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Abstract
In this paper, we study a 2D tomography problem with ran-

dom and unknown projection angles for a point source model.
Specifically, we target recovering geometry information, i.e. the
radial and pairwise distances of the underlying point source
model. For this purpose, we introduce a set of rotation-invariant
features that are estimated from the projection data. We further
show these features are functions of the radial and pairwise dis-
tances of the point source model. By extracting the distances from
the features, we gain insight into the geometry of the unknown
point source model. This geometry information can be used later
on to reconstruct the point source model. The simulation results
verify the robustness of our method in presence of noise and errors
in the estimation of the features.

Introduction
Let us consider the forward model as,

s`[u] = D{Pθ`
I}[u]+ ε`[u], ` ∈ {1,2, ...,L}

I(x,y) =
K

∑
k=1

δ (x− xk,y− yk) (1)

where I is the point source model and s` is the `-th projection line
in a projection set of size L. I consists of K Dirac deltas located
at {(xk,yk)}K

k=1 ∈ R2. Here for the sake of simplicity, we assume
unit equal weights for all the point sources. Pθ is the radon trans-
form operator along θ direction and θ marks the angle between
the projection direction and the horizontal axis. We assume θ` to
be drawn uniformly from [0,2π). In order to account for the finite
resolution of the measurements, D is introduced which samples
Pθ`

I every ∆ as,

D( f )[u] =

(u+ 1
2 )∆∫

(u− 1
2 )∆

f (x)dx, for u ∈ {−M, . . . ,M}, (2)

where larger M leads to higher resolution in measuring the pro-
jection line. Finally, the digitized projections are contaminated
by Gaussian noise with zero mean and σ2 variance, i.e. ε`[u] ∼
N (0,σ2).

Let rk =
√

x2
k + y2

k , ∀k ∈ {1,2, ...,K} denote the radial dis-
tance between the k-th point source and the origin. Also, dm,n =√
(xm− xn)2 +(ym− yn)2, ∀m,n ∈ {1,2, ...,K}, is the pairwise

distance between m-th and n-th point sources. In this paper,
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our target is to recover the radial {rk}K
k=1 and pairwise distances

{dm,n}K
m,n=1 from the projection data {s`}L

`=1. This work is based
on our paper [1] which provides a detailed discussion on how the
point source model is recovered from distance distributions fol-
lowing [2].

Recovering an unknown point-source model from a set of
measurements emerges in many fields such as array signal pro-
cessing [3], super-resolution [4], compressed sensing [5], radio
astronomy [6]-[7], unassigned distance geometry [8]-[9], X-ray
crystallography [10] and cryo-electron microscopy atomic mod-
eling [11], to name a few. For the set of measurements provided
by the forward model (1), a classical approach to recover I is to
formulate the problem as a sparse 2D tomography problem [13]-
[14]. However, this method relies on the knowledge of the projec-
tion angles {θ`}L

`=1 which is not available in our problem setting.
In this paper, we aim at extracting the radial and pairwise

distances of the point-source model. For this purpose, we intro-
duce a set of rotation-invariant features that are estimated from
the projection data. These features are informative of the geome-
try of the underlying point source model and their estimation does
not require the knowledge of the projection angles. In addition,
these features are expressed as summations of zeroth-order Bessel
function of the first kind and they are functions of {rk}K

k=1 and
{dm,n}K

m,n=1. Using the asymptotic behavior of Bessel functions,
the distance recovery is posed as a harmonic retrieval problem and
solved by forward-backward Prony’s method. Our simulation re-
sults verify the robustness of our method to noise when sufficient
number of projection lines are available.

Method
In this section we describe the estimation of the rotation-

invariant features from the projection lines. Subsequently, we
propose a method to extract the radial and pairwise distances from
the features.

