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Abstract

Tracking a large number of small, similar, high-speed/-
agility targets is a challenging problem for current tracking sys-
tems that make use of traditional visual sensors. Such targets
necessitate very high tracker update rates to keep up with mean-
dering and mutually-occluding target paths. Event-based vision
sensors may offer a solution to this problem as they report only
“event-based” pixelwise changes in intensity as they occur with a
time resolution approaching 1 us [1], providing data that is much
sparser and higher in time-resolution than traditional vision sys-
tems. However, this class of sensor presents unique challenges;
for example, a single object in the sensor’s field of view may
produce multiple synchronous or nearly-synchronous events. In
addition, performing direct measurement-to-track association for
event data on ULs to ms timescales introduces problematic compu-
tational burdens for scenarios involving large numbers of targets.

The work described in this paper is twofold. We first define
and apply an event-clustering procedure to raw events to reduce
the amount of data passed into the tracker. This transformation
from events to event-clusters provides a) discrimination between
event-clusters that correspond to true targets and those that do not
and b) reduction in tracking computation time. Second, we define
and apply a partial-update Gaussian mixture probability hypoth-
esis density (GMPHD) filter [2] for tracking using event-cluster
data. We demonstrate increased computational performance over
the standard GMPHD filter while achieving comparable tracking
performance per the optimal sub-pattern assignment (OSPA) met-
ric [3].

Introduction

Visual tracking of individual members of large groups has
been studied across a number of application areas ranging from
analysis of human crowds [4] to bat population surveys [5]. Kine-
matic information extracted from multitarget tracking (MTT) al-
gorithms also provides immense value for commercial and de-
fense applications. For example, consider the case of tracking
members of an airborne swarm: kinematic information about the
swarm’s members can enable defensive action against swarms
as well as inference about swarm structure and classification of
swarm behaviors.

One of the primary challenges of MTT problems is the un-
certainty of correspondence between measurement and target due
to missed detections, extraneous measurements, and variation in
the number of targets in the scene. Solving this problem increases
in difficulty when the targets are similar in appearance and are
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high-speed/-agility. State estimation algorithms (e.g. the Kalman
filter and its variants) degrade in performance when the associ-
ated motion model is inconsistent with true target dynamics; if
the tracker update rate is not sufficient for keeping up with the
dynamics of the target(s), tracking performance suffers substan-
tially. In addition, processing full-frame data at high framerate
is computationally intensive and may push computation time or
system size, weight, and power (SWaP) to intolerably high levels.

The use of event-based vision sensors in place of tradi-
tional “frame-based” sensors offers a favorable combination of
increased update rate and decreased data rate, potentially suiting
them for low-SWaP MTT systems. Event-based cameras feature
independent pixels which only send information in response to
pixel-wise brightness changes in the scene as they occur. As such,
the output is a stream of asynchronous events which consist of its
spatial coordinates (x,y), a timestamp ¢, and a binary polarity p.
A positive polarity indicates that the event was generated by an
increase in intensity at the pixel, while a negative polarity indi-
cates that the event was generated by a decrease in intensity at the
pixel.

There exist multiple lines of research involving tracking with
event-based vision sensors [6] [7], including those that examine
the problem of tracking a large number of similarly-shaped ob-
jects [8]. However, these studies employ tracking methods which
are dependent on explicit or partial measurement-to-track associ-
ation which are computationally burdensome. Random finite set
(RFS) methods such as the probability hypothesis density (PHD)
filter and its variants avoid explicit measurement-to-track associ-
ation altogether, providing an alternative that can be more easily
worked into low-SWaP, real-time tracking applications. In addi-
tion, RFS methods propagate a set-valued state vector and esti-
mate the cardinality of the target set an the multitarget state. This
is useful for swarm tracking applications as the number of indi-
viduals in the swarm may be dynamic. In this paper, we apply a
modified GMPHD filter for tracking of clusters of events.

