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Abstract
Photoplethysmography (PPG) is the detection of blood flow

or pressure by optical means. The most common method involves
direct skin-contact measurement of light from an LED. However,
the small color changes in skin under normal lighting conditions,
as recorded by conventional video, potentially allow passive, non-
contact, PPG. Eulerian Video Magnification (EVM) was used to
demonstrate that small color changes in a subject’s face can be
amplified to make them visible to a human observer. A variety of
methods have been applied to extract heart rate from video.
The signal obtained by PPG is not a simple sinusoid, but has a
relatively complex structure, which in video is degraded by am-
bient lighting variations, motion, noise, and a low sampling rate.
Although EVM and many other analysis methods in the litera-
ture essentially operate in the frequency domain, fitting the video
data to their model requires extensive preprocessing. In this pa-
per a time-based autocorrelation method is applied directly to the
video signal that exhibits superior noise rejection and resolution
for detecting quasi-periodic waveforms. The method described
in the current work avoids both the preprocessing computational
cost and the potential signal distortions.

Introduction & Background
Photoplethysmography techniques recover a subject’s heart

rate by capturing small color changes seen through the skin. The
mechanism behind these color changes are the capillaries expand-
ing and contracting, which varies light reflections detected by the
video signal. This signal is typically corrupted by noise, which
comes from several sources, including lighting, motion, and quan-
tization.

The goal of the current work is to be able to take photo-
plethysmographic data from a subject and reasonably extract the
subject’s heart rate, while minimizing the computational com-
plexity of the algorithm and without amplification. As there are
many things that could introduce noise into the sampled optical
signal, it is also desirable to make the process as noise tolerant as
possible. In order to minimize the effect of noise on the output
result, autocorrelation was chosen for the processing, instead of
the Fast Fourier Transform (FFT) that is used in much of the liter-
ature. There was only one work found which utilized short-term
autocorrelation, by Das et. all[1]. In this work, short-term auto-
correlation was used to obtain results with virtually no error for
contact photoplethysmography.

Frequency domain processing was found to be the oldest
and most common method for processing photoplethysmographic
data. One of the works that seems to have inspired the popu-

larity of this method was done by CSAIL at MIT, with the Eu-
larian Video Magnification Project [2]. This project showed that
there were recoverable signals that could be extracted through op-
tical means, even though they are not visible to the naked eye.
They also showed this magnification on subjects, stating that they
could recover a subject’s heart rate, then amplify it on the original
video. To do this, they employed a series of complex techniques
that end with a frequency-domain analysis. They use a filter from
0.8-1.0 Hz (48-60 BPM) on the video signal from their human
subject recordings. These filter bounds are unrealistic, as the typ-
ical human heart rate typically ranges from 1-1.67 Hz (60-100
BPM), according to the American Heart Association [3]. Fur-
thermore, the filter bounds should extend past 60-100 BPM, as
it is desirable to measure as many different heart rates as possi-
ble. Later works have expanded the allowable frequency range,
while still keeping some of the same frequency-domain process-
ing techniques. Verkruysse et. all [4] provided another method
of photoplethysmography, which includes using a band-pass filter
(.8-6 Hz or 48-360 BPM) along with the FFT. There are three pri-
mary color channels for the recorded video; red, green, and blue.
Each color channel will have a different Signal-to-Noise Ratio
(SNR) for PPG signals, and some have implemented PPG using
multiple. However, this work aims to be as computationally light
as possible, so only the red color channel was used. In the work
done by Verkruysse, the green and blue color channels were used.
Multiple color channels were also used in the work by Blackford
et. all [5], where averaged values for all three main color channels
were used. Additionally, strong fill-in lighting was usedto provide
optimal conditions for taking data from the subject’s face. Spec-
tral analysis was again used to be able to obtain the final results,
as well as an independent component analysis (ICA) algorithm.
ICA is a process in which a singular signal will be attempted to
be separated into several non-Gaussian components. This process
is explained in further detail in Tharwat’s article [6].

