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Abstract
Efficient plant phenotyping methods are necessary in order

to accelerate the development of high yield biofuel crops. Man-
ual measurement of plant phenotypes, such as width, is slow and
error-prone. We propose a novel approach to estimating the width
of corn and sorghum stems from color and depth images obtained
by mounting a camera on a robot which traverses through plots
of plants. We use deep learning to detect individual stems and
employ an image processing pipeline to model the boundary of
each stem and estimate the pixel and metric width of each stem.
This approach results in 13.5% absolute error in the pixel domain
on corn averaged over 153 estimates and 13.2% metric absolute
error on phantom sorghum averaged over 149 estimates.

1. Introduction
Understanding the relationship between genotypes and phe-

notypes of plants is essential for clean energy and optimizing bio-
fuel production. By collecting physiological traits of plants, it is
possible to find links between plant gene sequences and biomass
yield. Sorghum and corn plants have been demonstrated to be
suitable sources for fuel in practice [13, 2]. To determine the
genotype-phenotype map for sorghum and corn, rapid phenotyp-
ing methods are necessary for efficient data collection. Currently,
measurement of plant phenotypes, such as width, is often done
manually. This process is slow and error-prone. Therefore, it is
essential to develop algorithms that can accurately and efficiently
phenotype in situ plants [11].

We propose a practical, robust method that phenotypes
sorghum and corn grown in outdoor conditions from RGB and
depth images. Specifically, we develop an algorithm to estimate
the width of plant stems using an Intel RealSense R200 camera,
which is a stereo camera collecting RGB, infrared, and stereo-
scopic depth images at a relatively low cost [9]. This camera is
mounted onto a mobile robotic platform, which traverses through
rows of densely positioned plants.

Our proposed algorithm detects individual plant stems, esti-
mates the width of each stem in pixels, and converts these pixel
widths to metric widths using depth data. For detection, we
train a Region-based Convolutional Neural Network (R-CNN)
to propose bounding boxes for individual stems. Given a re-
gion within which a stem lies, we employ edge detection, multi-
resolution morphological operations, and Random Sample Con-
sensus (RANSAC) in order to model the boundary of each stem
and estimate stem widths.

In our experimental setup, a robot with a mounted stereo
camera moves in the space between two rows of a given plot, col-
lecting images at a fixed rate, as shown in Figure 1. Each plot
contains a unique genetic plant strain, and since geneticists are
primarily interested in comparing statistical parameters of pheno-
types across plots, our goal is to estimate the histogram of stem
widths for each plot. As such, we have designed our algorithm to

Figure 1. Sensor setup for measuring in situ plants.

identify and discard width estimates with low confidence values
so as not to adversely affect the statistical characterization of a
plot. Since each row of a plot has 50 plants, discarding low con-
fidence estimates is unlikely to significantly alter the estimated
histogram.

2. Related Work
Previous work to estimate widths of biofuel plant stems in

outdoor settings models the shape of stems in order to produce
width estimates. Notably, [1] develops a width estimation algo-
rithm from 2.5D infrared images by employing Frangi filters to
locate the tubular, narrow shapes of stems within an image and by
applying a Hough transform to compute the lines that outline the
boundary of each stem.

Similar to [1], we propose a method which first identifies
individual stems in each image, and then models the boundary
of each stem using two lines. However, rather than hand-tuning
an image transformation to accentuate plant stems, we implicitly
learn this transformation through deep learning on known data,
similar to [4]. We also deploy RANSAC, which has been shown to
outperform Hough transforms in cases involving line-fitting from
noisy observations, in both accuracy and computational speed
[15, 10].

Rather than using images, some plant phenotyping methods
model stems by constructing 3D point clouds from data obtained
from a time-of-flight (ToF) sensor [8, 7]. Despite promising re-
sults, this method is limited by the cost of 3D ToF sensors, as well
as the computational cost of generating and operating on point
clouds.

Previous works phenotype one type of plant, with the most
emphasis on phenotyping sorghum [1, 8, 12, 3]. The disadvantage
of this approach is that it may not generalize to multiple kinds of
plants, which is important for ease and robustness of use. Thus,
we provide results on both corn and sorghum.

The rest of the paper is organized as follows: in Section 3,
we outline our proposed approach; in Section 4, we describe the
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Figure 2. Diagram of the proposed approach. Inputs from the stereo camera are indicated in bold.

experimental setup and results of our algorithm on two datasets;
and in Section 5, we discuss implications of our findings and fu-
ture work.

