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Abstract
Biometric recognition of vehicle occupants in unconstrained

environments is rife with a host of challenges. In particular, the
complications arising from imaging through vehicle windshields
provide a significant hurdle. Distance to target, glare, poor light-
ing, head pose of occupants, and speed of vehicle are some of the
challenges. We explore the construction of a multi-unit compu-
tational camera system to mitigate these challenges in order to
obtain accurate and consistent face recognition results. This pa-
per documents the hardware components and software design of
the computational imaging system. Also, we document the use
of Region-based Convolutional Neural Network (RCNN) for face
detection and Generative Adversarial Network (GAN) for ma-
chine learning-inspired High Dynamic Range Imaging, artifact
removal, and image fusion.

Introduction
Imaging through the windshield presents some unique chal-

lenges. Face images are captured at significant standoff distances,
which reduces the amount of available light. This challenge is
compounded by attenuation from windshield coatings, including
tints that block Ultraviolet (UV) and Near Infrared (NIR) wave-
lengths and the required short exposure times for motion blur re-
duction at even low vehicle speeds of 15 MPH. The windshield
also produces specular highlights that must be removed for unob-
structed line of sight between the camera and the subject’s face. In
addition, environmental and behavioral factors such as structural
shadows and face pose, respectively, tend to degrade the perfor-
mance of face recognition systems.

There are current solutions for capturing images through
windshields. The most common are automatic traffic cameras
that include high power strobes, such as the Gatekeeper system
[7], which operates using red or NIR illuminates. These systems
all produce significant flashes that distract drivers, especially at
night, and capture faces from a single camera point of view, which
limits the system’s ability to overcome occlusions, illumination
fluctuations, and off-angle face poses.

We are developing a face recognition system designed to
withstand harsh environments as well as high throughput for
computer-aided site access control. The system is operated with

This manuscript has been authored in part by UT-Battelle, LLC, un-
der contract DE-AC05-00OR22725 with the US Department of Energy
(DOE). The US government retains and the publisher, by accepting the
article for publication, acknowledges that the US government retains a
nonexclusive, paid-up, irrevocable, worldwide license to publish or repro-
duce the published form of this manuscript, or allow others to do so, for
US government purposes. DOE will provide public access to these re-
sults of federally sponsored research in accordance with the DOE Public
Access Plan (http://energy.gov/downloads/doe-public-access-plan).

passive illumination during daylight, and it is modular and ex-
tensible. The current prototype consists of two computational
imaging units with three cameras each. The cameras include par-
ticular optics to address the challenges stated before. Figure 1
shows a picture of one of the units. This paper contributes with
a deep learning-based reconstruction model that simultaneously
performs High Dynamic Range (HDR) fusion and artifact cor-
rection. In particular, our solution is inspired by the latest work
on GANs. The network models were effectively trained on data
sets from a different domain. The proposed optical and machine
learning-based solution increases the likelihood of consistent col-
lection of high quality frontal face images.

The paper is organized as follows: First, we discuss the
imaging challenges that drive the system design and specify the
components of each computational unit. Second, details are pro-
vided about the software architecture and its components, which
include a documentation of algorithms for image registration,
HDR, artifact correction, and face detection and recognition.
Finally, we conclude the paper with experimental through-the-
windshield face recognition results and future directions.

Figure 1: Computational imaging unit, which includes two weath-
erproof enclosures; one for a camera array and the other for a
ruggedized computer.
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Figure 2: Images from all six cameras showing the left and right views of the vehicle.

Imaging Unit Design and Hardware Compo-
nents

Imaging passengers through vehicle windshields presents a
host of challenges for providing high quality templates for facial
recognition. The system under development aims to address the
following issues: glare and reflections at the windshield from un-
controlled illumination, low contrast/illumination at the vehicle
cabin, motion blur, out of focus blur, and head pose variation.

To mitigate image degradation caused by windshield glare
and reflections, we employed linear polarization filters. The elec-
tromagnetic polarization of reflections and glare is biased towards
the incidence angle of the last reflection surface. For example, the
road is approximately horizontal or zero degrees. Therefore, road
glare is mostly composed of zero-degree-polarized light waves.
Consequently, filtering such light artifacts with a 90-degree po-
larization filter reduces road glare. However, windshields are
mounted at different angles. Thus, polarization filters were placed
in all cameras at different polarization angles in the range of
90◦±10◦.