Machine Learning has been growing in both usage and pos-
sibility in recent years, which has led some to be applying it to
PPG for higher quality of results.Liu et all [7] used a Support
Vector Machine (SVM) to extract their PPG signal. An SVM is
a type of computationally expensive machine learning, and their
particular one was trained to find faces, such that a PPG signal
could be sampled off of each face. These signals would then be
represented in the Hue Saturation Value (HSV) domain using the
Hue (H) channel. After this signal was in the HSV domain, it was
filtered and preprocessed using wavelet analysis. Afterwards, the
heart rate value was extracted using the FFT. Their result was the
frequency value with the highest peak amplitude.
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A common theme throughout the literature is that algorithms
will be overloaded with preprocessing and computational com-
plexity for a seemingly small improvement in results. The current
work aims to show that high computational complexity and heavy
preprocessing demands can be reduce through the use of short-
time autocorrection functions. Two different algorithms were
written that sample data, either from a video file or on a live video
on a Canon ELPH 180 Camera (this is possible on any CHDK
supported camera, see [8] and [9]. Additionally, a data processing
algorithm was written to extract the heart rate. All algorithms are
explained in this paper, and the finalized source code will be made
available on Aggregate.org.

VIRTAS: Video ROI Tiler and Sampler
In order to sample data for this work, a tool (dubbed

VIRTAS) was developed to sample a given video for differ-
ent color channels, and output a vector of time-stamped data
to the data processing algorithm. Figure 1 shows the algo-
rithm for VIRTAS. The input for VIRTAS is a video file and
the frames per second number that the video was captured at.
Initially, it performs a light check when the algorithm parses
the arguments to ensure that are enough data points to oper-
ate on. If confirmed positive, it begins processing the given
file. A child is then created, which uses FFMPEG (a multime-
dia framework [10]) to create a PPM (Portable Pixmap format,
see http://netpbm.sourceforge.net/doc/ppm.html ) for each frame,
which get sent through a pipe to the sampling process. In order to
set the ROI, the frame is divided into a nine by nine set of tiles.
The tiles selected are set by default in VIRTAS, which are the cen-
ter 25 tiles in the grid, or those from row three through seven, and
column three through seven. The average of all red pixels within
the ROI is calculated, and is then written to an array, and a corre-
sponding time value written to a time array. When all frames are
processed, the color array and time array both get printed in the
console, such that they can be directly put into the Matlab data
processing script.

Figure 1. VIRTAS Flowchart

In-Camera Data Capture
The second sampling algorithm, written in Lua, has nearly

identical functionality to VIRTAS. This script is run on a Canon
Camera that has support for the Canon Hack Development Kit
(CHDK). Details on Implementation can be found in [9], with a
list of supported cameras located on the CHDK main website [8].

Figure 2 shows the algorithm flow chart for this in-camera
data capture process. To run this script, the shutter button is
pressed. The camera then takes in data through the optical sen-
sor, and stores it in the liveview buffer. The liveview buffer is
where data is stored that is shown on the rear screen. The buffer
is then divided into a nine by nine grid, with each grid location
being referred to as a tile. The ROI for this algorithm is the cen-
ter five by five tiles, or those from columns three through seven,
and rows three through seven. A spatial average for the red color
channel is then calculated for each tile within the ROI. The aver-
age values then get summed up, and a time value is taken for that
sample. These two values get written into the same position in a
color array (the signal to be processed) and a time array (in case
resampling is desired). This process happens 600 times, one sam-
ple per time for twenty-five samples per second. After the process
concludes, the color array and time array are written to a file in
the top directory of the camera’s SD card.