3. Proposed Approach
As shown in Figure 2, our proposed algorithm consists of

four main stages: stem detection, major axis detection, pixel
width estimation, and metric width estimation. The stem detec-
tion stage uses Faster R-CNN, a Convolutional Neural Network
that can predict bounding boxes around objects of interest, in or-
der to identify general locations of individual stems [14]. Second,
the major axis estimation stage applies a low-resolution morpho-
logical closing operation to the edge profile of an individual stem
in order to estimate the major axis of the stem. Third, the pixel
width estimation stage uses points on either side of the stem and
fits them to lines on both sides of the stem using RANSAC. These
lines are evaluated to determine whether they are nearly paral-
lel, and if so they are used to generate an estimate for the pixel
width of the stem; otherwise, no estimate is generated for the
stem. Lastly, depth data and knowledge of the camera param-
eters are used to generate a metric width estimate for the given
stem.

3.1 Stem Detection with Faster R-CNN
Since we aim to estimate the width of each individual plant,

our algorithm first isolates individual stems. This is achieved by
feeding RGB images captured by the stereo camera, each contain-
ing one or more plants, into a pre-trained Faster R-CNN model
[14]. The novelty of Faster R-CNN is best identified by the de-
sign of its deep convolution layers, which are used to deduce re-
gion proposals.

We leverage an existing pre-trained model, Faster R-CNN
with ResNet101 [18], and fine-tune it with 2000 images of corn
and sorghum crops. The Faster R-CNN outputs a list of bounding
box coordinates and corresponding confidence levels correspond-
ing to regions of interest which indicate plant stems, as shown in
Figure 3. We use these predictions to crop the original RGB im-
age and its corresponding depth image into areas solely focusing
on individual stems. These cropped images of detected stems are
fed into the subsequent steps of the algorithm.

Note that in the above process, it is possible to detect stems
of the same plant multiple times in multiple images due to the
overlap between successive images. It is possible to mitigate this
by tracking detected stems across frames and fuse the width esti-
mates of the same stem in multiple pictures in order to arrive at a
more accurate estimate. However, since we are mostly interested
in statistical characterization of stem widths in a plot containing
the same genetic strain with 50 plants, we speculate that ignoring

the duplications across images by not tracking them is not likely
to result in significant change in the mean stem width estimate for
the plot.

Figure 3. An example of corn stems as detected by Faster R-CNN.

3.2 Stem Major Axis Estimation
After detecting stems with Faster R-CNN, we estimate the

major axis of each stem to represent its location and orientation.
First, we de-noise the image with an adaptive low-pass Wiener
filter and increase the contrast using histogram equalization to en-
hance edges, as shown in Figure 4(b) [17]. Next, a Canny edge de-
tector is used to generate an edge profile for each stem, such as the
one shown in Figures 4(c) and 5(a). Canny edge detection is well-
suited for this since it discourages disconnected edges, which are
not of use when representing a stem outline [5].

Given a binary image representation of an edge profile, we
would like to extract a larger structure from this image, un-
der the assumption that a stem is the most prominent structure
present, surrounded by smaller obfuscating structures such as
leaves. Thus, we desire a low-resolution representation of the
stem which preserves larger structures. We use a morphological
closing operation applied to the complement of the binary image
[16]. By using a large, rectangular structuring element of size
30× 15, we can extract large structures from the edge profile of
the stem, as shown in Figure 5(b).

Assuming the stem is the primary structure in the image, it
should be represented by one of the remaining connected compo-
nents after applying morphological closing. If there are multiple
connected components, such as in Figure 5(b), a component that
is large, near the center of the image, and near-vertical most likely
represents the stem. In practice, this can be chosen by calculat-
ing a weighted average of these features for each component and
selecting the component with the highest average. Given a cho-
sen component, its location and orientation can be used to obtain
a major axis line which resembles the stem’s major axis. Figure
5(c) illustrates a connected component closer to the center being
chosen to represent the stem, along with a superimposed major
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axis line.

Figure 4. (a) Bounding box around a stem; (b) result of Wiener filtering and

contrast enhancement; (c) Canny edge profile of resulting image.

Figure 5. (a) Canny edge profile of a stem; (b) result of coarse-resolution

morphological closing; (c) proposed stem major axis.

3.3 Stem Boundary Estimation
The boundary of the stem can be represented by edge points

on either side of the stem. Since the Canny edge profile demon-
strated in Figures 4(a) and 5(a) is too noisy to accurately represent
the boundary of the stem, we apply a smaller morphological clos-
ing operation of size 12× 4 in order to obtain a finer resolution
image representation as shown in Figure 6(b). We next superim-
pose the major axis on this new edge profile and draw lines per-
pendicular to the axis with equidistant spacing along the length of
the axis, such as in Figure 6(c). Points on either side of the axis
at which these lines first intersect an edge are chosen as candidate
boundary points, such as in Figure 7(a).