The GMPHD filter propagates an intensity map of the entire
space at every timestep. However, areas of the map that are not
measurement-rich may not change significantly at every timestep,
so updating these areas at every timestep is extraneous. We intro-
duce a heuristic for updating only measurement-rich areas of the
GMPHD intensity map in order to reduce computation time; we
show that the performance of this partial-update GMPHD filter is
comparable to that of the full update filter.
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Event-Based Data Generation

Though our group possesses an event-based camera, the
assembly and ground-truthing of an actual multi-agent swarm
proved to be outside of the scope of this effort. Instead, we used
the event camera simulator Blender plugin described in [9] to gen-
erate our dataset. The dataset consists of two groups of 10 UAVs
moving from right to left across the simulated sensor’s field of
view. Tree objects that periodically sway slightly right and left
are also present in the foreground of the dataset in order to in-
duce clutter event measurements. In addition to generating events
with pts time resolution, we also extract groundtruth locations of
targets with 1 ms time resolution for performance assessment pur-
poses. A screen capture of our dataset is displayed in Fig. 1.

Figure 1: Screen capture of our simulated dataset. Note simu-
lated tree objects in the foreground; movement of leaves gener-
ates clutter measurements in our scenario. Green boxes denote
groundtruth position of simulated UAV targets. The above image
is full-frame for visualization purposes but we use corresponding
events generated by the event camera simulator Blender plugin
[9] in our analysis.

Event Clustering

Raw event-based vision sensor data is a poor choice as a
direct input into our tracking system because a) passing every
event directly into the tracker quickly becomes computationally
burdensome and b) a single object in the sensor’s field of view
may produce multiple synchronous or nearly-synchronous events.
Our approach to addressing this problem involves applying a pre-
filtering step that clusters multiple events into a single “event-
cluster” object. We then prune extraneous event-clusters using
the variance of spatial location of clustered events as a feature to
discriminate true detections from false alarms. This section de-
tails the operation of our event-clustering and pruning algorithm.

Let e denote a single event and ¢ represent an event-cluster,
respectively. We also denote pruned event-clusters s, which are
ultimately fed into the GMPHD filter as input. Each of these vari-
ables can be parameterized as follows:

e+ (t,x,y,p) (D
¢+ (t,x,y,N) 2)
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In (1), ¢, x, y, and p represent the time stamp, horizontal and
vertical coordinates, and the polarity of the event, respectively. In
(2),t,x,y, and N represent the time stamp, the event-cluster hori-
zontal and vertical coordinates, and the number of events assigned
to the cluster, respectively. In (3), 7 represents the timestep when
the cluster is reported, while x and y represent the corresponding
spatial location of the reported cluster. Let C denotes the collec-
tion of event-clusters c.

Algorithm 1

1: procedure CLUSTER&PRUNE
Input: e,C={cy,...,Ci,...,cp };Output : 5,C
3 if new event occurs then
4 i*=argmin,dist(c;,e)
5 if dist(c¢;-,e) < T, then
6: ci+ < UpdateCluster(c;, e)
7.
8

N

if ¢;+.N > Ty then
C < DeleteCluster(C,c})

9: if TestCluster(ci+) = 1 then
10: s < ReportCluster(c;)
11: C < DeleteOldCluster(C,e)
12: else
13: C + AddCluster(C,e)

Algorithm 1 specifies the procedure of clustering and prun-
ing on event-based data. For each raw received event e, we find
its nearest neighboring event-cluster from the collection of event-
clusters C. If the nearest neighbor event-cluster is within a thresh-
old distance T, we update the nearest neighbor event-cluster with
location of the input event. Specifically, we update the spatial
location of event-cluster with the weighted summation between
event location and event-cluster location. We also update the vari-
ance of spatial distribution of events assigned to the event-cluster
according to:

eV c.;+ eV %} @)
Ve C;z ey %} ®)
Vo Cl‘v’i eV + %} ©)
cVy e ey %} @)

where Vj, V),*, Vy and V)T represent the variance of spatial dis-
tribution of positive and negative events associated with event-
cluster c, respectively. We use an online algorithm to compute the
variance without keeping all events in the event-cluster for com-
putational and memory efficiency.

