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Abstract
Cryo-electron microscopy (Cryo-EM) is a popular imaging

modality used to visualize a wide range of bio-molecules in their
3D form. The goal in Cryo-EM is to reconstruct the 3D density
map of a molecule from projection images taken from random and
unknown orientations. A critical step in the Cryo-EM pipeline is
3D refinement. In this procedure, an initial 3D map and a set
of estimated projection orientations is refined to obtain higher
resolution maps. State-of-the-art refinement techniques rely on
projection matching steps in order to refine the initial projection
orientations. Unfortunately projection matching is computation-
ally inefficient and it requires a finite discretization of the space
of orientations. To avoid repeated projection matching steps, in
this work we consider the orientation variables in their contin-
uous form. This enables us to formulate the refinement problem
as a joint optimization problem that refines the underlying den-
sity map and orientations. We use alternating direction method of
multipliers (ADMM) and gradient descent steps in order to update
the density map and the orientations, respectively. Our results and
their comparison with several baselines demonstrate the feasibil-
ity and performance of the proposed refinement framework.

Introduction
Revealing the 3D structure of biological molecules is moti-

vated by better diagnosis of disease, more efficient medicine de-
sign and the gain of a deeper understanding of how biological
processes take place. Cryo-EM is an imaging modality that has
gained popularity over the recent decades for its ability to visual-
ize the 3D structure of various molecules [1].

In Cryo-EM, samples of the same molecule are frozen at
cryogenic temperature and then imaged by a transmission elec-
tron microscope (TEM). Each sample of the molecule is frozen
in a random unknown 3D orientation with respect to the parallel
electron beams. Thus, the X-ray transform of the molecule from
random unknown 3D orientations is captured on the detector in
the form of particle images. Single particle analysis (SPA) then
targets recovering the 3D density map of the molecule from hun-
dreds to thousands of projection images.

The reconstruction of the density map involves 3D ab-initio
modeling and 3D refinement [2]. Ab-initio modeling targets the
template-free reconstruction of a 3D map from the particle im-
ages [3]. The output of the ab-initio model only captures coarse
characteristics of the underlying density map. Then the refine-
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ment step refines the initial map alongside with initial estimates
of the unknown 3D orientations (poses) of the particle images in
order to achieve a higher resolution density map.

Various methods target the joint reconstruction of the den-
sity map and the 3D pose variables. In iterative projection match-
ing, joint reconstruction is performed through alternating steps of
template matching for updating 3D orientations and density map
reconstruction [6]. The problem can also be viewed in a Baysian
framework and formulated as a maximum a posteriori (MAP) es-
timation problem [5, 7], which is then solved through expectation
maximization (EM) or stochastic gradient descent. Although it-
erative projection matching and Baysian frameworks formulate
the problem differently, the way the 3D projection orientations
are updated in both frameworks requires some form of template
matching. This implies that 1) a discretization of the projection
orientations is required to obtain a finite number of templates to
compare each particle image against, 2) repeated template match-
ing steps are required at each iteration of the joint reconstruction
process to update the projection orientations.

To avoid these drawbacks, we consider the 3D pose variables
in their continuous form. We then formulate the refinement pro-
cess as a joint optimization problem between the density map and
the 3D poses. This problem is then solved by alternating mini-
mization. We update the density map and projection orientations
via alternating direction method of multipliers (ADMM) and gra-
dient descent (GD) steps, respectively. Our results demonstrate
the feasibility of this method in refining the initial map and the
initial orientations.

System model
We formulate the Cryo-EM forward model as,

g`[m] = (h∗Pθθθ `
(V ))[ΛΛΛm]+ ε`[m], ` ∈ {1, . . . ,L}, (1)

where V : L (R3) → R denotes the density map and g` is the
`-th discretized projection image in the set of L projection im-
ages. The operator Pθθθ : L (R3) → L (R2) describes the X-
ray transform operator that acts along the direction θθθ . Note that
θθθ ` = (θ`,1,θ`,2,θ`,3) is the Euler representation of the orienta-
tion vector corresponding to the `-th projection image where θ`,1,
θ`,2 and θ`,3 denote the rotation, tilt and in-plane rotation respec-
tively. The point spread function (PSF) h ∈ L (R2) models the
effects of the microscope as contrast transfer function (CTF). Fi-
nally, uniformly-spaced samples of projected density map are de-
tected such that ΛΛΛ = diag[Λx,Λy] and m ∈ Ω ⊂ Z2. In addition,
each pixel of the `-th projection image is contaminated by i.i.d.
Gaussian noise ε`[m] ∼N (0,σ2) with zero mean and σ2 vari-
ance.
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In (1), the X-ray transform operator acts in the continuous
domain. Thus, following [8], we discretize the forward operator
and further represent it by a finite-dimensional matrix by expand-
ing the density map onto the shift invariant space,