Estimating the rotation-invariant features
In our problem, we have access to a large number of projec-

tion data {s`}L
`=1. This enables us to derive features that reflect

the geometry of the underlying point-source model. In our point-
source model, all point sources are compactly supported by a disk
of radius R and the center of mass is located at origin. Following
the definition of radon transform as line integrals, we have

(Pθ I)(r) =
K
∑

k=1
δ (r− (yk cosθ − xk sinθ)). (3)

This shows that the radon transform of a point-source signal con-
sists of Dirac deltas translated according to the projection angle
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θ . To account for the finite resolution of the detected projection
line, we apply the D operator defined in (2) to (3) as,

gθ [u] =(DPθ I) [u] =
K
∑

k=1
1 yk cosθ−xk sinθ

∆
∈[u− 1

2 ,u+
1
2 ]
, (4)

where u ∈ {−M, . . . ,M}, 1C = 1 if condition C is satisfied and
1C = 0 otherwise. Note that as the point sources lie within a disk
of radius R, each projection line is compactly supported in [−R,R]
interval. Then, sampling Pθ I with D operator implies that the
support of length 2R is divided into 2M+1 bins, i.e. ∆ = 2R

2M+1 .
To derive the rotation-invariant features, let us first derive the

discrete Fourier transform (DFT) of the projection lines as,

ĝθ [ν ] =
K
∑

k=1
exp
(

ı 2πν

(2M+1)

⌊
yk cosθ−xk sinθ

∆

⌉)
, (5)

where bxe denotes the closest integer to x. If ∆ is small enough

(equivalently if M is large enough), then
⌊

yk cosθ−xk sinθ

∆

⌉
≈

yk cosθ−xk sinθ

∆
. Following this approximation, the first rotation-

invariant features is defined as,

µ[ν ] = Eθ{ĝθ [ν ]}

=
K

∑
k=1

Eθ

{
exp
(

ı
2π

2M+1
yk cosθ − xk sinθ

∆
ν

)}
(a)
=

K

∑
k=1

1
2π

2π∫
0

exp
(

ı
2π

2M+1
yk cosθ − xk sinθ

∆
ν

)
dθ

(b)
=

K

∑
k=1

J0

(
πrk

R
ν

)
(6)

where (a) is a consequence of θ ∼Unif[0,2π) and (b) is based on
the integral defined in [12]. Also, J0(·) is the zeroth order Bessel
function of the first kind.

Following the same steps, we have,

Eθ{|ĝθ [ν ]|2} ≈
K
∑

m=1

K
∑

n=1
J0

(
πdm,n

R ν

)
= KJ0(0)+2

K
∑

m=1

K
∑

n=m+1
J0

(
πdm,n

R ν

)
. (7)

Hence, the second rotation-invariant feature is defined as,

C[ν ] =
(
Eθ

{
|ĝθ [ν ]|2

}
−K

)
/2 . (8)

The radial and pairwise distances are invariant to global rotations
of the point source model, so are the features defined in (6) and
(8), hence the name rotation-invariant.

To estimate the rotation-invariant features, we use the pro-
jection data {s`}L

`=1 as,

µ̂[ν ] =
1
L

L
∑
`=1

ŝ`[ν ], (9)

Ĉ[ν ] =

(
1
L

L
∑
`=1
|ŝ`[ν ]|2− (2M+1)σ2−K

)
/2 , (10)

Fig. 1. Relative error in estimating the rotation-invariant features from the

projection data versus standard deviation of noise.

Fig. 2. Comparison between the estimated features in (9)-(10) and their

analytical expressions in (6)-(8) for a randomly generated point source model

with K = 10 and SNR = 1.

where ŝ`[ν ] is an empirical realization of ĝθ [ν ] and is obtained
by taking FFT of s`. Also, subtracting (2M+1)σ2 in (10) serves
to debias the estimation of C. By the law of large numbers, the
sample estimates µ̂ and Ĉ converge to µ and C when the sample
size L→∞. The relative error between the estimated features and
their analytical expressions versus σ is plotted in Fig. 1. This

plot implies that for small values of σ , ‖µ−µ̂‖2
‖µ‖2

and ‖C−Ĉ‖2
‖C‖2

is
almost constant. The feature estimation error in the low-noise
regimes originates from the approximations made earlier. On the
other hand, for larger values of σ , the relative error in estimating
C grows more rapidly compared to µ . For higher noise regimes,
more projection samples are required in order to estimate the fea-
tures accurately. In fact, the sample size for accurate estimation of
µ and C grows with O(σ2) and O(σ4) respectively. In addition,
a schematic of µ and C alongside their estimations for a point-
source model example is provided in Fig. 2. Note that SNR refers
to the average signal to noise ratio of the projection lines {s`}L

`=1
and is defined as SNR = K

(2M+1)σ 2 .
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Algorithm 1 Extracting radial and pairwise distances from invari-
ant features
Input: Projection data, {s`}L

`=1
Output: The estimated {rk,}K

k=1,{dm,n}K
m,n=1.