Figure 2. In-Camera Data Capture Flowchart

Data Processing
The traditional process for extracting a heart rate from pho-

toplethysmographic data uses a band-pass filter/amplifier to iso-
late the desired frequency range corresponding to expected heart
rates. Then, an FFT of the filtered data is performed and the heart
rate frequency is determined by the largest peak amplitude in that
range. However, in low SNR cases there will typically be many
peaks generated by the noise and interference, and these can be
greater than the peak generated by heart signal. In addition, since
the heart signal is not a perfect sinusoid, its energy in the fre-
quency domain is spread out over the harmonic frequencies (inte-
ger multiples of the fundamental), which lead to a lower dominant
peak. The autocorrelation, however, transforms the signal and
noise energies allowing for better separability, and better main-
tains the periodic signal power. The uncorrelated nature of sys-
tem and quantization noises are all captured by the zero lag of the
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Figure 3. Data Processing Flowchart

autocorrelation, and do not interfere with the amplitude at latter
lags corresponding to periodic behavior. In the frequency domain
this noise is spread out over all frequencies and interferes with the
peaks in the heart rate ranges. In addition, the autocorrelation de-
tects the periodic waveform by correlating/matching-up the beat
waveform with the following beat, where correlations with full
the waveform shapes, and not a narrow-band filtered version of
it. As a matter of fact the more complex the shape is the more
distinct the peaking will be at that associated lag. Thus, a much
greater portion of the signal energy is used by the autocorrelation
method than by the frequency domain method, which filter out
the harmonic energy of the beating heart signal. The data pro-
cessing algorithm developed for the current work calculates a se-
ries of short-time autocorrelations, which are then used to create a
correlogram (analogous to the spectrogram). The correlogram is
simply a display of a sequence of short-time autocorrelation am-
plitudes mapped into a color code and arranged sequentially. This
creates an image from which the periods (if a periodic signal is
present) over short-time interval can be observed. Figures 4 and
5 are examples of correlograms. The correlogram shown in Fig-
ure 4 is an example of an output for high SNR, as the data for
this was from a red LED light in a dark room. There are three
regions of the correlogram that describe this signal. Note at the
zero lag (bottom of vertical axis), there is a yellow bar stretching
over all time intervals, which is proportional to the total energy
in the signal (it includes energy from both signal and noise, since
it is the sum of the squared values of each sample). So all other
peak amplitudes can be assessed relative to the total energy at the
zero lag. The next important lag region is from .33 to 1.25 sec-
onds. These periods correspond to frequencies of 3 Hz down to
.8 Hz, which is the expected heart rate range. From this region,
it can be determined whether or not a strong periodic signal is
present as well as its period. Given the total signal plus noise en-

Figure 4. High SNR Data, Taken From LEDs

Figure 5. Low SNR Data, Trial 2.2

ergy is at the zero lag, a peak associated with a periodicity that
is close to the amplitude at lag zeros, means there is very little
noise energy present in the signal (i.e. it is dominated by periodic
signal of interest). The third region of interest is located above
the the 1.25 seconds lag, where there could be peaks at integer
multiples of the signal period. These are not harmonics as seen
in the frequency domain, where signal energy is dissipated over
each one. These are simply multiples of the fundamental period
over which the signal matches itself over multiples of the signal
period. The additional peaks can occur when there is a very reg-
ular heart beat extended over multiple peridos with little change.
For example if a heart beat is very regular at 1 second, there will
be matches for lags at every 1 second, 2 seconds, 3 seconds and so
forth. Figure 4 shows an example of this with peaking near 1 and
2 seconds. Since the short-time interval was less than 3 seconds
another peak does not appear. During more realistic test cases,
such as in ambient lighting outdoors, or in AC lighting indoors,
the SNR is usually too low for peaking at multiple periods to be
visually obvious, as is shown in Figure 5.

Testing
In order to verify the functionality and the accuracy of the

current work, it was tested under a variety of different conditions,
with each test using the same procedure. Preliminarily, the cam-
era was placed 46 inches feet away from the subject, with the sub-
ject’s nose in the center of the frame. The camera’s was zoomed
in at its maximum optical zoom, with the digital zoom being dis-
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abled. Figure 6 shows how a subject’s face was oriented in the
camera frame during data collection.

