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Abstract
A conditional general adversarial network (GAN) is pro-

posed for image deblurring problem. It is tailored for image de-
blurring instead of just applying GAN on the deblurring problem.
Motivated by that, dark channel prior is carefully picked to be in-
corporated into the loss function for network training. To make
it more compatible with neuron networks, its original indifferen-
tiable form is discarded and L2 norm is adopted instead. On both
synthetic datasets and noisy natural images, the proposed network
shows improved deblurring performance and robustness to image
noise qualitatively and quantitatively. Additionally, compared to
the existing end-to-end deblurring networks, our network struc-
ture is light-weight, which ensures less training and testing time.

Introduction
Blur is a common artifact for images taken by hand-held

cameras. It is mostly caused by object motions, hand shake or
out-of-focus. The blurry image is often modeled as convolution
of a sharp image and a blur kernel. And the target of deblurring
is to restore a latent sharp image from the blurry one. Single im-
age deblurring, however, is a highly ill-posed problem, since it
contains insufficient information to recover a unique sharp image.

In the past few years, assorted constraints and regulation
schemes have been proposed to exclude implausible solutions.
Priors, like total variation prior [1], sparse image prior [2], heavy-
tailed gradient prior [3] and dark channel prior [4], are combined
with L1/L2 norm image regulation term to suppress ringing ar-
tifacts and improve quality. Zhen [5] takes advantage of inertia
sensor data to gain extra information and estimate spatially vary-
ing blur kernels. However, since the blur kernel in reality is more
complicated than the model, estimation of blur kernel is inaccu-
rate, which causes ringing artifacts. Furthermore, these methods
based on iterative optimization techniques are computationally in-
tensive.

Recently, Convolutional Neural Networks (CNN) and deep
learning related techniques have drawn a great attention in com-
puter vision and image processing. Their applications in image
deblurring demonstrate promising results. Sun [7] and Schuler
[6] use CNN to estimate the spatially-invariant blur kernel and ob-
tain latent image by tradition pipeline. Chakrabarti [13] trained a
neural network to predict complex Fourier coefficients of motion
kernel. Recently kernel-free end-to-end deblurring methods are
proposed by Nah et al. [8] and Kupyn et al. [9]. Nah [8] adopted
the multi-scale network to mimic conventional coarse-to-fine op-
timization methods, and proposed a new realistic blurry image
dataset with ground truth sharp images. The work of Kupyn [9]
trains the popular Generative Adversarial Network (GAN) on the
same dataset with fewer parameters, gains higher PSNR values
than that of Nah et al. [8] on the GOPRO dataset, and beats the
others on Kohler dataset [10] using SSIM. Although [9] performs
well based on metric scores, visually, its deblurred result suffers

Figure 1. Comparison. (a) Input blurry image. (b) Result of [9]. (c) Our

result.

grid artifacts, as illustrated in Fig. 1.
To address this artifact, we utilize the dark channel prior.

Dark channel is defined as minimal intensity among three color
channels of pixels in a local area. It was first proposed by He et
al. [11] for dehazing problem, based on the statistics that haze-
free outdoor images have a smaller dark channel than hazy im-
ages. Pan et al. [4] applied dark channel prior to image deblur-
ring. They theoretically and empirically proved that comparing
with blur images, the dark channel of sharp image is more sparse.
And their results demonstrate that dark channel prior contributes
to suppressing ringing and other artifacts. In order to enforce the
sparsity, they utilize a regulation term of L0 norm to count the
nonzero elements of dark channel maps. Unfortunately, L0 norm
is not differentiable, which makes it hard to utilize in back prop-
agation of neuron networks. Instead of using L0 norm, we adopt
L2 norm to directly compute difference of the dark channel maps
between groundtruth sharp images and deblurred images.

In this paper, we present a GAN based image deblurring net-
work using dark channel difference as loss function. The pro-
posed technique is not just a straightforward application of GAN.
This method focuses on how to combine traditional knowledge
with deep learning to make the network achieve better perfor-
mance. Compared to the previous GAN-based deblurring net-
work, the proposed network has less layers and weights. It
leads to less training and testing time, and more importantly
achieves favorable results. In addition, the original GOPRO train-
ing dataset consists of artificially created blurry images without
noise, which are usually different from the real blurry images.
To improve the quality of our trained network on more realistic
blurry images and increase network robustness, we add random
Gaussian noise with variance in a limited range onto the training
image patches. The comparison experiments show that our net-
work outperforms Kupyn et al. [9] for both GOPRO test dataset
and real noisy blurry images.

