||dv−WvDvxp||22

(18)

where λp is the penalty parameter. Using simplified Bregman
iterative scheme, the iterations are reformulated as,

xp
k+1 = argmin

xp

1
2 ||yp−Axp||2Wyp

+
λp
2 ||d

k
h−WhDhxp−bk

h||
2
2

+
λp
2 ||d

k
v−WvDvxp−bk

v||22
(19)

dh
k+1 = argmin

dh

τp||dh||1 +
λp

2
||dh−WhDhxk+1

p −bk
h||

2
2 (20)

dv
k+1 = argmin

dv

τp||dv||1 +
λp

2
||dv−WvDvxk+1

p −bk
v||22 (21)

bh
k+1 = bk

h +(WhDhxk+1
p −dk+1

h ) (22)

bv
k+1 = bk

v +(WvDvxk+1
p −dk+1

v ) (23)

Equation (19) has a closed form solution as,

xp
k+1 = (AT WypA+λpDT

h WT
h WhDh +λpDT

v WT
v WvDv)

−1

(AT Wypyp +λpDT
h WT

h (d
k
h−bk

h)+λpDT
v WT

v (dk
v−bk

v)

(24)

and equations (20) and (21) can be found via shrinkage operations
as,

dh
k+1 = shrink(WhDhxp

k+1 +bk
h,

τp

λp
) (25)

dv
k+1 = shrink(WvDvxp

k+1 +bk
v,

τp

λp
) (26)

with

shrink(u,w) = sgn(u)∗max(|u|−w,0) (27)

Experiments and Results
In this section we present results from experimental data ac-

quired from the Imatron C300 electron-beam medical scanner.
For our experiments we used 95 kVp and 130 kVp spectra (kVp
denotes the maximum voltage applied to the X-ray tube). Esti-
mates of the energy spectra are shown in Fig. 1. The re-binned
parallel sinograms have 720 angles and 1024 detector bins. Re-
constructions of two slices from a bag which contained a water
bottle, a rubber sheet and various degrees of metal clutter are pre-
sented. The reconstructed images are 512x512 with a pixel spac-
ing of 0.928 mm.

Fig. 2 shows the initial reconstructions of the high-energy
images of slice 1 and slice 2. These are reconstructed by minimiz-
ing weighted least squares with TV regularization as explained in
(13). Fig. 3 shows the low-energy sinogram and the correspond-
ing condition numbers of the covariance matrices of the estimated
basis sinograms of slice 1. The bright rays of the sinogram are
the rays that pass through metal and as can be seen the condition
numbers follow a similar pattern.

For the reconstructions, in order to construct the forward pro-
jection matrix we have utilized the ASTRA toolbox [13], specif-
ically the spot-operator called opTomo. The toolbox uses CUDA
for NVIDIA GPUs to perform accelerated parallel computations.
To update the coefficients in each iteration, (sub-problem 19) we
used Matlab inbuilt generalized minimum residual method (GM-
RES).

Reconstruction Results
Fig. 4 shows reconstruction results of Compton and photo-

electric images for the two slices reconstructed with filtered back-
projection (FBP), minimizing least squares with TV regulariza-
tion (LS with TV), minimizing weighted least squares with TV
regularization (WLS with TV), proposed method, and SPDE in-
version method. Note that the coefficients are for when using
normalized basis functions.

Figs. 4a, 4b, 4c and 4d are the results from FBP. Both the
Compton and the photoelectric images have streaks caused by
metal scatter, but the photoelectric images are highly distorted and
the underlying structures can be barely made out.

Figs. 4e, 4f, 4g and 4h are the reconstruction results of min-
imizing least squares with TV regularization. Here the noise ar-
tifacts have reduced in all images, but the metal induced streaks
are still visible. For these reconstructions the regularization pa-
rameters were chosen as τc = 100, βc = 5000, τp = 2000 and
βc = 50000. Note that for Compton images we can increase reg-
ularization to obtain over-smoothed images with less streaks but
the underlying structure will not be preserved. The photoelectric
images are still highly corrupted and even with high regularization
the images cannot be corrected.