3.4 RANSAC and Pixel Width Estimation
Having generated candidate points that delineate the bound-

ary of a stem, we seek to estimate the final width of the stem.
Given that these proposed points are derived from a possibly noisy
edge profile of the detected stem, it is often the case that some
points do not truly represent the boundary of the stem, such as
the candidate points on the left side of the stem in Figure 7(a).
Thus, we wish remove outliers from the points on both sides of
the stem and use the remaining points to represent the stem bound-
ary. Random Sample Consensus (RANSAC) is a robust method
for removing outliers and modeling data from remaining inlier
points [6]. Given that stems of corn and sorghum have almost no
curvature, we represent the boundary of the stem with a line on
each side of the stem. Thus, we use RANSAC independently on
each side of the stem, finding a linear fit to the data which ignores
outlier candidate points, as demonstrated in Figures 7(b) and 7(c).
The pixel width of the stem is computed by finding the average
distance between the two segments found by RANSAC.

Figure 6. (a) Canny edge profile of the stem in the region of the major axis;

(b) result of applying fine-resolution morphological closing; (c) Perpendicular

lines to the major axis drawn along the axis.

Figure 7. (a) Candidate points on boundary of the stem; (b) lines pro-

posed by RANSAC superimposed on a fine-resolution morphological repre-

sentation; (c) lines proposed by RANSAC superimposed on the original RGB

image.

3.5 Discarding Low-Confidence Estimates
The proposed methods rely on the assumption that the edge

profile of a stem accurately represents the stem’s physical outline.
In practice, this may not always hold, due to multiple factors, such
as obfuscating leaves or blurry images due to shaky robot move-
ment. A case of a blurry image and its corresponding noisy edge
profile is shown in Figures 8(a) and 8(b). In order to detect the
presence of these factors, we compute the angle between the two
line segments proposed by RANSAC. Since actual sorghum and
corn plants should have nearly parallel edges, we can discard our
estimated width if the angle between the two lines are sufficiently
large, i.e. greater than 5 degrees, such as in Figure 8(c). Ad-
ditionally, since our final goal is to statistically characterize the
stem width of an entire plot of plants of a single genetic strain,
even if we do not generate width estimates for all stems in a plot,
we can still characterize the phenotype of a given strain.

Figure 8. (a) A blurry RGB image of a stem; (b) Canny edge profile of the

stem; (c) proposed stem boundary lines.

3.6 Metric Width Estimation
Lastly, we determine the metric width of a stem given its

boundary and corresponding depth data from the depth camera.
RGB images and depth images obtained by the camera may not
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be aligned, so we manually align by shifting all depth pixels by
some constant value. This shift may vary according to the speed
of the robot, so it must be hand-tuned to each individual dataset.
An example of the misalignment between RGB images and depth
images is shown in Figure 9. Next, to account for noise in depth
measurements, we average the depth values of all pixels enclosed
by the boundary of the stem to estimate the distance between the
stem and the camera. Once an average depth is obtained, this
depth, the camera’s focal length, the estimated pixel width, and
the distance from the stem to the center of the image are used to
compute the metric width of the stem with the following formula:

wm =
wp ∗d

fx

where wm is the metric width, wp is the pixel width, d is the dis-
tance to the stem, and fx is the sensor focal length in units of
pixels.

Figure 9. (a) An RGB image of two stems; (b) the corresponding depth

map visualized through a heat map. Note that the two vertical lines in the

depth map correspond to the two stems in the RGB image. The stems are

seen further to the left of the image in the depth map than the RGB image.

4. Results
We present two experiments to test different components of

the proposed algorithm. First, we use data from in situ corn plants
in outdoor conditions to test pixel width estimation methods. Sec-
ond, we use phantom sorghum plants placed in an outdoor setting
to evaluate our metric width estimation.

4.1 Corn Pixel Width Estimation
The data collected for testing corn width estimates was ob-

tained from a RealSense R200 camera mounted on a robot, which
traversed through 6 rows of distinct corn plots of 50 plants each,
with the setup described in Section 1. Due to difficulties with
hand-labeling metric stem widths on a large number of plants, we
opt to use ground truth data in the pixel domain by labeling the
pixel width of each stem after being detected by Faster R-CNN at
three locations along the stem and averaging these measurements,
as shown in in Figure 10.