Next, if the number of events associated with ¢ increases
above a threshold number 7y, we remove ¢ from the interme-
diate cluster set C and test the event-cluster based on the vari-
ance of spatial distribution of clustered events. If the variance
of this event-cluster is below a threshold T,,, we report the event-
cluster to the tracker. In the DeleteOldCluster subroutine, we
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delete the event-clusters which are not updated for a period ex-
ceeding a threshold 7;. If the nearest neighbor event-cluster is too
far away, we create a new event-cluster and add it into the existing
event-cluster set C. Though this procedure is similar to previous
approaches [6], testing the spatial variance of the cluster before
reporting provides additional robustness to noise generated at the
Sensor.
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Figure 2: Two figures show the spatial distribution of positive
(top) and negative (bottom) events for each event-cluster in vari-
ance feature space. Most true objects have small variance and
accumulate in the bottom left side. Based on these two plots we
can set thresholds to prune out many false alarms. Units of all
axes are “number of pixels”

Fig. 2 displays the variance of spatial distribution of posi-
tive and negative events for each cluster. The green dots and pur-
ple crosses represent true objects and false alarms, respectively.
We observe that green dots (which correspond to true objects) are
generally located nearer to the (0,0) corner of the plot. This cor-
responds to our hypothesis that events for true objects occur near
object centers, which will in turn result in small variances in spa-
tial distribution (we note that this assumption is motivated by the
fact that objects are small relative to pixel size). In addition, we
separate the events based on the polarity into positive and nega-
tive groups. This increases the dimension of our feature space,
improving discrimination power.
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Table 1: Event statistics of i) raw events, ii) clustered events, and
iii) clustered and pruned events for 10 second simulated data sce-
nario. Note that the total number of reports is greatly reduced by
employing the clustering procedure and the number false alarms
is further reduced by the pruning procedure.

Raw Data | Clustering | Clustering
Only & Pruning

# of input events | 196311 3847 2152
to tracker
# of input events | 82829 1726 1203
from true targets
# of input events | 113482 2119 949
from false targets

In Table 1, we report the number of input events to the GM-
PHD filter when operating on (i) raw data, (ii) event-clusters with-
out pruning, and (iii) event-cluster with pruning when analyzing
the 10 second simulated dataset. After forming event-clusters, the
number of input events to GMPHD is significantly reduced from
196311 events to 3847 event-clusters, a 50-fold reduction. When
we also apply our pruning step to the list of event-clusters, we
reject about 55.2% of false alarms while preserving about 69.7%
of clusters corresponding true moving objects. Note that before
pruning the number of false alarms significantly exceeds the num-
ber of “true” clusters, while after pruning the number of “true
clusters significantly exceeds the number of false alarms. This
balance can be tuned by adjusting event-clustering and pruning
parameters as desired.

The output of our Algorithm 1 is stored as a list. In order
to visualize the results of our preprocessing method, we integrate
part of the data into one frame (between 1100ms and 1400ms) and
overlay it on a frame capture by a standard camera (also simulated
in Blender) as illustrated in Fig. 3.

The GMPHD Filter

The PHD filter described in [10] propagates a joint estimate
of the multitarget state and cardinality via the intensity vy (x). This
is the first order moment of the multi-target posterior py (Xi|Z;.x),
which is analogous to the single-target posterior propagated in the
canonical Kalman filter. Computing the exact PHD recursion is
generally computationally intractable, so approximations such as
Vo and Ma’s GMPHD filter [2] are often applied in practice. We
briefly outline the operation of the GMPHD filter as described in
[2].

