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Abstract
As a biologically inspired guess, we consider two stereo in-

formation channels. One is the traditional channel that works
on the basis of the horizontal disparity between the left and right
projections of single points in the 3D scene; this channel carries
information regarding the absolute depth of the point. The second
channel works on the basis of the projections of pairs of points in
the 3D scene and carries information regarding the relative depth
of the points; equivalently, for a given azimuth disparity of the
points, the channel carries information of the ratio of the orienta-
tions of the left and right projections of the line segment between
the pair of points.

Introduction
In a previous work [5] we remarked on the conspicuous fact that
edge orientation and ocular dominance are made simultaneously
explicit in the visual cortex; here, we explore in particular the
aspect of edge orientation and the role it may be playing in the
computation of stereopsis.

The left halves of the left and the right retinae (where the
right view field is projected by the lenses) are processed by the
left thalamus and the left V1, and viceversa. The central fovea is
processed by V1 neurons of both hemispheres that are connected
via the corpus callosum. An edge point in the right visual field has
projections to V1 neurons of the left hemisphere of three types:
binocular of several degrees of ocularity, monocular driven by the
left eye and monocular driven by the right eye. The topographic
cortical distance between the monocular neurons is related to the
horizontal disparity and we hypothesise that the firing binocular
neurons lie in an topographic interpolation path of minimal orien-
tation variation, between the corresponding monocular neurons.

The retinal output conveys information regarding edges; it is
also known that, at cortical area V1 of old world monkeys, cells
make explicit the attribute of orientation of edge segments, at var-
ious degrees of ocular dominance. From a single 3D scene two
visual fields result, one for each retina; at V1, the two fields are
interleaved via cells of different degrees of ocular dominance and,
somehow, correspondingly, a single visual field is perceived, as if
with a single, centred eye.

There is not a proven model for how the brain extracts the
information about depth via stereopsis. It is known that the stereo
channel belongs to the ”where system” [3] and it is also known
that, at cortical area V1, many neurons are sensitive both to ori-
entation and to ocular dominance. As we show here, for a small
rectilinear edge segment that is specified by its two end points,
the difference of orientations of the edge, as seen by the left and
right eyes, is in a one-to-one correspondence with the difference
of horizontal disparities corresponding to the two points, which in
turn is in one-to-one correspondence with the difference of depths

of the points. This is perhaps the reason why orientation and ori-
entation disparity are important in human vision.

It may be convenient to think that to each pair of points in
the 3D scene being watched there corresponds the virtual line seg-
ment that joins them. If none of the points is occluded, neither at
the left nor at the right projection, the virtual line segment projects
on the focal plane with orientations that, generally speaking, are
different. This difference of orientations, or orientation disparity,
depends both on the relative depth points and on the difference
of their azimuths. We consider stereo algorithms that compute
relative depth and orientation, as a biologically inspired model.
Terminology

A few remarks regarding the terminology are perhaps in or-
der. Being affine linearly related to disparity, we deal with the
inverse of depth and call it nearness [6]. We use a single Carte-
sian coordinate system, instead of using one coordinate system
for each of the two cameras; thus, the common focal plane is
simply z = f, where f is the focal distance [1]. We assume the
camera pair to be centred at the origin of a unique coordinate sys-
tem of points [x,y,z]. We assume that the x coordinate is vertical
and measures height, that the y coordinate is horizontal, and the z
coordinate measures depth. By distance we mean the Euclidean
distance

√
x2 + y2 + z2 from the origin of the coordinate system.

The term orientation is borrowed from the works of Hubel and
Wiesel [2]; they placed lines and edges of different orientations
on a vertical screen, as stimuli to neurons in cortical area V1. By
azimuth, or planar direction, we mean the slope z

y of the line from
the origin to the orthographic projection [0,y,z] of the point on the
horizontal yz plane at zero height. When only one point is con-
sidered, the measures are said to be absolute; when two points are
involved the measures are said to be relative.

Absolute nearness
We derive first a well known formula, in order to set the nota-

tion for the remaining of the paper. In the single Cartesian coordi-
nate framework [x,y,z], x is the vertical coordinate, z is the depth
coordinate and y is the lateral horizontal coordinate. Points in the
3D scene are watched by a computer vision system equipped with
two pinhole cameras, positioned at [0,−A,0] and [0,+A,0], in a
parallel set up; the distance between the pinholes, or baseline, is
2A. For a given point [X ,Y,Z] in the 3D scene consider the rays
from the left and right pinholes to the point. For convenience, con-
sider the projection, focal plane to be placed in front of the pupils,
at z = f, where f is the focal distance, rather than at the back of
the pupils. The left and right radial projections of the point on the
focal plane are found with respect to the left and right pupils; in
barycentric coordinates, the projecting lines are

