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Abstract         
 Characterizing what experts perceive in medical images is a 
difficult problem, both because doing so requires somehow 
characterizing the internal mental representations of the observer, 
and because the underlying diagnostic information tends to be 
abstract and not readily describable in terms of well-defined image 
features. Representational Similarity Analysis (RSA) is a method 
originally developed in mathematical psychology that provides a 
theoretically sound and quantitative framework for measuring the 
mental representations of visual images in human observers. Here 
we used RSA to measure the extent to which the same underlying set 
of mammograms elicit similar mental representations in different 
practicing radiologists (N = 26). We found that the internal 
representations were statistically indistinguishable across different 
radiologists (p > 0.05). Moreover, the mental representations 
significantly parallel the diagnostic information in the images (p < 
0.05 for each subject), indicating that various radiologists perceived 
the same set of diagnostic information in the underlying images. 
Together, these results indicate that medical images elicit similar 
mental representations in different radiologists. 

Introduction          
 It is a truism of public health policy that the health outcomes 
for a given patient should be roughly similar regardless of who the 
patient’s clinical providers are. Indeed, reducing the variability 
across health providers has been widely recognized as a crucial part 
of improving outcomes for patients [1,2]. However, as an empirical 
matter, health outcomes do vary considerably [3]. Therefore, 
understanding how and where the variability arises is crucial to 
reducing it.            
 In medical specialties in which medical image perception plays 
a key role, such as radiology and pathology, an obvious starting 
point is to measure the extent to which clinicians vary in the way 
they perceive medical images. After all, the complexities and 
ambiguities of radiological images are known to be key contributing 
factors to the intra- and inter-observer variability, and to medical 
errors, in these fields [4-12]. 

The problem of characterizing high-level 
perception of images       
 It is intuitively obvious that diagnostic image patterns in 
medical images tend to be subtle and abstract – if they were not, it 
would not take highly trained clinical experts (or, to duly ingratiate 
the present readership, machines) to carry out the diagnostic task; 
anyone would be able to do it. It stands to reason that the internal 
(i.e., mental) percepts generated by these images in the medical 
expert must also be subtle and abstract.  When the underlying 
percept is so abstract, how does one go about quantitatively 
characterizing it and comparing the relevant percepts across 
multiple subjects to boot?        
 At first glance, this problem may seem intractable. To 

appreciate the difficulty, consider the four images in Figure 1. The 
images are all quite different from each other with respect to their 
low-level (or in Shepard’s terminology, ‘first-order’) image 
characteristics, such as color, luminance, local contrast, etc., so that 
the percepts generated by the first-order characteristics will vary 
greatly depending on the image, even within a single subject. But 
what do all four images have in common? A close scrutiny of the 
image will make it evident that the answer is that the images all 
contain representations of the number two (see legend for details). 

 

 
Figure 1. The problem of measuring mental representations of abstract visual 
features. It is readily apparent that the four panels in this figure share very little 
of the low-level visual characteristics (i.e., first-order image statistics), such as 
local orientation, contrast, color, etc. Therefore, they are said to lack first-order 
isomorphisms (i.e., similarities) [13]. But at a more abstract, ‘second-order’ 
level, all four images generate an internal representation of the number two, 
such as the two lambs, or the two eyes or the two little baby teeth of the baby, 
etc. Thus, the images share a more functional, second-order isomorphism 
[13,14], regardless of functionally irrelevant first-order image variations (or 
polymorphisms) [14]. In this sense, the representations generated by this 
figure are directly analogous to the radiologist’s internal representations of 
diagnostic features, where the underlying images tend to be physically quite 
different even when the underlying diagnosis is the same. Characterizing such 
abstract internal representations may appear to be an intractable problem. 
However, decades of research on representational similarity has established 
theoretically sound, effective methods for measuring such second-order, 
functional representations, and factoring out the confounding contributions of 
first-order representations [13-15,17,18,20-24]. The work described here 
leverages this approach to help characterize the representation of diagnostic 
features in mammograms. Figure adapted from Fig. 1 of Shepard et al [13]. 
Images courtesy of Wikimedia Commons. 

 Shepard’s brilliant intuition was that to the extent that one is 
able to perceive these high-order similarities, the underlying higher-
level mental representations of the four images must be similar, or 
‘isomophic’ [13-15]. And, to the extent different people perceive the 
same high-level similarities, the corresponding mental 
representations must also be isomorphic across subjects. Several 
decades of subsequent work has validated the RSA framework and 
extended it to a variety of areas, including correlating perceptions 
with underlying brain activity [16]. RSA has been used to 
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psychophysically characterize the internal representation of 
numbers in human subjects [13], and the representation of object 
shapes in human subjects [17] and in monkeys [18]. It has been used 
for similar purposes in a large number of human neuroimaging 
studies (for a review, see ref. [16]). Therefore, comparing mental 
representations of medical images across different radiologists 
represents a principled, but novel, application of RSA to the study 
of medical image perception. 