Contrast at the vehicle cabin is driven by the amount of am-
bient light (e.g., sun light) and the shadows generated by adja-
cent structures and vehicle components, such as trees and the ve-
hicle roof, respectively. In addition, these light conditions can
change instantaneously (e.g., sudden cloud coverage). Commer-
cially available cameras can adapt exposure and gain to global
light conditions. However, automated camera gain and exposure
adaptation for moving targets is challenging. Consequently, HDR
techniques were employed to guarantee adequate dynamic range
for faces inside the field of view independently of changing light-
ing conditions. Unlike conventional HDR imaging, where a single
camera takes a rapid succession of images at different exposure
times (i.e., bracketing), the system under development emulates
bracketing with an array of cameras with varied neutral density fil-

ters. Note that the traditional HDR approach introduces ghosting
artifacts due to the movement of the vehicle through the frames.
As shown in Figure 2, camera #3 does not have a Neutral Den-
sity (ND) filter for a 100% transmission of light into the sensor,
while camera #2 and #1 use a 0.3 and 0.9 ND filter, respectively,
for a 50% and 25% light transmission.

Motion and out-of-focus blur are controlled by different de-
sign parameters. Additionally, the imaging units need to capture
a variety of vehicle sizes ranging from compact cars to service
trucks and the face images require 100 pixels between the eyes
which provides enough resolution for accurate recognition. We

Figure 3: Illustration of the computational unit camera array depth
of field.
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found that a 10 meter trigger distance on average meets these re-
quirements. However, an extended depth of field is desired in
order to reduce out-of-focus faces. Consequently, as shown in
Figure 3, the middle camera is focused at a target plane 9 meters
away (immediately following the trigger), while the other cam-
eras are focused at distances of 8 and 7 meters to extend range
where the driver is in focus. For the selected distance, depth field,
and average vehicle speed of 10 MPH, an exposure time of 10 ms
provided the optimal trade off between motion blur and contrast.

The two-unit system was key at increasing the likelihood of
capturing a frontal face image. As shown in Figure 4, two com-
putational units are placed at each side of the lane and as close as
possible to the road to get a near frontal windshield image. Each
imaging unit is triggered by the same signal and frame rate acqui-
sition is also coordinated. Therefore, at time t two simultaneous
views of the vehicle and passengers are obtained. As the vehicle
moves across the field of view, the driver may change face pose to
track other vehicles or due to other distractions. Our dual system
takes advantage of these movements and near to frontal faces are
expected in more than one frame. Note that an overhead capture
is not ideal because it reduces the available capture window and
vehicle components tend to occlude the faces.

System Hardware
The weatherized prototype system contains independent,

modular imaging units that serve up their data to a control pro-
gram that manages and performs image fusion, detection, and
recognition processes. These units consists of an array of three
Basler GigE cameras mounted to a custom 3d-printed bracket,
which aligns them to a common focal point at 10 meters. Al-
though individual camera exposure time variation is controlled
with ND filters, global gain and exposure time is adjusted at the
time of data acquisition based on that day’s expected illumination
conditions. To mitigate overheating of components, each compu-
tational imaging unit has a cooling fan for air cycling and each
Basler camera is outfitted with a heat sink. Each imaging unit
transmits raw images via Power over Ethernet (PoE) connections
to a ruggedized and weatherized computing node. The comput-
ing node contains four power over Ethernet (PoE) ports, 32GB
of memory, an Intel Core i7 CPU with 8 cores, and a NVIDIA
GTX1050 Ti Graphics Processing Unit (GPU) with 4GB of mem-
ory. The GPU was selected to support our deep learning-heavy
algorithms. Face detection was found to benefit the most from
the GPU. The current face recognition algorithm process an en-
tire 3MP image in 27 and 0.17 seconds for Central Processing
Unit (CPU) and GPU,respectively. The GPU provides a 158x
speedup to face detection.

Figure 4: Two-unit camera setup.
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Figure 5: Cameras and filters used to penetrate windshield glare.

For frame synchronization the same trigger signal was dis-
tributed across units and their cameras. The triggering system
consists of an Optex through beam photoelectric sensors placed
a couple meters behind the middle camera focus plane (See Fig-
ure 4). After this initial triggering event, each camera would then
acquire twenty frames equally spaced in sequence. The frames
were then stored with syncing metadata (e.g., time stamp, event
number, frame number, etc.). This metadata is critical for proper
image registration and fusion.