1: Estimate the rotation invariant features, µ̂ and Ĉ using (9)-
(10).

2: Apply Prony’s method to extract {rk,}K
k=1 and {dm,n}K

m,n=1.

Recovering the geometry information of the
model

We now focus on extracting the geometry information of the
model, i.e. {rk}K

k=1 and {dm,n}K
m,n=1, from the features estimated

in (9)-(10). For this purpose, we make use of the asymptotic be-
haviour of the Bessel function [12, p.364] as,

J0(z)≈
√

2
πz

cos
(

z− π

4

)
, (11)

for z� 1/4. Substituting (11) in (6) and (8) leads to,

µ̂[ν ]≈
K
∑

k=1

eı(akν−π/4)+e−ı(akν−π/4)
√

2πakν
, (12)

Ĉ[ν ]≈
K
∑

m=1

K
∑

n=m+1

eı(bm,nν−π/4)+e−ı(bm,nν−π/4)√
2πbm,nν

(13)

where ak =
πrk
R and bm,n =

πdm,n
R , for an integer ν � maxkd 1

4ak
e

and ν � maxm,nd 1
4dm,n
e. After scaling (12)-(13) by

√
ν , the new

features
√

νµ̂ and
√

νĈ are weighted summations of complex ex-
ponentials. Now, extracting {rk}K

k=1 and {dm,n}K
m,n=1 is translated

as retrieving the harmonics of the new features. For this purpose,
we use Prony’s method which is briefly reviewed afterwards. Our
procedure for extracting the radial and pairwise distances is out-
lined in Alg. 1.

Prony’s method
Prony’s method and its variants are widely used in harmonic

retrieval literature [15]. Imagine a discrete signal w which is a
weighted summation of complex exponentials as follows,

w[m] =
K

∑
k=1

αke− jtkm, m ∈ Z (14)

where tk and αk, k ∈ {1, ...,K}, mark the k-th harmonic and
weight respectively, and K is the total number of complex expo-
nentials with distinct harmonics. In a harmonic retrieval problem,
the measurements are samples of w (probably contaminated by
noise). However, the harmonics {tk}K

k=1 and the weights {αk}K
k=1

are unknown and the goal is to recover them from w.
Note that (14) suggests that w is a solution of a discrete dif-

ferential equation written as,

w[m]+b1w[m−1]+b2w[m−2]+ ...+bKw[m−K] = 0,
(15)

where {bk}K
k=1 are the weights of the differential equation. Taking

Z-transform of (15) leads to,

b1z−1 +b2z−2 + ...+bKz−K =−1. (16)

Note that for known {bk}K
k=1, the roots of (16) are {e− jtk}K

k=1.
Thus, the first step in Prony’s method is to find the weights of
the differential equation in (16), i.e. {bk}K

k=1. By stacking N−K
equations as in (15), we have,

w[K−1] w[K−2] · · · w[0]
w[K] w[K−1] · · · w[1]

w[K +1] w[K] · · · w[2]
...

... · · ·
...

w[N−2] w[N−3] · · · w[N−K]




b1
b2
b3
...

bK

=−


w[K]

w[K +1]
w[K +2]

...
w[N−1]


(17)

where N ≥ 2K. Next, we solve (17) to derive {bk}K
k=1 and find

the roots for (16) accordingly.
In general, there is no guarantee that the roots derived from

(16) are all complex exponentials. To further impose this con-
straint, one can argue if g is a complex exponential root of (16),
so is g−1, where g is the complex conjugate of g. Note that this
constraint on the roots is not exactly the same as enforcing them
to be complex exponentials. However, it is still helpful in further
narrowing down the roots toward being complex exponentials (es-
pecially for noisy observations). Hence, it is possible to augment
(17) with more equations based on this constraint which leads to,

w[K−1] w[K−2] · · · w[0]
w[K] w[K−1] · · · w[1]

w[K +1] w[K] · · · w[2]
...