Using RSA to medical image perception: A 
brief outline of our RSA methodology   

 Here we describe the application of RSA to the study of 
medical image perception using mammograms as an illustrative case 
(Figs. 2 and 3; see legends for details). All subjects were adult 
volunteers who provided informed consent. All protocols used in 
this study were reviewed and approved in advance by the 
Institutional Review Board (IRB) of Augusta University (AU). 
Subjects were tested either at AU or at the Perception Laboratory 
during one of the annual meetings of the Radiological Society of  
North America (RSNA). Briefly, subjects viewed a given randomly 
drawn pair of mammograms, each of which had a 50% probability 

of containing a cancer, and rated their dissimilarity. The reason for 
using dissimilarity (as opposed to similarity) is that by this measure, 
percepts that are mutually similar, i.e., close to each other in the 
perceptual space, will have a smaller Euclidean distance between 
them when plotted [16]. By repeating the pairwise comparison for 
each pair i,j of n mammograms, we constructed a diagonally 
symmetric n x n dissimilarity matrix (RDM), where cells i,j and j,i 
contain the dissimilarity rating of the corresponding pair of stimuli. 

Figure 2. Exemplar mammograms. These arbitrarily chosen 2-D 
mammograms help illustrate the diagnostic complexity and variability of 
mammograms. Each of the four mammograms in the top row is healthy, and 
each of the mammograms in the bottom row contains a cancer. A few features 
of this image set are worth noting. First, note the variability among the images. 
As an empirical matter, two given mammograms are never identical, even if 
they are of the same breast taken during the same visit [19,25]. Second, to the 
untrained eye the two sets of mammograms seem indistinguishable. Third, the 
cancerous regions (arrows) are not necessarily the most salient regions of the 
image, and vice versa. Finally, the area of the cancerous region generally 
accounts for a tiny fraction (typically 1-2%) of the overall area of the 
mammogram, so that, even in a cancerous breast, most of the rest of the 
tissue is actually healthy. For all these reasons, analyses of low-level image 
characteristics typically fail to accurately distinguish cancerous mammograms 
from healthy ones, and vice versa. For the same set of reasons, the two sets 
of mammograms appear perceptually indistinguishable to the untrained eye. 
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Figure 3. Steps in the RSA methodology. (A) Trial paradigm. Each trial started 
when the subject fixated a central fixation spot (not shown) and indicated trial 
readiness by pressing a key. A randomly drawn pair of mammograms were 
presented on a high-resolution monitor for ad libitum viewing. Subjects were 
required to make a graded report of the perceived dissimilarity between the 
two mammograms using a slider (bottom), and press a separate key (not 
shown) to confirm the report. Figure not drawn to exact scale. For additional 
details, see refs. [26,27]. No systematic relationship was evident between the 
reaction time (i.e., the time the subjects took before responding) and the 
reported dissimilarity (data not shown). 320 radiologically vetted 
mammograms (half of which were cancerous, i.e., contained a single cancer, 
the remaining half being healthy) were used. Each subject was tested with 
eight healthy and cancerous mammograms each, and the mammograms were 
systematically counter-rotated across subjects. For each subject, reported 
dissimilarity for all possible pairs of the16 mammograms were used to 
construct a 16x16 representational dissimilarity matrix (RDM). For clarity, a 
4x4 subset of this larger RDM is shown for two different subjects in panels (B) 
and (C). C1 and C2 denote two different cancerous mammograms, and H1 
and H2 denote two different healthy mammograms. 

4x4 RDMs for a representative subset of 4 mammograms (a pair 
each of healthy and cancerous mammograms) are shown for two 
different subjects in Fig. 3B and C (see legend for details; also see 
also see Figs. 2-3 of ref. [16]). The similarity between the RDMs, 
measured using a Congruence Coefficient C, is a numeric measure 
of the extent to which the internal representations of the two subjects 
were similar. 