V (x) = ∑
k∈Z3

c[k]ϕ(x−k), (2)

where c is the discrete representation of V within the basis
{ϕ(· − k)}k∈Z3 . Here, similar to [8, 9], we choose the Kaiser-
Bessel window functions (KBWF) for ϕ . Several properties of
KBWF such as 1) compact support, 2) isotropy and 3) availabil-
ity of closed-form expressions for their X-ray transforms [10]
make them a particularly suitable choice. After, substituting (2) in
(1), and using the pseudo-shift invariant property of X-ray trans-
form [11], we have

g`[m] = ∑
k∈Z3

c[k]
(
h∗Pθθθ `

(ϕ)
)
[ΛΛΛm−M

θθθ
⊥
`

k]+ ε`[m], (3)

where, for a given θθθ ,

M
θθθ
⊥ =

[
c1c2c3− s1s3 c3s1 + c1c2s3 −c1s2
−c1s3− c2c3s1 c1c3− c2s1s3 s1s2

]
. (4)

The two rows of M
θθθ
⊥ mark the orthonormal basis vectors in the

projection plane where ci = cosθi and si = sinθi. Because the
molecule is compactly supported, only a finite number of coeffi-
cients c[k] are non-zeros and we can write (3) as

g` = H`c+ εεε, (5)

where H` is a matrix whose entries are given by

[H`]m,k =
(
h∗Pθθθ `

(ϕ)
)
[ΛΛΛm−M

θθθ `
⊥k]. (6)

Finally, by stacking all the projection images and their corre-
sponding matrix-vector product form we get

g = H(ΘΘΘ)c, (7)

where g = [gT
1 · · · gT

L ]
T , H(ΘΘΘ) = [HT

1 · · ·HT
L ]

T and ΘΘΘ = {θθθ `}L
`=1.

Problem formulation
Based on (7), the joint refinement of the density map and 3D

pose variables is written as

(ĉ,Θ̂ΘΘ) ∈
{

arg min
c,ΘΘΘ

J(ΘΘΘ,c)
}
, (8)

where

J(ΘΘΘ,c) =
1
2
‖g−H(ΘΘΘ)c‖2 +λ‖∇∇∇c‖2,1. (9)

The first term in (9) corresponds to the data fidelity term, ∇∇∇ is
the gradient operator, ‖∇∇∇ · ‖2,1 corresponds to the total variation
(TV) regularizer [12], and λ > 0 is the regularization weight. We
propose to solve this challenging optimization problem using al-
ternating minimization. Given the current estimation of the latent
variables ΘΘΘ, we take benefit from the convexity of J(·,ΘΘΘ) and
update the density map using ADMM, as proposed in [8]. In con-
trast, when fixing the density map c, J(c, ·) is non-convex but dif-
ferentiable. Hence, the latent variables are updated with a gradient

Algorithm 1 Joint Optimization Framework

1: procedure JOINT OPTIMIZATION(c0,ΘΘΘ0)
2: k = 0
3: while k < Kmax do

Update the density map
4: ck+1← ADMM

(
J(·,ΘΘΘk),ck

)
Update the latent variables

5: ΘΘΘ
k+1← GD

(
J(ck+1, ·),ΘΘΘk

)
6: k← k+1
7: end while
8: return cKmax ,ΘΘΘKmax

9: end procedure

descent. The outline of the proposed approach is summarized in
Algorithm 1.

In Algorithm 1, Kmax denotes the number of refine-
ment iterations, ADMM(J(·,ΘΘΘk),ck) refers to the minimization
of J(·,ΘΘΘk) using ADMM initialized with ck, and similarly for
GD(J(ck+1, ·),ΘΘΘk). Finally, Algorithm 1 is implemented within
the framework of the GlobalBioIm Library [4].

Experiments
We use as ground truth, the human patched 1 (PTCH1) pro-

tein [13] from protein data bank (PDB) and generate L = 500 syn-
thetic projection images according to (1). To initialize c, we start
from a coarse low-pass filtered version of the density map and ex-
tract its discretized representation as c0. To initialize the 3D pose
variables, we add a Gaussian noise with zero mean and a standard
deviation of σθ = 0.5 Radians to each Euler angle in ΘΘΘ

true that
has been used in the simulation. In other words, θθθ

0
` = θθθ

true
` + εεε`

where εεε` ∼N (03,σθ I3) and ΘΘΘ
0 = {θθθ 0

`}L
`=1. Note that 03 rep-

resents a vector of zeros of length 3 and I3 is the identity matrix
of size 3× 3. In our experiments, we also used several functions
provided by the Aspire package [16].