Based on the specifications and design selections stated
above, the following are our optical components: 1) a Basler cam-
era with 2048 x 1536 pixel matrix and 3.45 µm pixel size, 2) a 50
mm focal length and 34 mm aperture lens, 3) a Midwest Opti-
cal Systems UVIR filter to sample in the visible spectrum, 4) a
Midwest Optical Systems ND filter, and 5) a Meadowlark Optics
linear polarizer with extinction ratio greater than 10,000,000:1.
Figure 5 illustrates the optical configuration of the cameras.

System Software Architecture
The modular design concept used for system hardware com-

ponents was continued at the software level. At its core, Google
Remote Procedure Call (gRPC) was employed to separate and
manage communications between software processes. The gRPC
works as remote servers. For example, a camera server handled
camera triggering and raw image acquisition, and processes such
as face extraction, HDR fusion, and face template matching were
also designed to execute independently. This independent server
architecture allows for easy system upgrades and seamless multi-
threading. The gRPC architecture allows upgrade of low level al-
gorithms without the need of significant code re-factoring and the
risk ok breaking other application processes. The QT Software
Development Toolkit version 5 [4] was selected to implement the
Graphic User Interface (GUI) for the application.

The following subsections describe the core processes for
image acquisition and facial recognition.

Image Acquisition
The image acquisition module coordinates the communica-

tion with the cameras and receives raw images every time the
cameras are triggered. For each trigger event and imaging unit,
a three-raw-image set is generated. After a trigger event, each
camera module would take a sequence of twenty frames, which
results in 120 total raw images or 40 three-raw-image sets. The
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image frames are pushed to a memory queue data structure un-
til computational resources are available for further processing.
Each image frame is tagged with metadata, such as camera mod-
ule number, event number, frame id, and timestamp. Each three-
raw-image set is passed to the next processing step together.

Initial Alignment
During imaging unit setup, a calibration image is taken to

estimate a rigid transformation that will coarsely align the images
in a three-raw-image set–with the middle camera as the reference.
The quality of the alignment is confirmed by visual inspection of
the resulting alignment of several three-raw-image sets. A close
spatial alignment of the sets confirms that the cameras are also
temporally synchronized. Although initial calibration can be per-
formed without specialized physical calibration tools, empirical
experience dictates that use of high contrast patterns, such as a
checkerboard patter, facilitates and increases the accuracy of the
coarse spatial alignment. A software tool was also developed
to refine some camera parameters, e.g., gain and exposure time,
to the current environmental conditions. The subsequent image
processing routines depend on a proper coarse alignment of each
three-raw-image set.

Face Detection
Face detection occurs after the initial coarse alignment and

before the HDR steps. Face detection is significantly less compu-
tational expensive than full-frame HDR. Also, the face detector
is configured to detect even low contrast and noisy faces. Conse-
quently, we can save computational resources by only performing
HDR on Regions of Interest (ROIs) with faces.

The detection process starts with computing the Region of
Interest (ROI) coordinates for the faces in the frame of the camera
without a ND filter. Given that the three-raw-image set is coarsely
aligned, we extract the same ROIs for the other frames in the set.
This step extracts three different optical (e.g., exposure) versions
of a face. Each face image is 256x256 pixels in size. This face
set is known as the three-raw-face set. Note that each three-raw-
image set may contain several three-raw-face sets. Each three-

raw-face set is post-processed for alignment refinement and HDR
fusion.

Adaptive Alignment
The coarse alignment registers the whole images so that the

three-raw-face set fully contain the same face in all three images.
However, due to lens distortions and inaccuracy of the coarse
rigid transformation at depths that depart from the depth used dur-
ing camera setup, the coarse alignment is not sufficient enough
for HDR fusion. Consequently, the alignment of the three-raw-
face image set needs refinement. The initial coarse alignment
was refined with a median threshold bitmap technique [14] and
a scale-invariant Fast Fourier Transform (FFT) registration tech-
nique [13]. From these two techniques, the FFT-based technique
consistently produced accurate alignments.