Our pre-trained Faster R-CNN model generated 531 individ-
ual bounding box images, from which our algorithm generated
pixel width estimates for 153 images, achieving a discard rate
of 71%. The results are shown in Table 1. “Average % Error”
in column 2 is obtained by calculating the signed percent error
of each individual pixel width estimate and averaging this error
across images, while “Average % Absolute Error” in column 3 is

Figure 10. An RGB image of a corn stem, with three red lines indicating

the locations along the stem in which ground truth measurements in the pixel

domain were taken.

obtained by determining the absolute percent error of each esti-
mate and averaging this error across images. Despite discarding a
large proportion of images, we are able to characterize the width
for each stem to a high accuracy.

Table 1: Pixel width estimation of detected in situ corn plants.

Plot Average
% Error

Average %
Absolute Error

%
Discarded

1 8.4 10.6 55 (40/73)
2 8.9 15.8 64 (87/135)
3 3.4 10.9 73 (77/106)
4 3.3 17.8 70 (52/74)
5 -2.7 10.2 85 (64/75)
6 -3.3 13.3 85 (55/65)

All 5.3 13.5 71 (378/531)

4.2 Phantom Sorghum Metric Width Estimation
Since no ground truth metric width measurements were col-

lected in the field, we opt to also evaluate the performance of
our algorithm on an additional dataset, obtained by moving a
stereo depth camera moved across five closely-positioned phan-
tom sorghum plants in 117 frames, such as in Figure 11. Ground
truth metric data was acquired using caliper measurements of each
phantom at three locations along the stem and averaging these
measurements, while ground truth pixel data was acquired in the
same manner as the previous experiment.

Figure 11. An RGB image of phantom sorghum plants captured by the

stereo camera.

From the 117 captured frames, Faster R-CNN detected 390
portions of stems. From these 390 detected stem images, our algo-
rithm generated pixel and metric width estimates for 149 images,
achieving a discard rate of 62%. Individual estimates were then
manually matched against individual stems to evaluate the qual-
ity of estimates for each stem. Pixel width estimation results are
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shown in Table 2, while metric width estimation results are shown
in Table 3. As seen, the average % error and average % absolute
error for both tables are on par with those in Table 1.

Table 2: Pixel width estimation of detected phantom sorghum
plants. “GT” in column 4 stands for ground truth.

Plant Average
% Error

Average %
Absolute

Error

%
Variation

in GT

%
Discarded

1 -0.1 10.1 4.3 41 (23/56)
2 9.8 9.8 9.8 97 (32/33)
3 -14.3 15.1 7.0 63 (74/118)
4 -6.5 13.1 4.6 48 (39/81)
5 0.2 22.0 6.1 72 (73/102)

All -6.0 14.7 6.4 62 (241/390)

Tabl 3: Metric width estimation of detected phantom sorghum
plants. “GT” in column 4 stands for ground truth.

Plant Average %
Error

Average %
Absolute Error

% Variation
in GT

1 1.4 9.4 1.7
2 0.9 0.9 5.8
3 -12.8 13.7 1.3
4 -7.8 13.6 4.7
5 3.5 16.8 8.0

All -5.0 13.2 4.3

Percent variation in ground truth in Tables 2 and 3 is de-
fined as the average percent absolute difference of each individual
measurement from the mean of all three measurements of a stem.
From Table 2, we see that even in the portion of a stem that is de-
tected by Fast R-CNN, there is high variability in the stem’s pixel
width in the ground truthing process. Additionally, from Table 3,
it is clear that along an entire individual stem, there are large vari-
ations in ground truth metric width. Thus, it appears likely that a
significant proportion of our estimation error can be explained by
variability of the ground truth width measurement of an individual
stem, both for pixel and metric width estimates.

As shown in Table 2, for plant 2, only 1 estimate was gen-
erated out of the 33 different detected instances. Frequently dis-
carding was due to an obfuscating leaf, which negatively impacts
major axis detection, an essential component for accurate width
estimation, as shown in Figure 12. However, the single estimate
generated for plant 2 is accurate, indicating that we can accurately
phenotype plants even when a large proportion of images is dis-
carded.

6. Discussion
The results in Tables 1, 2, and 3 confirm that our algorithm

performs as well on phantom sorghum as it does on actual corn
plants. In comparing our results in the pixel domain to those in
the metric domain, we also find that the vast majority of our error
is in the pixel width estimation step, specifically in detecting the

Figure 12. (a) Image of plant 2 with leaf on the right side; (b) coarse-

resolution morphological representation.

boundary of the stem. As a result, future work could develop more
modern approaches to detecting stem boundaries, such as a deep
learning approach to segmentation. In addition, manual depth-
RGB alignment must also be replaced by automatic methods.
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