Related Work
Conditional General Adversarial Networks

GAN is first proposed by Goodfellow et al. [14] to train a
generative network in an adversarial process. It consists of two
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Figure 2. Proposed Network. Our CGAN based network has two sub-networks: generator G and discriminator D. Generator restores sharp image IS from

input blurry image IB. IS̄ represents ground truth image. Discriminator can regard input pair (IS, IB) as ”fake” and (IS̄, IB) as ”real”. Except for the first layer of

discriminator and generator, each block in both generator and discriminator consists of a convolutional layer, batch normalization step [21] and an activation

function LeakyReLu [23]. The first layers are not normalized. The digit denotes the number of filters for each block. Dotted lines are skip connection layers in

decoder which come from layers with same size in encoder.

networks: a generator G and a discriminator D. Generator gen-
erates a fake sample from input noise z, while discriminator es-
timates the probability that the fake sample is from training data
rather than generated by generator. These two networks are si-
multaneously trained until discriminator cannot tell if the sample
is real or fake. This process can be summarized as a two-player
min-max game with the following function:

min
G

max
D

Ex̄∼Pdata(x̄) [logD(x̄)]+Ez∼Pz(z) [log(1−D(G(z)))] , (1)

where Pdata denotes distribution over training data x̄ and Pz is
distribution of input noise z. GAN has been applied to different
image restoration problems like super-resolution [16] and texture
transfer [17].

Mirza et al. [15] extend GAN into a conditional model (eq.
(2)), called Conditional Generative Adversarial Nets (CGAN), so
that GAN can make use of auxiliary information to direct both
generator and discriminator. Isola et at. [18] adopt CGAN ar-
chitecture to achieve general image-to-image translation. In [18],
more than just random noise z, similar image y is added as input
of the generator, where y and x̄ share part of features. y and x̄ can
be pairs of hazing and clear images about same scene, or different
color buildings with same structure. Based on network architec-
ture of [18], Kupyn et al. [9] utilize Wasserstein loss [19] and
perceptual loss [20] to train a CGAN for deblurring problem.

min
G

max
D

Ex̄∼Pdata(x̄) [logD(x̄,y)]+Ez∼Pz(z) [log(1−D(G(z,y),y))] ,

(2)

Dark Channel Prior
For an image I, the dark channel of a pixel p is defined by

He et al. [11] as

Dc(p) = min
q∈N (p)

(
min

c∈{r,g,b}
Ic(q)

)
, (3)

where p and q are pixel locations, N (p) denotes the image patch
centered at p, and Ic is the c-th color channel. As shown in eq.
(3), dark channel describes the minimum intensity in an image
patch. He et al. [11] observe that dark channel map D(I) in a

haze-free image tends to be zero. Pan et al. [4] use a less restric-
tive assumption that dark channel map D(I) is sparse rather than
zero. Inspired by this, they adopt L0-regulation term to enforce
less sparse dark channel in a deblurring process, where L0 norm
counts non-zero elements in a dark channel map.

Proposed Method
Network Architecture

The proposed network aims at obtaining a generator to re-
store sharp image IS from input blurry image IB. This generator
is trained with a discriminator using pairs of blurry image IB and
ground truth sharp image IS̄. This structure is shown in fig.2. Ex-
cept for the first layer of discriminator and generator, each block
in both generator and discriminator consists of a convolutional
layer, batch normalization step [21] and an activation function
LeakyReLu [23] with leaking rate α = 0.2. The first layers are
not normalized.

Generator The proposed generator adopts an encoder-
decoder framework to achieve image-to-image performance.
Similar to [18], the encoder consists of a sequence of convolu-
tional layers with stride = 2 and kernel size = 5. And the decoder
has a chain of transposed-convolutional layers with same size of
stride and kernel. Encoder represents the input image with a bot-
tleneck vector and decoder recovers an image with same size of
input from bottleneck vector. A skip architecture is applied by
inserting same size of layers from encoder after each layer of de-
coder. This skip connection refines the details in output image by
combining deep, coarse, semantic information and shallow, fine,
appearance information [22]. Dropout is also included in decoder
to avoid over-fitting.

Discriminator The proposed discriminator contains a series
of convolutional layers with stride = 2 and kernel size = 5. The
output of discriminator is a scalar, followed by a sigmoid function.

Loss Functions
According to eq. (2), we train discriminator and generator

alternatively. The loss function of discriminator is same as adver-
sarial loss:

Ld = Ex̄,y [logD(x̄,y)]+Ey,z [log(1−D(G(z,y),y))] . (4)
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Figure 3. Comparison with DeblurGAN [9]. From top to bottom: image from GOPRO dataset and real nature image. From left to right: blurry images, deblurred

results by [9] and our result.

In the deblurring setting, y and x̄ denote blurry and sharp image,
respectively. The generator loss is defined as combination of ad-
versarial loss, content loss and dark channel loss:

Lg =Ey,z [log(1−D(G(z,y),y))]+λ1 ·Lcontent +λ2 ·Ldarkchannel ,

(5)

where λ1 = 100 and λ2 = 250 in our experiments.
Content loss We adopt the traditional content loss to direct

the output of generator to ground truth. Although both L1 and L2
norm are commonly used, L1 norm is chosen since it attains less
blurring result [18].