High Dynamic Range Fusion
HDR fusion is an example of a computational imaging tech-

nique. In computational imaging, there are physics-based, data-
based, or statistical models of the world, the object, and/or the in-
strument that “sees” the world (i.e., measurements) that are used
to indirectly reproduce the object of interest (e.g., image) from
the measurements. In HDR the radiance of the scene is sampled
by acquiring images at different radiance dynamic ranges. These
separate images are fused together following a radiance model for
each frame camera configuration (e.g., exposure time, f#, density
filter). In this paper, we compare physics-and data-based mod-
els for HDR. For the physics-based model we employed two al-
gorithms for exposure fusion. The first approach is inspired on
Debevec radiance mapping [5] and Durand[6] tone mapping al-
gorithms. The second approach is an implementation of Mertens
et al. [12] exposure fusion technique. For a data-based HDR ap-
proach, a GAN was trained to both fuse images with different
exposures, and to correct for the expected artifacts in through-
the-windshield face images.
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Figure 6: Network designed for image fusion and enhancement.
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Design and Training of GAN for Through-the-
Windshield Image Fusion and Artifact Removal

One of the contributions of our work is the use of GANs
to perform HDR processing and image enhancement across the
three-raw-face image set. Figure 6 shows the generator module
for our GAN. The GAN is implemented in Keras and is based
on tutorials provided from [10], which was configured for super
resolution and based on the Wasserstein GAN implementation [1].

For our purposes we have made significant modifications to
the network to make it more consistent with the implementation
described in [9]. The original network transformed the image
from 64x64x3 pixels to 256x256x3 pixels. As shown in Figure 6,
this has been changed to produce a 256x256x3 to 256x256x3
transformation which is roughly the size of the face when vehi-
cle images are captured at 10 meters from the camera.

The network consists of 7 down-sampling steps and then 7
up-sampling steps. Short cut connections bridge the layers at the
same size. This has been found to provide enough depth to per-
form complex face analysis operations at the low resolution layers
while providing shortcuts to transmit higher frequency informa-
tion and facial details for accurate face reconstruction.

The original super-resolution version of the network applied
a down-sampling to a high-resolution face and then trained the
network to reconstruct the original image. Our network’s intent is
for the purpose of HDR processing, however, as stated previously,
there are a variety of other image artifacts that degrade image
quality, such as glare, noise, blur, alignment, lighting, shadows.
For this reason, we pushed the capabilities of the network to fuse
different exposures and correct for these artifacts.

The network is trained using the Celeb A [11] dataset, where
faces larger than 256x256 have been extracted. The images are
corrupted with synthetic artifacts that resemble those found in
the through-the-windshield face recognition application. The net-
work goal is to receive three low quality face images and recon-
struct the original high-quality face image. The original Celeb A
images are RGB color images. Therefore, the network attempts
to predict skin color also. In addition, more than one synthetic ar-
tifact can be applied to each input image. The simulated artifacts
are:

• A random rigid transformation (e.g., rotation, scale, and
translation) is applied to the image.

• A grayscale version of the image is created by randomly
weighting the original image.

• The image is multiplied by a randomized camouflage image
to simulate random shadows or glare on the windshield and
to encourage the network to mitigate non-face artifacts.

• The image pixel values are scaled by three randomly se-
lected values to approximate the ND filters on the cameras.
The order of these images into the input channels is random-
ized.

• Small translations of three pixels are applied to two of the
images. The ”center” image is kept aligned to the original.

• The images are blurred using a random Gaussian filter with
a sigma value centered at 2.0 and a standard deviation of 2.0.

• Randomized noise is generated independently for each im-
age channel. It is also blurred using random Gaussian filters
and applied to the images.

Glare/Flare

Brightness/
Contrast

Rigid Trans.

Figure 7: Celeb A examples of GAN (first three columns) inputs, (4th column) reconstruction/fusion, and (last column) original images.
Note that the first three columns show examples of the GAN training data and synthetic artifacts.
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Experimental Setup and Results
After the original image is corrupted, the pixel values are

clipped to the range 0 to 255 to maintain the original image pixel
value range. The original image and corrupted input are both re-
scaled to the range -1 to 1 before being presented to the network.
Examples of the generated dataset are shown in Figure 7. Note
that the network attempts to perform a combination of corrections
and processes, including alignment, HDR processing, artifact re-
duction, noise reduction, super resolution, and colorization (since
it attempts to reconstruct the original 3-channel color image).

Two different network models were trained. The first model
(GAN1) used approximately 2,500 iterations. This model in-
cludes a perceptual loss [9] function. The loss function was based

on the first 9 layers of a VGG19 network using ImageNet weights
from Keras. The second model (GAN2) used 2,500 iterations.
It included the perceptual loss of the GAN1 model and also in-
cluded a face recognition model loss based on the first 9 layers
of the VGG Resnet50 face model. The intention for GAN2 is to
produce reconstructions that are improved for face recognition.