Figs. 4i, 4j, 4k and 4l are the reconstruction results of min-
imizing weighted least squares with TV regularization. Here
weights were calculated using inverse of covariance matrices as
described earlier. As seen, down-weighting the Compton sino-
gram has introduced additional distortions in Fig. 4i in the region
of the rubber sheet. As discussed earlier we believe this is due
to the nearly singular covariance matrices of the highly clustered
corrupted projection rays. However, down-weighting the pho-
toelectric sinogram have significantly reduced the metal streaks.
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Figure 1: Estimates of the Imatron system spectra
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Figure 2: Initial reconstructions of the high-energy images of (a)
slice 1, (b) slice 2.
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Figure 3: (a) Low-energy sinogram, (b) corresponding condition
numbers of the covariance matrices of the estimated decomposed
sinograms, of slice 1. The condition numbers are higher for rays
passing through metal.

Now the underlying structures can slightly be made out in Figs. 4j
and 4l, but the images are clearly over-smoothed. The regular-
ization parameters chosen for this case were τc = 10, βc = 500,
τp = 2000 and βc = 50000.

Figs. 4m, 4n, 4o and 4p are the reconstruction results from
the proposed EPTV regularization method. The Compton sino-
grams are not weighted, while the photoelectric sinograms are
weighted. The metal induced streaks have clearly reduced in all of
the images. The Compton images have preserved the underlying
structure, and the edges are much sharper when comparing with
reconstruction of just using TV regularization. The photoelectric
images have also preserved a significant amount of the structure.
The regularization parameters chosen were τc = 500, βc = 12000,
τp = 2000 and βc = 50000. Note that the optimal regularization
parameters were empirically chosen for all of the algorithms de-
scribed above.

Finally we compare the reconstructions with results from
SPDE inversion method [8] in Figs. 4q, 4r, 4s and 4t. Note that
instead of the weights proposed in the paper, here we use the in-
verse covariance as weights and we only down-weight the photo-
electric sinogram to make the method comparable with the pro-
posed method. Even though the results are favorable they do not
preserve the structure as well as the proposed method.

Quantitative Results
To provide quantitative results of image improvements we

manually segmented the homogeneous areas of rubber and wa-
ter (excluding boundaries) and calculated the signal to noise ratio
(SNR) of the Compton and photoelectric coefficients, where SNR
was defined as the mean divided by the standard deviation. Fig. 5

shows the SNR values obtained for water and rubber segmenta-
tions in both slices.

For the reconstructions from FBP and minimizing least
squares with TV regularization, the obtained SNR values are
much lower, specially for photoelectric coefficients. For the re-
constructions from minimizing weighted least squares with TV
regularization and SPDE, good SNR values have been obtained in
the water region, but the SNR values in the rubber region are low.
However, when using the proposed method with EPTV regular-
ization, higher SNR values have been obtained in both water and
rubber regions for both Compton and photoelectric coefficients.

The whole reconstruction process (starting with dual-energy
measurements and reconstructing Compton and photoelectric im-
ages) with the proposed method took on average 193.5 secs per
slice with the current implementation on Matlab. Even though it
is much more computationally intensive than FBP, it is compara-
ble with other model-based iterative methods. In comparison, the
SPDE inversion took 211 secs per slice on average.

Discussion
In this paper, we presented a novel algorithm to reduce the

noise and metal artifacts in dual-energy CT images. The algo-
rithm was based on minimizing weighted least squares with edge-
preserving total variation regularization. We exploited the mutual
structure between the Compton and photoelectric images. Fur-
thermore to correct metal artifacts in photoelectric images, we
applied explicit data weighting to the photoelectric sinogram.

Using experimental data, we compared the proposed algo-
rithm with alternative methods. Qualitative reconstruction results
indicated that the proposed method is capable of removing noise
and metal artifacts, and preserving the underlying structure simul-
taneously. Other iterative methods have a trade-off between these
two features. Furthermore we showed that the proposed method
is capable of obtaining high SNR values for all regions. We also
verified that the reconstruction time for the proposed method is in
the same order of magnitude with the other iterative methods.

Hence, the proposed algorithm shows promise as an alter-
native inversion technique for dual-energy images, which would
lead to increase accuracy in material identification.