Lcontent = Ex̄,y,z [||x̄−G(y,z)||1] . (6)

Dark channel loss In order to suppress ringing and grid arti-
fact, dark channel prior is especially chosen. Pan et al. [4] exploit
L0 norm to count non-zero elements in a dark channel map Dc(I)
of an image I. Since L0 norm is indifferential, L2 norm is uti-
lized instead which calculates the distance of dark channel map
between ground truth and deblurred image.

Ldarkchannel = Ex̄,y,z [||Dc(x̄)−Dc(G(y,z))||2] . (7)

Unlike [9], we discard the perceptual loss [20]. Kupyn et
al. [9] employ the difference of one feature map in the VGG-19
[24] between ground truth and restored images as perceptual loss.
GAN is known for its ability to reserve perceptual feature of an
image. Adding an extra perceptual loss seems a noneffective re-
peat. Our experiment shows that perceptual loss doesn’t improve
the result, on the contrary, it leads to worse performance.

Experiments
Our network is implemented with Python code based on Ten-

sorflow [25].

Datasets

GOPRO dataset [8] is utilized for training and testing our
network. It contains 2103 paris of blurry and ground truth im-
ages in train dataset, and 1111 pairs in test dataset. Resolution
of the image are 720p. The blurry image is generated by averag-
ing a sequence (7-15) of continuous sharp images. Sharp image
in the middle of sequence is regarded as ground truth. GOPRO
dataset is regarded as benchmark by many deblurring algorithms
like [8] and [9]. Although GOPRO dataset is widely used, it only
employs noise-free images. For natural images, however, noise
always accompanies with blur. To test our model on more real
images, we add Gaussian noise with variance = 0.001 to origi-
nal GOPRO Large dataset and create a new GOPRO-noise dataset
with 1111 image pairs. A synthetic dataset in [9] is adopted for
training. Same as combination version of DeblurGAN in [9], we
use both GOPRO train dataset and synthetic dataset to train our
network.

Training Process

The proposed network is trained on NVIDIA GeForce GTX
1080 Ti GPU and tested on Mac Pro with 2.7 GHz Intel Core i5
CPU. Similar to [9], the input training pair is randomly croped as
size of 256×256 after downsampled by a factor of two. Weights
are initialized to follow Gaussian distribution with zeros mean and
standard deviation 0.02. For each iteration of optimization, 1 step
is performed on discriminator D, followed by 2 steps on genera-
tor G to prevent discriminator loss Ld from zero. The model is
trained for 15 epochs within 2 days, comparing with 200 epochs
for 6 days in [9] . Furthermore, despite of instability GAN’s train-
ing, our method converges to similar result for each and every
training task, which demonstrates the robustness of our GAN ar-
chitecture.
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Table. 1 Average PSNR and SSIM.

Dataset Metrics [9] dc0 dc250 dc250p
Original PSNR 26.63 26.70 27.01 26.45

SSIM 0.8701 0.8798 0.8813 0.8680
Noisy PSNR 26.32 26.53 26.83 26.31

SSIM 0.8524 0.8697 0.8707 0.8604

Result and Comparison
Our test results are mainly compared with state-of-art GAN

based deblurring network DeblurGAN [9]. DeblurGAN defeats
deep learning networks [7] and [8] on GOPRO dataset. Since
the author posted the code online1, we compare our network with
DeblurGAN by directly adopting its uploaded network and latest
trained weights. We test our model on GOPRO and GOPRO-noise
test datasets.

Fig. 3 illustrates the deblurred results of [9] and our model.
Blurry image in the first row is picked in GOPRO-noise dataset
and the blurry one of second row is real natural image with motion
blur taken by camera. According to local patches, although [9]
can deal with blur but its results suffer from grid artifacts, while
our model with dark channel loss achieves sharper images without
grid artifacts. Furthermore, for motion blurry image (second row),
the sharp part in input image remains unchanged in our deblurred
result, but extra grid artifacts are added to result of [9].

The quantitative performance of the proposed network on
two dataset GOPRO and GOPRO-noise is shown in Tab. 1. In our
experiment, the coefficient of dark channel loss λ2 = 250(dc250).
The results are compared with same network without dark chan-
nel loss dc0, same network with extra perpetual loss dc250p as
well as DeblurGAN [9]. All test images are downsampled by fac-
tor of two. The perpetual loss follows what it is in [10]. The
proposed model performs best among the comparisons for both
noise-free and noisy dataset. DeblurGAN performs less well ow-
ing to its grid artifacts. Perceptual loss leads to a worse result.
Since GAN is good at preserving perceptual feature already, per-
ceptual loss brings no extra constraints for the network. Compar-
ison with dc=0 demonstrates that dark channel loss contributes to
better result.

Conclusion
To address deblurring problem using a CGAN based archi-

tecture and to tackle the issue with grid artifacts in GAN based
deblurring methods, this paper incorporates a dark channel prior.
The dark channel prior is employed by L2 norm rather than L0
in order to make it more friendly for network training. To vali-
date the deblurring result on more nature images, a noise involved
dataset is proposed. The proposed network shows a great deblur-
ring performance for both synthetic and real blurry images.
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