(1−λ )[0,±A,0]+λ [X ,Y,Z], λ ∈ R (1)
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The projecting lines intersect the focal plane when λ = f
Z and so

the left and right projection points are

pL = f [
X
Z
,
Y +A

Z
− A

f
,1], pR = f [

X
Z
,
Y −A

Z
+

A
f
,1]. (2)

The only coordinate of the projections that is different is the
horizontal, y-coordinate; the vertical coordinates, being on the
equipolar plane, are the same. Calling the horizontal coordinates
YL and YR, you have thus

YL = f (
Y
Z
+

A
Z
− A

f
) ,and, YR = f (

Y
Z
− A

Z
+

A
f
). (3)

Their difference is the (horizontal) disparity; calling it ∆Y , you
have

∆Y = YL−YR = 2 f (
A
Z
− A

f
). (4)

The nearness ζ of the scene point to the origin of the coordinate
system is then

ζ =
1
Z
=

1
f
(

∆Y

2A
+1) (5)

the nearness is thus affine linearly related1 to the disparity, an ap-
propriate feature if we think that nearer objects are more relevant
to the vision system; therefore, when two points are considered
(as we do below) their relative nearness is proportional to their
disparity difference.

Also, from Equation 3, the average of YL
f and YR

f gives Y
Z :

Y
Z
=

1
2
(
YL

f
+

YR

f
); (6)

we call Z
Y the azimuth of the point [X ,Y,Z]. The azimuth is thus

the slope of the line through the origin of the coronal yz plane,
and the orthographic projection [0,Y,Z] of the point [X ,Y,Z], on
this plane. Equation 6 gives the (inverse) azimuth of the point,
computed from the left and right projections of the point.

Relative nearness of a pair of points in the 3D
scene

In mammal vision, the retinal output makes explicit edge
points, while the primary visual cortex makes explicit edge orien-
tation at different degrees of ocular dominance. For each pair of
points q and q′ in the 3D scene, the virtual (or actual) line segment
between them determines left and right projected line segments at
the focal yx plane, which in general have have different slopes or
orientations; see Figure 1.

The relative nearness linearly depends on the dif-
ference of disparities

Given two points q = [x,y,z] and q′ = [x′,y′,z′], as in Figure
1, we compute their relative nearness. The left and right projec-
tions of the points are

qL = f [
x
z
,

y+A
z
− A

f
,1], q′L = f [

x′

z′
,

y′+A
z′
− A

f
,1]

1ζ − 1
f is linearly related to the horizontal disparity ∆Y .

qR = f [
x
z
,

y−A
z

+
A
f
,1], q′R = f [

x′

z′
,

y′−A
z′

+
A
f
,1].

Letting
∆ := qL−qR, ∆

′ := q′L−q′R

and
∆L := qL−q′L, ∆R := qR−q′R

the difference of disparities i.e. the disparity corresponding to the
point q minus the disparity corresponding the point q′, denoted as
∂D, is given by

∂D := ∆−∆
′ = (qL−qR)− (q′L−q′R) (7)

and note that it is also is also the difference of the differences, that
for the left eye minus that for the right eye, of the projections of
the two points:

∂D = (qL−q′L)− (qR−q′R) = ∆L−∆R. (8)

That is, calling ∆L and ∆R the closeness of the projected points at
the focal plane, as seen separately by the left and right eyes, the
difference of disparities is equal to the difference of closenesses.

We now derive a formula for the horizontal component of
∂D; from

∆L := qL−q′L = f (
x
z
− x′

z′
,

y+A
z
− y′+A

z′
,0)

and

∆R := qR−q′R = f (
x
z
− x′

z′
,

y−A
z
− y′−A

z′
,0).

you get

∂D = ∆L−∆R = 2A f (0,
1
z
− 1

z′
,0) = 2A f (0,ζ −ζ

′,0).

q

q0

−A
A

q0L

qL

q0R
qR

f

δ

SL SR

x

y

z

Figure 1. Projections of points q and q′ on the focal plane. The point

q = [x,y,z] projects at qR with respect to the right camera, and at qL with

respect to the left camera; likewise for the point q′ = [x′,y′,z′]. The points qR

and q′R determine a line with slope SR in the projection plane, and the points

qL and q′L determine a line with slope SL. The azimuths of the points q and q′

are given by the slopes z
y and z′

y′ ; δ is the difference of azimuths.
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The horizontal, y component, of the difference of disparities is
thus

∂DY = 2A f (ζ −ζ
′) (9)

and the relative nearness is proportional to it:

∆ζ := ζ −ζ
′ =

1
2A f

∂DY (10)

We now compute the ratio of the slopes, or orientations, of
the projections, for the left and right eyes, of the line segment
between a pair of points in 3-space, on the focal y-x plane z = f ;
this ratio depends as well on the relative nearness of the points.