Figure 6. Facial Layout Within a Frame

The following procedure was used to take all data which uti-
lized VIRTAS:

1. Verify that the subject’s face is in the center of the frame,
and that there is as much of the screen covered by the face as
possible. Ideally, the left and right edges of the face should
still be visible, to ensure that the ideal facial regions for tak-
ing data are still present in the frame.

2. Take the video. This should ideally be at least 10 seconds,
as this should provide enough samples for credible results.

3. Run the video through VIRTAS, as specified previously.
4. Take the output color data and time data from VIRTAS, and

input this into the Data Processing Matlab code, along with
the sampling frequency that was used in VIRTAS.

5. Run the script. This code will output a correlogram, and the
BPM value (within the filter bounds) with the highest energy
will be printed in the console.

There was also a second testing procedure that was devel-
oped for trials using the In-Camera Data Capture algorithm, such
that there could be trials taken with it as well. For this algorithm,
the subject was exactly three feet away from the camera. This
procedure was used to take all data which utilized the in-camera
algorithm:

1. Verify that the subject’s face is in the center of the frame,
and that there is as much of the screen covered by the face as
possible. Ideally, the left and right edges of the face should
still be visible, to ensure that the ideal facial regions for tak-
ing data are still present in the frame. For this algorithm,
three feet away from the face is the distance that was se-
lected, which allows for good coverage at the ELPH 180’s
maximum optical zoom.

2. Run the CHDK program. The screen will say show that the
program is started, and will also indicate when the program
is finished.

3. Remove the camera’s SD card, and connect it to a computer.
The file ”heartbeat”, located in the top directory of the SD
card, will have the data on it.

4. Insert the data into the data processing script. The first set of
numbers within the square brackets will have the color data
in it, and the second will have the time data. While the called
function requires the time data array as an input, it will only

be used if resampling is desired. The results shown below
were not resampled.

5. Run the script. This code will then output a correlogram,
and the BPM value (within the filter bounds) with the high-
est energy will be printed on the console.

Figure 7. Setup of Simulated Data Using LEDs

Figure 8. Testing Setup for Simulated Data Trials

This procedure was used in multiple different settings to pro-
vide a wide range of results. The first test was done on a simple
red LED light that was driven from a function generator, all lo-
cated in a dark room. The oscillation frequency was driven using
a function generator that was accurate to at least the first decimal
place, which is the same level of precision as the results from the
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script that it would be compared to. There were two more rounds
of testing that were done, with both being taken outdoors. The
first set of data utilized VIRTAS for data acquisition, as videos
were taken on the Canon PowerShot ELPH 180, then run through
VIRTAS and the data processing code. The final set of data was
taken using the in-camera data capture process. This data was
then loaded directly into the data processing code. The results for
these trials are shown and further analyzed in the next section.

Results
In this section, final results from the data processing algo-

rithm are presented. Data from both data capture algorithms were
used, such that there could be a definitive Absolute Mean Error
for each when paired with the data processing algorithm. Table 1
shows the results for the data sampled from videos using VIRTAS,
accompanied by the duration (Dur.) of the taken video. Table 2
shows the results for the data sampled using the in-camera data
capture algorithm. For both sets, a cellphone heart rate monitor
was used to acquire the reference (Ref.) BPM, and the estimated
(Est.) BPM is the output number from the data capture algorithm.
In both sets of trials, subject 1 is a Caucasian male, and subject 2
is an African-American female.

The results for the proof-of-concept data are shown in Figure
4. This data has a very high SNR, with the input frequency being
1 Hz, and the measured BPM being 62.5 BPM, which is just one
quantization level away from 60.0 BPM. This trial has virtually
the best results possible, as the correlogram looked exactly as it
was predicted to. Figures 7 shows the setup of the LED lights,
and Figure 8 shows the setup of the camera with relation to the
lights. Although these figures show lights on in the room, when
data was taken the lights were turned off and the blinds shut, such
that there was no light that didn’t originate from the LEDs.

