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Abstract
Motion artifact suppression is an important task in the med-

ical imaging field. Motion during data acquisition can produce
blurred images and artifacts. The calculation load for previous
motion correction methods is relatively high. In order to decrease
computational complexity, an efficient motion correction method
is proposed based on fast robust correlation. Fast robust corre-
lation is a computationally efficient search algorithm for trans-
lational image matching in the frequency domain. This method
calculates the matching surface using a series of high-speed cor-
relations by defining a kernel with sinusoidal terms. The pro-
posed method corrects motion distorted images by aligning trans-
lational motion between images formed by neighboring frequency
segments. Due to the ineffectiveness of the squared difference ker-
nel to detect motion between partial-Fourier images, the absolute
value kernel is proposed, which can be easily approximated by
sinusoidal terms. Total variation of the sum of partial-Fourier
images is chosen as the new match criterion. FFTs are used to
calculate correlations for computational speed. Experimental re-
sults show that the proposed method can reduce image motion
artifacts effectively and efficiently.

Introduction
Motion artifact suppression is an important topic in the im-

age processing field. For medical imaging [1, 2, 3], motion dur-
ing imaging is often an unavoidable issue, which may lead to a
degraded image. Object motion during the signal acquisition can
reduce image quality due to the induced artifacts, which further
hinders diagnosis and scientific research. These degraded images
may require repeated scans, which leads to treatment delay and
cost increases. If the images with artifacts are not reasonably un-
derstood, erroneous diagnoses and false scientific findings may
occur, which may bring disastrous consequences [4, 5].

Some sensors, such as MRI scanners and radar, acquire data
in the frequency domain and then transform to the image do-
main using Fourier transforms. Motion may occur during the
frequency-domain scan. Exhaustive search in the image domain
[6] and optimization of the cost function iteratively [7] are two
main methods to reconstruct motion corrupted images. However,
the calculation load for both methods is relatively high. Fast ro-
bust correlation (FRC) is a computationally efficient algorithm for
translational image matching in the frequency domain, first pro-
posed by Fitch et al. [8]. This method implements a series of
correlations to calculate the matching surface to increase compu-
tational speed. Robust behavior is achieved by defining a new
kernel, which is composed of several sinusoidal terms. FRC is
used in image registration, such as template matching [9] and im-

age fusion [10]. Based on the sinusoidal terms kernel [8, 11],
some principal component analysis methods [12, 13] have been
proposed.

In this work, an efficient motion correction method based on
FRC is proposed to decrease computational complexity. The pro-
posed method reconstructs a motion-corrupted image by aligning
translational motion between images formed by neighboring fre-
quency segments. Due to the ineffectiveness of the squared differ-
ence kernel to detect motion between partial-Fourier images, the
absolute value kernel is proposed, which can be easily approxi-
mated by sinusoidal terms. Total variation of the sum of partial-
Fourier images is chosen as the new match criterion. Fast Fourier
Transforms (FFTs) are used to calculate correlations to speed up
computation.

Methods
Motion Assumption

In the proposed method, motion is assumed to be two-
directional translations in a 2D plane. The whole frequency do-
main acquisition is assumed to have occurred over time in several
non-overlapping neighboring segments, and we only consider the
motion between different segments. Within each segment, the ob-
ject is modeled as stationary. The motion assumption is shown in
Figure 1. This assumption may not be accurate enough in some
cases, but for many problems it is a good approximation.

Figure 1: The whole frequency domain acquisition is divided into
non-overlapping neighboring segments. Motion is only consid-
ered between segments.

IS&T International Symposium on Electronic Imaging 2019
Computational Imaging XVII 142-1

https://doi.org/10.2352/ISSN.2470-1173.2019.13.COIMG-142
© 2019, Society for Imaging Science and Technology



Squared kernel
A matching surface is used to calculate the match quality

of two images over a range of 2-D shifts. The general matching
surface is expressed as:

S(mx,my) =

∑
x,y

h( f (x,y)−g(x−mx,y−my))α f (x,y)αg(x−mx,y−my),

(1)

where f and g are two images, mx and my are two direction trans-
lations, (x,y) is the pixel index, and α f (x,y) and αg(x,y) are im-
age masks. The squared difference kernel h(r) = (r)2, where
r is the pixel difference, is not suitable for motion image re-
construction in the context of non-overlapping frequency-domain
segments. To see this, consider the matching surface defined in
[8] as follows:

S(mx,my) =

∑
x,y
( f (x,y)−g(x−mx,y−my))

2
α f (x,y)αg(x−mx,y−my).

(2)

Eq (2) can be expressed as:

S = ( f 2
α f )⊗αg−2( f α f )⊗ (gαg)+α f ⊗ (g2

αg), (3)

where ⊗ represents correlation. The first term and the third term
of Eq (3) are constant and can be neglected, and the second term
can be computed in the Fourier domain:

f ⊗g = ifft(fft( f )fft∗(g)), (4)

where ∗ represents conjugate.
Since frequency segments do not overlap with one another,

this term will be zero for any shifts, and the matching surface Eq
(2) is constant.