Orientation (slope) disparity
Consider the the slopes of the left and right projections of

the line segment between the points q = [x,y,z] and q′ = [x′,y′,z′],
on the focal y-x plane. We relate the slopes via their quotient and
call it the slope disparity ∂S of the projections.

The barycentric equation of the line through the points q and
q′ is (1−λ )q′+λq, or, component wise,

[(1−λ )x′+λx,(1−λ )y′+λy,(1−λ )z′+λ z].

The left and right projections on the focal plane, of this line
through q and q′, are given by

ΠL(λ ) = f [
(1−λ )x′+λx
(1−λ )z′+λ z

,
Y +A

(1−λ )z′+λ z
− A

f
,1] (11)

and

ΠR(λ ) = f [
(1−λ )x′+λx
(1−λ )z′+λ z

,
Y −A

(1−λ )z′+λ z
+

A
f
,1]. (12)

To get the slopes of the projected lines consider the segment be-
tween the points q′, when λ = 0, and q, when λ = 1; the left and
right projections of q′ are

ΠL(0) = f [
x′

z′
,

y′+A
z′
− A

f
,1], and, ΠR(0) = f [

x′

z′
,

y′−A
z′

+
A
f
,1]

while the left and right projections of q are

ΠL(1) = f [
x
z
,

y+A
z
− A

f
,1], and, ΠR(1) = f [

x
z
,

y−A
z

+
A
f
,1].

In the focal y-x plane, as seen by the left and right cameras, the
slopes ∆X

∆Y
are given by

SL =
f ( x′

z′ −
x
z )

f ( y′+A
z′ −

y+A
z )

=
x′z− xz′

(y′+A)z− (y+A)z′
=

x′z− xz′

y′z− yz′+A(z− z′)
(13)

and

SR =
f ( x′

z′ −
x
z )

f ( y′−A
z′ −

y−A
z )

=
x′z− xz′

(y′−A)z− (y−A)z′
=

x′z− xz′

y′z− yz′−A(z− z′)
, (14)

which are independent of f . We denote the slope disparity as

∂S :=
SL

SR
, (15)

which is independent of x and x′; for the case of y 6= y′ (i.e. not on
the same vertical line), you get

∂S =
y′z− yz′−A(z− z′)
y′z− yz′+A(z− z′)

(16)

If y = y′ and z 6= z′ (points of different depth but on a same
zx sagital plane)

∂S =
SL

SR
=

x′z−xz′
(y+A)(z−z′)

x′z−xz′
(y−A)(z−z′)

=
y−A
y+A

(17)

unless z = z′, in which case the points q and q′ lie on the same
vertical line in 3-space and, at the focal plane, both projection
segments are likewise vertical:

ΠL(0) = f [
x′

z
,

y+A
z
− A

f
,1], ΠR(0) = f [

x′

z
,

y−A
z

+
A
f
,1],

ΠL(1) = f [
x
z
,

y+A
z
− A

f
,1], and, ΠR(1) = f [

x
z
,

y−A
z

+
A
f
,1];

that is, the coordinates [y,x] of the projected points on the focal
y-x plane, for the left pupil, are f [ y+A

z −A, x′
z ] and f [ y+A

z −A, x
z ],

which determine a vertical segment of slope SL = ∞; likewise,
for the right pupil, the projection points are f [ y−A

z +A, x′
z ] and

f [ y−A
z +A, x

z ], which also give SR = ∞. Thus, the azimuths of q
and q′ are the same and their difference, which we call below δ ,
in Equation 18, is zero.

If both points q and q′ are of the same height x = x′, then
the line through them projects on the focal y-x plane also in a
horizontal fashion, and SL = SR = 0. Whenever the depth of the
points is the same, i.e. z = z′, there is no slope disparity: ∂S = 1.

Relation between ∂S and ∂D
The orthographic projections [y,z] and [y′,z′], on the coronal

horizontal yz plane, of the points q = [x,y,z] and q′ = [x′,y′,z′]
give the azimuths of the points., as

α =
z
y
, and, α

′ =
z′

y′

The inverses, y
z and y′

z′ , of the azimuth of the points q and q′ are
computed using Equation 6. The difference of the inverses of the
azimuths is

δ :=
y
z
− y′

z′
. (18)

The difference δ of the inverses of the azimuths of the points
q and q′ is called the azimuth disparity. For ∂s 6= 1, δ is a param-
eter that determines a family of 1-1 correspondences between the
slope disparity ∂S and the difference ∂D of displacement dispari-
ties; see Equation 20 and Figure 2 below. In fact, given two values
of ∂D, ∂S or δ , the third one is specified, except when ∂S = 1 in
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which case ∂D = 0, independently of the value of δ ; also, as ex-
plained below, ∂S =−1 is a singular case.