To assess the performance of our framework, we use the
Fourier shell correlation (FSC) measure between the true (V true)
and the reconstructed volume (V̂ ) [14]. FSC captures the correla-
tion between different Fourier frequency shells of the two density
maps. Higher FSC in higher frequency shells indicates resem-
blance in small details between the two maps.

We also evaluate the quality of the 3D pose refinement by
finding the correlation between the true and the refined pose
vectors. We define the pose vector corresponding to the `-th
projection image based on the rotation and tilt angles as p` =
[sinθ`,2 cosθ`,1,sinθ`,2 sinθ`,1,cosθ`,1]

T . Based on this defini-
tion, the quantity

〈
ptrue
` , p̂`

〉
measures the correlation between the

true and the refined pose vector for the `-th projection image. A
value of one (highest correlation) means that the two pose vec-
tors are perfectly aligned. Similarly, to quantify the refinement of
the in-plane rotations, we define r` = [cosθ`,3,sinθ`,3]

T and we
analyse the quantity

〈
rtrue
` , r̂`

〉
.

Visual comparison Figure 1 shows the results of our ap-
proach with those of several baselines. The failed reconstruction
in (c) shows that the initial 3D pose variables ΘΘΘ

0 are far from their
true values. On the other hand comparing our results (d) to (e) re-
veals that our approach is able to refine the initial map in (b) and

133-2
IS&T International Symposium on Electronic Imaging 2019

Computational Imaging XVII



Figure 1. Visual comparison between the refined density map and several baselines. The first column illustrates samples of the synthesized projection image

with an average SNR = 3.5781dB. The first row (a)-(f) presents the density maps visualized in Chimera [15] and the second row shows the central slice of the

map. The illustrated volumes are (a) the ground truth, (b) the initial map corresponding to c0, (c) the reconstructed density map obtained by solving (8) with

respect to c assuming ΘΘΘ = ΘΘΘ
0, (d) our joint framework, (e) the reconstructed density map obtained by solving (8) with respect to c assuming perfect knowledge

of the 3D pose variables, i.e. ΘΘΘ = ΘΘΘ
true, (f) Relion reconstruction [5].

Figure 2. Comparison between the FSC of the true density map and the

baseline maps presented in Fig. 1.

the initial 3D pose variable well. Finally, comparing (d) with (f),
which is the result of the state of the art method for Cryo-EM 3D
refinement, once again verifies the feasibility of our refinement
approach.

FSC comparison. Figure 2 compares the FSC of the recon-
structed map with the baseline maps presented in Figure 1. The
results show that without refinement, the correlation between the
true and the reconstructed map is very small (magenta curve). On
the other hand, the FSC curve corresponding to our method (green
curve) is reasonably close to the FSC of the baseline with perfect
knowledge of the 3D pose variables (black curve) and Relion re-
sults (blue curve). The results obtained with Relion are inferior
compared to the ones obtained by our method, which is worth
noting.

Poses comparison We compare the cumulative distribu-
tion function (CDF) of {

〈
ptrue
` , p̂`

〉
}L
`=1 and {

〈
rtrue
` , r̂`

〉
}L
`=1 (blue

curves) with {
〈
ptrue
` ,p0

`

〉
}L
`=1 and {

〈
rtrue
` ,r0

`

〉
}L
`=1 (red curves) in

Figure 3. Note that {p0
` ,r

0
`}

L
`=1 are derived based on the initial 3D

poses ΘΘΘ
0. The results show that compared to {

〈
ptrue
` ,p0

`

〉
}L
`=1,

Figure 3. CDF of the correlation between (a) the true and refined orientation

vectors (blue curves), the true and the initial orientation vectors (red curves),

(b) the true and refined rotation vectors (blue curves), the true and the initial

rotation vectors (red curves).

{
〈
ptrue
` , p̂`

〉
}L
`=1 is more concentrated around one (except for a

few outliers). This implies the successful refinement of the 3D
pose variables for most projection images. The same also holds
for {〈r`, r̂`〉}L

`=1 and its comparison with {
〈
r`,r0

`

〉
}L
`=1. Note that

the existence of outliers is explained by the non-convexity of the
problem and getting stuck at local minima while optimizing for
the 3D pose variables of some projection images.

In addition, Figure 4 depicts the CDF of the differences be-
tween 1) the true and initial angles (red curve), 2) the true and the
refined angles (blue curve). The results show that while the initial
error on the angles is mainly in the range of [−40,40] degrees, our
refinement framework manages to refine the angles such that the
final errors are mainly concentrated around zero.