... · · ·
...

w[N−2] w[N−3] · · · w[N−K]

w[1] w[2] · · · w[K]

w[2] w[3] · · · w[K +1]
...

... · · ·
...

w[N−K] w[N−K +1] · · · w[N−1]




b1

b2

b3
...

bK

=−



w[K]

w[K +1]
w[K +2]

...
w[N−1]

w[0]
...

w[N−K−1]


(18)

Solving (18) for {bk}K
k=1 and finding the roots of (16) is called

forward-backward Prony’s method. We use this method in order
to extract {rk}K

k=1 and {dm,n}K
m,n=1 from samples of

√
νµ̂ and

√
νĈ in (12)-(13). Note that some recovered roots might not lie

on the unit circle in the complex plain. Thus, to achieve the final
complex exponentials, we project the recovered roots on the unit
circle by taking their phase. It is worth mentioning that after de-
riving {tk}K

k=1, the weights are recovered by solving a system of
linear equations.

Experiments
We generate point source models by generating K points

uniformly distributed in [−1,1]× [−1,1] support. Note that we
impose a minimum distance separation between the points as
mini, j∈{1,...,K},i 6= j |ri− r j| ≥ 0.1. Next we generate L = 104 pro-
jection lines following (1). Note that the projection angle corre-
sponding to each projection line is drawn from a uniform distribu-
tion over [0,2π) interval. Finally, Gaussian noise with zero mean
and σ2 variance is added to the clean digitized projection lines.
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Fig. 3. Successful recovery rate for (a) the radial distance distribution, (b)

the pairwise distance distribution.

In order to evaluate the performance of Alg. (1) in recover-
ing the radial and pairwise distances, we use earth mover’s dis-
tance (EMD) metric [16]. EMD is mainly used to find the dis-
tance between two probability distributions. Thus, using EMD we
measure the distances between the ground truth and recovered ra-
dial and pairwise distances. A recovery is successful if the EMD
between the ground truth and the recovered distribution is less
than th = 0.1. To define the success rate of recovery, we generate
N = 100 random realizations as point-source models. Then, the
ratio of the successfully recovered distance (radial and pairwise)
represents success rate of recovery.

Figure 3 demonstrates the success recovery rates for (a) ra-
dial, (b) pairwise distances. These results convey,

• Smaller M leads to lower resolution in measuring the pro-
jection lines, which in turn leads to lower success rate of
recovery. However, when M is sufficiently large (M ≥ 500),
increasing M does not affect the success recovery rate sig-
nificantly.

• As SNR increases, the success recovery rate improves. Note
that SNR = ∞ refers to the no noise regime.

• Comparing (a) and (b) shows that success rate for recover-
ing the pairwise distances is lower compared to the radial
distances. This is due to the fact that for K = 5, there are 5
radial and 10 pairwise distances. As a result, recovering the
pairwise distances require retrieving more harmonics com-
pared to the radial distances.

Conclusion
In this paper we studied the problem of recovering a point

source model from a set of projection lines whose projection an-
gles were random and unknown. Extracting geometry informa-
tion of the underlying point-source model takes us one step closer
to the reconstruction of the point-source model. In order to ob-
tain geometric information about the underlying source model, we
aimed at recovering the radial and pairwise distances. We tack-
led this problem by introducing a set of rotation-invariant features
that were estimated based on the projection data. We showed that
these features reveal the radial and pairwise distances and they
are expressed in forms of summations of Bessel functions of the
first kind and zeroth-order. Next, we leveraged from the asymp-
totic behavior of the Bessel functions and used Prony’s method
in order to extract the distances. Through our simulation results
we showed the robustness of our method in different noise levels
when sufficient number of projection samples are available.
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