Trial Subject Dur. Est. Ref. Abs. Error
(seconds) BPM BPM (BPM)

1.1 1 20 136.4 80 56.4
1.2 1 20 107.1 80 27.1
1.3 1 20 64.9 80 15.1
1.4 1 30 68.0 80 12.0
1.5 1 30 62.1 80 17.9
1.6 1 30 95.2 80 15.2
1.7 2 25 79.4 81 1.6
1.8 2 16 79.4 81 1.6
1.9 2 29 75.2 81 5.8
1.10 2 33 71.4 81 9.6
1.11 2 32 71.4 81 9.6

Table 1: VIRTAS Data Capture Results
For the set of data which utilized VIRTAS, the absolute mean

error for subject one was 24.0 BPM, and the absolute mean er-
ror for subject two was 5.6 BPM. The total absolute mean error
for both subjects was 15.6 BPM. These results were unexpected,
as traditionally photoplethysmography is more accurate on those
with darker skin tones. Potential sources of error in this set are
that cellphone measurement of Subject One’s heart rate was too
high, which would have created more error in trials 1.3, 1.4, and
1.5. It is very likely that there was an octave error, or error that
makes it display a frequency that is 2n higher than the true one, in
trial 1.1. This is known because the subject had not undergone any
aerobic exercise close to the trials, and has a typical resting heart

Trial Subject Est. BPM Ref. BPM Abs. Error
(BPM)

2.1 1 75 68 7.0
2.2 1 68.2 68 0.2
2.3 1 65.2 68 2.8
2.4 1 71.4 68 3.4
2.5 1 68.2 68 0.2
2.6 2 68.2 76 7.8
2.7 2 68.2 76 7.8
2.8 2 125 76 49
2.9 2 75 76 1.0
2.10 2 71.4 76 4.6

Table 2: In-Camera Data Capture Results

rate of 68-72 BPM. Another major difference in the trials between
subject one and subject two were the lighting conditions outdoors
when the subjects were available. Subject one’s data was taken
in the morning, when there was no direct sunlight on his face.
Subject two’s data was taken in the afternoon, when there was
more ambient sunlight, although not directly shining on her face.
For the set of data which utilized the in-camera data capture algo-
rithm, the absolute mean error for subject one was 2.72 BPM, and
the absolute mean error for subject two was 14.04 BPM. It also
appears that trial 2.8 had an octave error, similar to trial 1.1.

Overall, the absolute mean error was 8.38 BPM. When there
is fill-in lighting on the subject’s face, the results from both al-
gorithms seem comparable to other remote works, especially for
the amount of processing being done to get the results. Sources
of error and challenges for getting the most accurate results are
listed in the difficulties section.

Difficulties
There are many difficulties that are encountered when try-

ing to develop and test algorithms for remote photoplethysmog-
raphy. Some difficulties were already documented, such as very
low SNR, the non-uniformity of heart rates, and the need for ac-
tive lighting. There were also difficulties that were discovered
during the development of this work, such as the presence of sig-
nal energy and low-frequency noise issues.

Low SNR is an issue that has been prevalent for as long as
PPG has existed. Active lighting has been a solution to this in
many works, but it is more desirable to create a workable method
that can be entirely passive. Active lighting itself could cause is-
sues, for if the active light source uses pulse width modulation
(PWM) there will be additional periodic noise introduced which
could hinder the ability of any PPG algorithm to recover the true
heart rate. Another issue which makes PPG signal recovery more
difficult is that heart rates change over time. This is likely a source
of error in the documented trials, as the reference heart rate was
taken at the beginning of the trial set. Heart rates will decline as
people rest after being active (walking, pushing a chair, or most
activity), but the heart rate of some will increase when a cam-
era is pointed at them. The non-uniformity of heart rate signals
doesn’t just extend to the BPM values, as the signals themselves
can vary. Heart rate signals, while periodic, are not sinusoidal.
This makes recovery harder, but especially in cases where the
heart rate is assumed to be sinusoidal. In cases where the SNR
is low, and the number of bits used to represent the signal is also
low, then random noise or quantization error could influence the
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results such that a harmonic would have the highest peak ampli-
tude. The ELPH 180 has 8 bits that it uses for storing its color
values, and while this would ideally be 16 or 32, 8 is still usable.