In this formulation, the first-order moment of the PHD, or
“intensity”, for newly-birthed targets is specified as a Gaussian
mixture given by:

Ty N
%) = YW (umy P ®)
i=1

where A4 (-;m, P) is a Gaussian density parameterized by mean
m and covariance P, w('_)k is the weight of the ith Gaussian com-
ponent of the birth intensity, and Jyx is the number of Gaussian
components that comprise the birth intensity.

The posterior intensity is comprised of the predicted inten-
sity from the previous step plus the birth intensity (other formula-
tions provide for “spawning” of targets from existing targets, but
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Figure 3: Reported event-clusters across a 300ms period over-
laid on a full-frame capture of our dataset. Green and magenta
boxes represent reported event-clusters corresponding to true ob-
Jects and false alarms, respectively. Top: reported event-clusters
without spatial-variance-based pruning. Bottom: reported event-
clusters after spatial-variance-based pruning. Note that false
alarm event-clusters are significantly reduced by pruning.

that is not examined in this work).

Vigk—1(%) = Vs gx—1 (%) + %e(x) 9

Note that the predicted intensity is also specified as a Gaussian
mixture:

pSZWk

() (J)
Vs klk—1( ( S]k|k 17PS]I<\k 1) (10)

where probability of target survival is given by pg, and is assumed
to be constant. The posterior intensity is then comprised of the
predicted intensity and vp  (x,z), where:

x)+ Y vpr(x:z) (11)
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It is instructive to note that Eqs. 15 and 16 are the Kalman
update equations. In addition, we estimate the number of targets
in the scene by summing the weights of the Gaussian compo-
nents that comprise the posterior intensity. The number of these
Gaussian components can grow very large as the filter iterates
across many timesteps; as such, heuristic pruning procedures are
employed to mitigate the computational burden associated with
maintaining this large list of components [2].

Applying a Partial-Update GMPHD Filter to
Event-Based Data

In order to mitigate computational burden associated with
updating the entire GMPHD intensity with 1 ms time resolution
we adopt the heuristic that, in general, the GMPHD update is only
computed in regions in the measurement-space neighborhood of
the reported events at the current timestep. The entire intensity
function is updated periodically, but this full-update period p is
chosen to be at least an order of magnitude larger than the time
resolution of event updates (i.e. p > 10). Values of p that are too
small provide little computational benefit, while values of p that
are too large do not allow the filter to maintain extant Gaussian
components of the intensity in regions of the measurement space
where measurements are sparse.

In order to implement the partial-update GMPHD filter, we
choose a sector size s, then divide the measurement space .#
into ng sectors of size s, generating a list of n sectors .%,. We
then match the list of reported event-clusters C against .. If an
event-cluster is reported in sector .%%, then Gaussian components
of the intensity whose means m,@ fall within .}, ; are updated
normally as in [2]; otherwise if no event-clusters are reported in
7% it is not updated at the current timestep k.

The choice of sector size greatly influences the performance
of the partial-update GMPHD filter. If the sector size is cho-
sen to be very small, then the procedure of associating sectors
with event-clusters becomes computationally burdensome and
can even eclipse the computational burden of direct measurement-
to-target association; this defeats much of the utility of RFS for-
mulation of the problem. However, a sector size that is too large
may approach the full size of the measurement space. In the case
where the sector size is equivalent to the size of the measurement
space, the partial-update GMPHD filter must update the entire in-
tensity for every measurement - this is just the standard GMPHD
filter.
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The entirety of the partial-update procedure is outlined in
Algorithm 2.