Mammography experts perceive 
mammograms highly similarly    
 Using this approach, we measured the internal representations 
of 26 practicing radiologists who specialized in mammography and 
had at least 12 years of mammography experience (Fig. 3; see 
legend and ref. for methodological details). For each possible pair 
of these 26 mammography experts, we determined pairwise 
congruence coefficients C. The higher congruence coefficient 
values, the greater the similarity between the underlying mental 
representations [13,16].         
 For cancerous mammograms, the similarity of reported 
percepts was highly significant (leftmost bar in Fig. 4).  The 
similarity was also high for healthy breasts, but the variance was 
larger (middle bar). Indeed, the variance of the reported percepts 
was significantly higher for healthy breasts than for cancerous 
breasts (F tests, p < 0.05; data not shown). While the present study 
did not address the reason for this, one plausible scenario is that for 
cancerous breasts, the experts focus on the region of interest (ROI) 
containing cancer to determine their dissimilarity ratings. Such 
ROIs typically account for no more than 1-2% of the overall image 
area (data not shown). Since the cancer-containing ROIs are, by 
definition, diagnostically highly similar, they tend to elicit  

correspondingly similar ratings. By contrast, when the breasts are 
healthy, there is no spatially restricted ROI, and the dissimilarity 
ratings will be based on the entire breast, so that variability in the 
images is reflected in the dissimilarity ratings.  

 
Figure 4. Similarity of reported mammogram percepts for experienced 
radiologists. All subjects (N = 26) were mammography specialists with at least 
12 years of experience in mammography. For each of the three categories of 
mammogram comparison (cancerous vs. cancerous, healthy vs. healthy, and 
healthy vs. cancerous), similarity between the reported percepts among 
subjects was measured by calculating the pairwise Congruence Coefficient C 
18 for all possible pairs of the subjects. The average C ± SEM for all 26 
subjects for each mammogram category is shown in this figure. The dotted 
lines denote the 95% confidence intervals for this dataset, as determined by 
randomization, corrected for multiple comparisons [18]. 

 
Figure 5. Similarity of reported mammogram percepts for radiology residents 
(N = 22).  Average C ± SEM for the residents were determined as plotted in 
this figure using the same procedure as was used for experienced radiologists 
(see legend to Fig. 4). 
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Expert radiologists perceived cancerous mammograms 
significantly differently from healthy mammograms (rightmost bar). 
This suggests that the internal representations of expert radiologists 
are driven primarily by the diagnostic information in the underlying 
images, so that the mental representation within each diagnostic 
category (i.e., cancerous or healthy) is highly similar, and 
significantly different across the categories. 

Reported percepts of radiology residents are 
highly variable        
 We repeated the above experiment using 22 radiology 
residents, only three of whom specialized in mammography. These 
subjects had 0.5 to 2.5 years of experience as a radiology resident, 
depending on the resident. The reported percepts were significantly 
similar across subjects for none of the aforementioned three 
categories (Fig. 5). The congruence with image information was 
also insignificant for each individual subject (p > 0.05 for each 
subject; data not shown). Interestingly, the similarity between the 
image information and the corresponding mental representation was 
significantly correlated with the subject’s expertise (r = 0.63; df = 
18; p < 0.05).           
 The present study did not address the reasons for the lack of 
significant representational similarity among radiology residents. A 
plausible explanation is that the residents are still in the process of 
learning the abstract image patterns diagnostic of breast cancer, and 
are therefore not able to fully differentiate cancerous images from 
healthy images, ignore non-diagnostic variability, or both. A second, 
non-exclusive scenario is that the variability of the internal 
representations reflect the underlying variability of this subject 
sample. After all, the residents specialized in a broad variety of 
radiological sub-specialties other than mammography. However, 
one line of evidence that lends support to the notion that the level of 
expertise was related to the observed convergence of mental 
representations among experts is that, across all radiologists 
including aforementioned experts and residents, the level of 
congruence of mental representation was significantly correlated 
with the subject’s expertise (r = 0.57; df = 46; p < 0.05).  

Conclusions         
 Our results demonstrate that RSA is an effective method for 
quantitatively comparing the internal representation of medical 
images. They also demonstrate that different mammography 
specialists perceive mammograms similarly, and that the similarity 
of perception depends on the level of expertise.   
 Whether and to what extent our results generalize to other 
subspecialties of radiology or other specialties involving medical 
image perception remains to be studied. Our preliminary data (not 
shown) indicate that when the image itself plays a comparatively 
smaller role in cancer diagnosis, e.g., inflammatory breast cancer, 
the similarity of mental representations tends to be smaller and more 
variable. Our results (not shown) also indicate the similarity of 
internal representation is proportional to clarity of the diagnostic 
information in the mammogram. For instance, the representations 
were more similar when the subjects were shown radiologically 

vetted mammograms that were classified as “Highly suggestive of 
malignancy” (using the standard BI-RADS classification scheme 
[19]), and less similar when the subjects were shown mammograms 
that belonged to the less definitive diagnostic category of 
“Suspicious”. Most importantly, our study provides the proof of the 
principle that RSA provides a principled, quantitative and 
theoretically sound method of studying medical image perception. 
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