The main limitation of our algorithm is the computational
complexity. The bottleneck lies in the sub-problem (19) which
cannot be parallelized since the entire image needs to be updated
per each inner-iteration of GMRES or any other similar solver. In
future, we are looking into how to structure the computations such
that we can exploit parallelism. Furthermore we believe it will be
worthwhile to combine single-energy sinogram-based metal arti-
fact reduction techniques with the proposed dual-energy recon-
struction algorithm to obtain better results.

References
[1] A. Kak and M. Slaney, Principles of computerized tomographic imag-

ing, IEEE press (1988).
[2] R.E. Alvarez and A. Macovski, Energy-selective reconstructions in

X-ray computerised tomography, Physics in Medicine & Biology,
V.21, No.5 (1976).

[3] S. G. Azevedo, H. E. Martz, M. B. Aufderheide, W. D. Brown, K.
M. Champley, J. S. Kallman, G. P. Roberson, D. Schneberk, I.M.
Seetho, and J. A. Smith, System-independent characterization of ma-

IS&T International Symposium on Electronic Imaging 2019
Computational Imaging XVII 147-5



0.5

1

1.5

2

2.5

3

(a)
0

5

10

15

(b)
0.5

1

1.5

2

2.5

3

(c)
0

5

10

15

(d)

0.5

1

1.5

2

2.5

3

(e)
0

5

10

15

(f)
0.5

1

1.5

2

2.5

3

(g)
0

5

10

15

(h)

0.5

1

1.5

2

2.5

3

(i)
0

5

10

15

(j)
0.5

1

1.5

2

2.5

3

(k)
0

5

10

15

(l)

0.5

1

1.5

2

2.5

3

(m)
0

5

10

15

(n)
0.5

1

1.5

2

2.5

3

(o)
0

5

10

15

(p)

0.5

1

1.5

2

2.5

3

(q)
0

5

10

15

(r)
0.5

1

1.5

2

2.5

3

(s)
0

5

10

15

(t)
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[6] P. Babaheidarian, and D. Castañón, A randomized approach to re-
duce metal artifacts in X-Ray computed tomography, IS &T Interna-
tional Symposium on Electronic Imaging : Computational Imaging
XV (2017).

[7] B. H. Tracey and E. L. Miller, Stabilizing dual-energy X-ray com-
puted tomography reconstructions using patch-based regularization,
Inverse Problems, V.31, No.10 (2015).

[8] L. Martin, W.C. Karl, and P. Ishwar, Structure-preserving dual-energy
CT for luggage screening, IEEE International Conference on Acous-
tics, Speech and Signal Processing (2014).

[9] Z. Tian, X. Jia, K. Yuan, T. Pan, and S. B. Jiang, Low-dose CT recon-
struction via edge-preserving total variation regularization, Physics in
Medicine & Biology, V.56, No.18, (2011).

[10] T. Goldstein and S. Osher, The split-Bregman method for L1-
regularized problems, SIAM Journal on Imaging Sciences, V. 2, No
2 (2009).

[11] K. Sauer, and C.Bouman, A local update strategy for iterative recon-
struction from projections, IEEE Transactions on Signal Processing,
V.41, No.2 (1993).

[12] J. Nocedal and S. J. Wright, Numerical Optimization, Springer Se-
ries in Operations Research. Springer (1999).

[13] W. van Aarle, W.J. Palenstijn, J.Cant, E.Janssens, F. Bleichrodt, A.
Dabravolski, J.De Beenhouwer, K.J. Batenburg and J.Sijbers, Fast
and flexible X-ray tomography using the ASTRA toolbox, Optics Ex-
press, V.24, No.22 (2016).

Author Biography
Sandamali Devadithya received the B.Sc. degree (Hons.) in

electronics and telecommunication engineering from the University of
Moratuwa, Sri Lanka, in 2013, and the M.S.E.E. degree from the Uni-
versity of Washington, Seattle, USA, in 2017. She is currently a Ph.D.
candidate at the Department of Electrical and Computer Engineering,
Boston University, Boston, USA. Her current research interests include
digital signal processing, inverse problems, computational imaging and
sensing.
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