Algorithm 2
1: procedure PARTIALUPDATE_.GMPHD_FILTER
2: . ) .
3: Inputs: GM component parameters {w,@1 ,m,({'ll ,P,Ei)l}
4: Reported Event Clusters Ci:{c1,¢2,...,en}
5: Active Sector List %
6: Update Period p
7.
8: for each timestep k do
9: GMPHD _PREDICTIONFORBIRTHTARGETS!?!
10: foricJ,_do
11 GMPHD _PREDICTIONFOREXISTING TARGET!?!
12: if mod (k,p) == 0 then
13: foricJ,_ | do
14: GMPHD _UppatE[?
15: else
16: foricJ,_ | do
17: if GETSECTOR(m](Ql) € % then
18: GMPHD _UppaTE?!
19:
20: GMPHD_PrUNE(Z)
Results

We investigate the performance of the GMPHD filter and the
partial-update GMPHD filter on the output of the event-clustering
procedures described earlier in this work. We use optimal subpat-
tern assignment (OSPA) [3] to measure performance of the GM-
PHD and partial-update GMPHD filters. OSPA captures the abil-
ity of a multitarget filter to correctly estimate the number of tar-
gets in the scene as well as the states of these extant targets; a high
OSPA value is indicative of poor performance, while a low OSPA
value is indicative of good performance (the minimum possible
OSPA value is 0).

In order to demonstrate the utility of both the event-cluster
pruning procedure and the partial-update GMPHD filter, we per-
form four experiments: we first input our raw event data into i)
the event-clustering procedure without pruning and ii) the event-
clustering procedure with pruning. We then feed both of these
event-cluster output into the full-update GMPHD filter and the
partial-update GMPHD filter (we choose the partial-update GM-
PHD filter’s full-update period to be p=20 and the sector size to
be s = 60x60 = 3600 pixels). As such, we generate four multi-
target filtering outputs: unpruned event-clusters filtered by the
full-update GMPHD filter, unpruned event-clusters filtered by the
partial-update GMPHD filter, unpruned event-clusters filtered by
the partial-update GMPHD filter, and pruned event-clusters fil-
tered by the partial-update GMPHD filter.

Runtimes of the four experiments are displayed in Table 2,
while OSPA values over time corresponding to full- and partial-
update GMPHD filter experiments on pruned event-cluster data
are pictured in Figure 4. We observe in Table 2 that computational
performance is improved significantly when we employ the event-
cluster pruning procedure and improves slightly but measurably
when we employ the partial-update GMPHD filter. In addition,
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Figure 4: Top: OSPA performance of full-update GMPHD fil-
ter on pruned event-cluster data. Bottom: OSPA performance of
partial-update GMPHD filter on pruned event-cluster data. Note
that performance is comparable between the two methodologies
despite the partial-update GMPHD filter being substantially less
computationally burdensome.

we observe in Figure 4 that multi-target filtering performance of
the partial-update GMPHD filter mirrors that of the full-update
GMPHD filter despite the reduction in computation time depicted
in Table 2.

Table 2: Runtimes for: Full-update GMPHD filter + pruned
event-clusters (top left); Full-update GMPHD filter + unpruned
event-clusters (bottom left); Partial-update GMPHD filter +
pruned event-clusters (top right); and Partial-update GMPHD fil-
ter + unpruned event-clusters (bottom right). Parameters used
with the partial-update GMPHD filter were p = 20, s = 60x60 =
3600 pixels.

Full-Update Partial-Update
GMPHD Filter | GMPHD Filter
Runtime 17.14s 16.48s
w/ prune
Runtime 22.96s 21.10s
w/o prune

Conclusion and Future Work

In order to filter the significant noise associated with event-
based image sensor measurements, we employ an event-clustering
procedure that prunes event-clusters with either high spatial vari-
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ance or a period of inactivity that exceeds a threshold 7;. Once we
have performed the event-clustering step, we pass event-clusters
into the GMPHD filter and perform tracking. Additionally, we
define a partial-update GMPHD filter that only partially updates
the intensity according to the locations of reported clusters to mit-
igate computational burden. It is demonstrated that performance
of the partial-update GMPHD filter is comparable to that of the
full-update filter while reducing computation requirements.

Future work will include testing against high-clutter scenar-
ios and building upon the heuristic partial update rule to include
more sophisticated update rules developed in the sensor selection
literature [11]. In addition, a more detailed analysis of the com-
putational burden associated with the method is necessary for as-
sessing feasibility for low-SWaP systems.
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