Lighting conditions are also an issue when recovering a PPG
signal. This work demonstrated this in Trials 1.1-1.6, as those
results were in dimmer lighting conditions than the others, as
the light was coming from the opposite direction that it did in
the other trials. The current work utilizes reflectance mode PPG,
where the sampled signal is light reflected off of the subject’s face.
This signal is degraded by quantization error, but the signal will
have a larger amplitude if there is more light being reflected off
of the subject’s face. This makes signal recovery in dark rooms
or dark shaded areas difficult. A larger number of bits would help
this issue, but would likely still present a challenge. It is also
worth noting that sampling the green color channel may provide
better results as well in this case, as there are 2x as many green
pixels in the Bayer Matrix as there are red or blue. The other work
proposed by Dietz et all [9] has a good discussion of this, as this
other work did not use the red color channel.

Low-Frequency noise and octave errors were two issues that
presented challenges in the selection of the filter bounds. It was
found that when a pure low-pass filter was implemented, there
were at least two high noise peaks below .8 Hz, which were ap-
proximately located at .2 Hz and .5 Hz. These noise peaks were in
some cases higher than the signal, or comparable in peak ampli-
tude. This led to the selection of .8 Hz as the lower bound, lead-
ing to the lowest recoverable heart rate being 48 BPM. In an ideal
case, this would be .6 Hz such that 40 BPM would be included
in the recoverable range. Even though it is rare that a subject
will have this heart range, it would be ideal to find a method such
that 40 BPM is both recoverable and not contaminated by noise.
Octave errors were a determining factor in setting the higher fre-
quency bound. A simple solution to this would be to define a
probability density function (PDF) to the filter bounds, such that
the normal resting heart rate would be more likely to happen than
2x or 3x normal resting heart rate. If the correlogram was multi-
plied by that PDF, then octave errors would be much less likely.
An obvious shortcoming of this approach is that it heavily biases
the data, and makes it significantly harder to recover frequencies
that are located outside of that usual heart rate range (outside of
60-100 BPM). To limit the number of octaves, and as a heart rate
of greater than 180 BPM is very uncommon, the top filter bound
of 3 Hz was chosen. The final source of difficulty that arose in
the development and testing of the current work was the incon-
sistency of energy in the correlogram. As was noted previously,
Figure 5 shows that inconsistency. Even with lighting conditions
being consistent to the human eye, the energy changes throughout
the duration of the data sequence. Furthermore, there is a loss of
signal energy when using VIRTAS as opposed to the in-camera
data capture algorithm. The energy from data in VIRTAS is typi-
cally at least two orders of magnitude lower than that of the energy
of the data from the in-camera data capture process. Some of this
loss comes from the extra stage of compression that the video un-
dergoes when it is being saved and written, whereas that doesn’t
happen when sampling from the liveview feed.

Conclusion
The current work proposes a method of photoplethysmog-

raphy that is computationally inexpensive, such that it performs

a minimal amount of processing and has no amplification. It has
been shown that it is able to recover results from a high SNR case,
the LED array, and from a low SNR case, off of the faces of two
different subjects with very different skin tones. This work has
all be done with no additional or focused lighting used, such that
this data could be taken by any user in an office complex or park.
The future plans for this work, and that of COIMG-146, are to
further develop the algorithms for real-time embedded applica-
tions. These efforts will first be directed at creating a more accu-
rate and stable embedded process, then to optimize the device in
real-time. A facial tracking algorithm is also in development such
that a higher level of motion denoising can occur. After these are
all implemented, the final planned expansion of this work is to
develop a version which can do this on multiple subjects simulta-
neously.
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