Conclusion
In this paper, we proposed a framework for joint refinement

of the density map and 3D pose variables in Cryo-EM. We used
alternating steps in order to update the density map and the 3D
pose variables. ADMM steps are used for the update of the den-
sity map. Unlike state of the art refinement methods that use pro-
jection matching in order to update 3D poses, we consider these
variables in their continuous form. We then used gradient de-
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Figure 4. CDF of the differences between the true and refined angles (blue

curves), the true and the initial angles (red curves).

scent steps to update these variables. Our experimental results
and the comparison with several baselines demonstrated the fea-
sibility and accuracy of our framework.

References
[1] Y. Cheng, N. Grigorieff, P. A. Penczek and T. Walz, A primer to

single-particle cryo-electron microscopy, Cell, 161, 3 (2015).
[2] S. H W. Scheres, A Bayesian view on cryo-EM structure determina-

tion, J. of molecular biology, 415, 2 (2012).
[3] E. Levin, T. Bendory, N. Boumal, J. Kileel and A. Singer, 3D ab initio

modeling in cryo-EM by autocorrelation analysis, ISBI, pg. 1569-
1573. (2018).

[4] M. Unser, E. Soubies, F. Soulez, M. McCann, and L. Donati, A Uni-
fying Computational Framework for Solving Inverse Problems, Proc.
OSA Imaging and Applied Optics Congress on Computational Opti-
cal Sensing and Imaging (COSI’17), (2017).

[5] S. H.W. Scheres, RELION: Implementation of a Bayesian approach
to cryo-EM structure determination, J. Structural Biology, 180, 3
(2012).

[6] Y. Michels, E. Baudrier and L. Mazo, Radial Function Based Ab-
Initio Tomographic Reconstruction for Cryo Electron Microscopy,
Proc. ICIP, (2018).

[7] A. Punjani, M. A. Brubaker and D. J. Fleet, Building Proteins in a
Day: Efficient 3D Molecular Structure Estimation with Electron Cryo
microscopy, IEEE Transactions on Pattern Analysis and Machine In-
telligence, 39, 4 (2017).

[8] L. Donati, M. Nilchian, Carlos O. S. Sorzano and M. Unser, Fast
multiscale reconstruction for Cryo-EM, J. Structural Biology, 204, 3
(2018).

[9] M. Nilchian, J. P. Ward, C.Vonesch and M. Unser, Optimized
Kaiser–Bessel Window Functions for Computed Tomography, IEEE

Transactions on Image Processing, 24, 11 (2015).
[10] R. M. Lewitt, Multidimensional digital image representations using

generalized Kaiser–Bessel window functions, J. Optical Society of
America, 7, 10 (1990).

[11] F. Natterer, The mathematics of computerized tomography, Society
for Industrial and Applied Mathematics, 2001.

[12] L. I Rudin, S. Osher, and E. Fatemi, Nonlinear total variation
based noise removal algorithms, Physica D: nonlinear phenomena,
60, (1992).

[13] X. Qi, P. Schmiege, E. Coutavas, J. Wang and X. Li, Structures
of human Patched and its complex with native palmitoylated sonic
hedgehog, J. Nature, 560, (2018).

[14] C.O.S. Sorzano, J. Vargas, J. Otón, V. Abrishami, J.M. de la Rosa-
Trevín, J. Gómez-Blanco, J.L. Vilas, R. Marabini and J.M. Carazo,
A review of resolution measures and related aspects in 3D Electron
Microscopy, J. Progress in Biophysics and Molecular Biology, 124,
(2017).

[15] E.F. Pettersen, T.D. Goddard, C.C. Huang, G.S. Couch, D.M. Green-
blatt, E.C. Meng, and T.E. Ferrin "UCSF Chimera - A Visualization
System for Exploratory Research and Analysis." J. Comput. Chem.
25, 13 (2004).

[16] Algorithms for Single Particle Reconstruction (Aspire),
http://spr.math.princeton.edu/, Online; accessed 31 January 2019.

133-4
IS&T International Symposium on Electronic Imaging 2019

Computational Imaging XVII



• SHORT COURSES • EXHIBITS • DEMONSTRATION SESSION • PLENARY TALKS •
• INTERACTIVE PAPER SESSION • SPECIAL EVENTS • TECHNICAL SESSIONS •

Electronic Imaging 
IS&T International Symposium on

SCIENCE AND TECHNOLOGY

Imaging across applications . . .  Where industry and academia meet!

JOIN US AT THE NEXT EI!

www.electronicimaging.org
imaging.org