An initial prototype experiment was staged at a closed traffic
loop with vehicles that ranged both in size and windshield variety.
Participants passed through the system numerous times to pro-
duce an initial test data-set consisting of 2,949 raw images con-
taining faces. Additional variability was added to the data-set with
natural lighting conditions ranging from overcast to very bright,
presence of rain, various head poses and face obstructions (sun-
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Figure 8: Example reconstructions from the vehicle driving test.
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glasses, etc.), operating windshield wipers and varying speeds.
Drivers alternated between starting from a dead stop before the
trigger and accelerating to 15mph as well as driving through the
system maintaining a speed of 15mph. These speed variations
faithfully approximate the targeted driving conditions occurring
at security portals.

Continuous daily use in direct sunlight with daytime temper-
atures above 80F coupled with intermittent rain events provided
ample validation of system ruggedness. System setup in the field
also predicated the need for additional convenience features (such
as laser leveling) to quickly orient the system components and
provide indication of optimal performance.

Given the unconstrained nature of through-the-windshield
face recognition, the crux of facial recognition relies on the ac-
curate detection of faces. We used an open source RCNN[15]
that has been adapted for face recognition by Jiang and Learned-
Miller [8]. In the initial prototype experiment the face detector
was able to detect driver and passenger faces at a rate of 97.15%.
There were 84 instances of missed faces - the vast majority of
these due to face occlusion from cups, visors, windshield wipers,
and/or a significantly dirty windshield. Additionally, there were
only 3 events when a driver was able to pass through the system
without a single face detection across the event frame set. There-
fore, this high detection rate should greatly boost the accuracy of
recognition efforts in later experiments. Face recognition results
were not calculated for this initial experiment.

A second two-day experiment was conducted at a facility se-
curity portal to provide live field test performance metrics. The
experiment included 22 enrolled participants who entered the fa-
cility under standard security procedures as the system actively
captured images for identification. Images were gathered at this
portal from before sunrise till early afternoon providing for var-
ious illumination conditions in which to capture driver images.
Approximately 56,520 raw images were captured from the two
systems from 471 vehicle triggered events. Of these, the cap-
tured participant images were then merged to produce the two-
GAN variant images as well as with standard Debevec[5] and
Mertens[12] algorithms. These processed images, along with
each of the raw images from the three system cameras, were then
used as probes in the recognition system. Figure 8 shows em-
pirical examples of input through-the-windshield face images, a
passport-like picture (i.e., gallery image), and the reconstructions
from our physics-and data-based models. Note that GAN2BW is
the same network as GAN2, but the output image is mapped to a
monochrome space.

To generate features for recognition, we have used the VGG2
RESNET model [3]. The last layer of that classification network
was removed, leaving a 4096 element vector for matching. Scores
were produced using correlation, where higher correlations are as-
sumed to be better matches. Figure 9 shows the scores for each
method and illustrates that GAN2 which optimizes for recogni-
tion does have a small boost in the mean match score. However,
the traditional Mertens HDR method [12] still produces best re-
sults. The face recognition configuration used for these experi-
ments will be available so that others can reproduce results [2]

One interesting artifact of our GAN implementation is that
the network output (i.e., reconstruction) is biased towards image
input #2. This is illustrated in Figure 10, where the ordering of
inputs are swapped to produce different reconstructions. It was
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Figure 9: Match score distributions sorted by method used to pro-
duce the probe image for comparison to the ground truth gallery.
GAN1 was designed to produce images for perceptual quality
whereas GAN2 and GAN2BW were trained for perception and
recognition accuracy.

found that if the best image was provided to input #2 reconstruc-
tions always seemed to be better. We attempted to mitigate input
bias by randomly ordering the training images with the expec-
tation that the network would learn to evaluate quality and base
reconstructions on the best inputs available. The artifact is most
likely a result of how the network converged during training.
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Figure 10: The ordering of the inputs presented matters and can
have significant effects on reconstruction quality

Conclusion
Preliminary field tests of the prototype through-windshield

face recognition system have demonstrated that the system has
the potential to meet desired timing, accuracy, and durability con-
straints. The efforts of the HDR GAN design has shown to be
particularly effective in reconstructing high quality HDR images
from the raw exposures that can be used for facial recognition.

Additional plans to enhance the overall system performance
and reliability include:

• Revisiting outdoor alignment procedure
• Setup and calibration improvements
• Modifications to user GUI design
• Outdoor recognition testing
• Separate HDR fusion from artifact correction
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