Proposed match criterion
A new criterion is defined in the proposed method. The cri-

terion is the total variation of the sum of images formed by the
neighboring k-space segments. Signals with sharp edges have
larger total variation in the presence of phase distortion, which
is the kind of error that occurs when different frequency segments
are acquired at different object positions. As part of the proposed
criterion, the absolute value kernel is used:

h(r) = |r| (5)

Correlation functions can be calculated efficiently with FFTs, but
correlation assumes a squared kernel. In the FRC method, sinu-
soidal terms are used to approximate the proposed kernel, which
can then be rewritten as correlations to make FFT implementation
possible. A Fourier series is used to calculate the sinusoidal ap-
proximation. Since this kernel satisfies the Dirichlet conditions,
the Fourier series is guaranteed to converge.

h(r) = |r|= a0 +
∞

∑
p=1

(ap cos(pr)+bp sin(pr)), (6)

The approximation becomes

h(r)≈ 1
2
− 4

π2

P

∑
p=1

1
(2p−1)2 cos((2p−1)πr)

=
1
2
−

P

∑
p=1

Bp cos(Apπr). (7)

Figure 2 compares different number of terms p with the absolute
value kernel. Based on the empirical performance, we choose
P = 3 to approximate the absolute value kernel, which is enough
to perform well in most cases.

Proposed method
f and g represent two images formed by two neighboring

k-space segments. f1 and f2 are the first difference of f in hori-
zontal and vertical directions. The same definition is used for g1
and g2. Since f1, f2, g1, g2 are all complex images, the real and
imaginary parts of all these images can be represented as f1r, f1i,
f2r, f2i, g1r, g1i, g2r, g2i. The matching surface is the sum of four
matching surfaces, which formed by f1r and g1r, f1i and g1i, f2r
and g2r, and f2i and g2i. Take f1r and g1r as an example to show
the whole calculation process. Using Eq (7) to get the matching
surface:

S1r(mx,my) = ∑
x,y

α f1r (x,y)αg1r (x−mx,y−my)

×
(

1
2
−

P

∑
p=1

Bp cos
(

Apπ( f1r(x,y)+g1r(x−mx,y−my))
))

.

(8)

Eq (8) is equal to:

S1r(mx,my) =

ℜ

{1
2
(α f1r⊗αg1r )−

P

∑
p=1

Bp(α f1r e
jApπ f1r⊗αg1r e

− jApπg1r )
}
.

(9)

Using FFTs to Eq (9):

S1r(mx,my) = ℜ

{
ifft
(1

2
fft(α f1r )fft

∗(αg1r )−

P

∑
p=1

Bp(fft(α f1r e
jApπ f1r )fft∗(αg1r e

− jApπg1r ))
)}

. (10)

After four matching surfaces are computed, the translations
can be calculated as follows:

(m̂x, m̂y) = argmin
(mx,my)

(S1r(mx,my)+S1i(mx,my)

+S2r(mx,my)+S2i(mx,my)). (11)

In order to obtain subpixel accuracy, interpolation is imple-
mented by padding zeros in the frequency domain of the partial
matching surface. After all the optimizations, all the motions be-
tween all the neighboring frequency segments relative to one ref-
erence segment are known. These motions are corrected, and the
whole image is reconstructed.
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Figure 2: Comparison different values of P and the absolute value kernel. (a) P = 1. (b) P = 3. (c) P = 5.
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Figure 3: The comparison between the breath-hold no-motion image, the original free-breathing image and the reconstructed image from
the original free-breathing image in one cardiac phase. (a) The breath-hold no-motion image. (b) The original free-breathing image. (c)
The reconstructed image from the original free-breathing image.

Experiments
For validation of the proposed algorithm, MRI experiments

were conducted. Magnetic Resonance Imaging (MRI) is a widely
used medical imaging technique which exploits the phenomenon
that in a magnetic field, some nuclei can absorb and then re-emit
energy, which can be detected under certain conditions. MRI ac-
quires data directly from the frequency domain, which is called
k-space.

The proposed method was used to reconstruct free-breathing
real MRI gating cardiac data (Auburn University MRI Research
Center) in each cardiac phase. The original image was distorted
due to free-breathing motion. According to the record of the
ECG device, the segment size of the frequency domain was cho-
sen as 8 frequency (k-space) lines. Figure 3 shows the compari-
son between the breath-hold no-motion image, the original free-
breathing image, and the reconstructed image from the original
free-breathing image of one cardiac phase. The breath-hold no-
motion image was acquired separately as a reference image for
comparison.

Discussion and Conclusion
Fig 3 shows that the reconstructed image reduces the blurs

of the original image effectively, and more details are recovered
in the heart region. However, there still exists some remaining

artifacts, especially at the region around the heart. We think the
real-world breathing motion gives rise to the remaining artifacts.
Real breathing motion is not exactly a two-directional translation
in a 2D plane. It includes some through-plane and non-rigid mo-
tion, which is beyond the scope of the proposed method.

The proposed method is efficient. The whole process time is
around 0.8 second, so it can be used in real-time processing. Note:
the proposed method is implemented in MATLAB on an 8 GB
RAM Intel Core i7-3630QM 2.40 GHz CPU processor machine.

In this paper, an efficient motion image correction method
based on fast robust correlation was proposed. Total variation of
the sum of partial-Fourier images was chosen as the match crite-
rion. The proposed method utilizes sinusoidal terms to approx-
imate the absolute value kernel, which allows FFTs to be used
to speed up the process. This method can be used in real-time
processing.
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