From Equation 16, you get

∂S = 1− 2

1+ y′z−yz′
A(z−z′)

= 1− 2

1− 2 f
∂D
( y′

z′ −
y
z )

= 1− 2

1+ 2 f
∂D

δ
(19)

Unless ∂S =±1, for each point (∂D,∂S), in the plane ∂S−∂D, there
corresponds a unique δ that makes the correspondence valid; see
Figure 2. More concisely, you get

∂D = 2 f δ
1−∂S

1+∂S
(20)

unless δ = 0, in which case ∂S = −1, independently of ∂D; see
Figure 2. This case y

z = y′
z′ of equal azimuth occurs when the

points q and q′ project on the coronal yz plane on a same line
through the origin.

Actually ∂D = 0 if and only if ∆ζ = 0 if and only if ∂S = 1,
independently of δ , which happens whenever the two points have
the same depth z = z′. In other words, it is equivalent for two
points q and q′ to have the same depth, to determine the same
horizontal disparities qL−qR and q′L−q′R, to be at the same hori-
zontal distance qL−q′L = qR−q′R in both left and right projections
at the focal plane or, for the line segment between the points, to
determine equal slopes SL = SR, in the vertical, focal, frontal yx
plane.

-5 -4 -3 -2 -1 0 1 2 3 4 5

-5

5

Figure 2. A plot of ∂D = 2 f δ
1−∂S
1+∂S

versus ∂S, for 2 f δ = 0.5 (blue), 1.0 (cyan)

and 2.0 (red); also, for 2 f δ =−0.5,−1.0,−2.0 (all in black).

The value ∂S = −1 is singular; see Figure 2 where, consid-
ered as a limit, the case ∂S = −1 (of orthogonally projected seg-
ments), corresponds to δ = 0 and an infinite value of |∂D|. For
∂S = 1, as alreday said, for any δ , you have ∂D = 02.

Guidelines for an algorithm
Classically, at each given height x of the yx projection plane,

for each pair of corresponding projection points qL, qR, the hori-
zontal disparity is computed, from which you get the depth of the
corresponding point q in the 3D scene; then, you get its height

2For points on a wire in 3-space, you may well have a zero crossing of
∂D as a function of wire length.

as well. You may as well compute the average of the projections
from which you get the azimuth of the point. You might call this
the absolute channel.

By considering, as in V1, the left and right camera projec-
tions to be superimposed, one on top of the other, with the central
or fixation points coinciding, the disparity becomes the distance
between the projections of the point.

For a second, relative channel, instead of single single edge
points, consider working with short edge segments, or equiva-
lently, pairs of nearby edge points. In general, unless the segment
is horizontal, the heights x and x′ of the two extremes q and q′ of
the edge segment are different, and each of them will have left qL,
q′L and right qR, q′R projections; note that the projections qL and
qR are of the same height, and so are q′L and q′R. From the differ-
ences of the projections you compute the nearnesses ζ and ζ ′, and
from the averages of the projections you compute the azimuths α

and α ′ of the points. From these data you compute now the dif-
ference of horizontal disparity ∂D = ∆−∆′, the azimuth disparity
δ = α −α ′ and the orientation disparity ∂S = SL

SR
; for the corre-

spondences to be valid, these data must comply with Equation 20.
This channel tells you which object is nearer, without telling you
the absolute nearnesses.

Conclusion
The attribute of edge orientation is an early-vision descriptor

that can be exploited by stereo algorithms. This can be done e.g.
by matching pairs of projection points having the same heights,
from the left and right projection images.

Stereo algorithms usually work at the pointwise level, match-
ing either pixels or edge pixels; by considering pairs of pixels, the
algorithm becomes local and short edge segments are matched.

The ratio of the orientation of projected 2D edge segments
in the focal plane carries information that is equivalent to the rel-
ative depth of the end points of the corresponding 3D edge seg-
ment. Relative depth is a useful attribute in computer and robot
vision; also, the use of the orientation of line segments, virtual or
not, in the 3D scene being imaged has applications e.g. for robot
surgeons.

For a given azimuth disparity, the orientation disparity and
the difference of horizontal disparities give the same information.
Thus, the use of the orientation disparity is not to be used to dis-
ambiguate stereo matches. It does provide however with an addi-
tional attribute that can generate additional matching criteria.

From the point of view of the architecture of V1, by superim-
posing at V1 the left and right retinal images, a rough correspon-
dence results between horizontal disparity and cortical distance.
Also, between cortical distance together with (occipital-temporal)
laterality and azimuth. Orientation disparity should help to fuse
the images.

The attribute of ocular dominance has not been exploited
here; we are currently exploring this topic. We hypothesise that
the attribute of ocular dominance is used by the cortex to find
paths of minimal orientation variation, which it uses to solve cor-
respondence ambiguities.
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