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Abstract 
Compared to low-level saliency, higher-level information 

better predicts human eye movement in static images. In the current 
study, we tested how both types of information predict eye 
movements while observers view videos. We generated multiple eye 
movement prediction maps based on low-level saliency features, as 
well as higher-level information that requires cognition, and 
therefore cannot be interpreted with only bottom-up processes. We 
investigated eye movement patterns to both static and dynamic 
features that contained either low- or higher-level information. We 
found that higher-level object-based and multi-frame motion 
information better predict human eye movement patterns than static 
saliency and two-frame motion information, and higher-level static 
and dynamic features provide equally good predictions. The results 
suggest that object-based processes and temporal integration of 
multiple video frames are essential to guide human eye movements 
during video viewing. 

Introduction  
Eye movement information is a reliable indicator of observers’ 

attention allocation and regions of interest [1]. This is likely because 
visual acuity is highest in a small foveal region[2], and eye 
movements reorient the fovea to different scene elements that 
require high resolution viewing [3, 4]. Therefore, studying eye 
movement patterns can reveal observers’ inner representation of the 
visual world.  

Studies using static images show that although eye movement 
locations are somewhat predicted by low-level visual saliency, they 
are better predicted by higher-level semantic ‘meaning’ information 
in different spatial regions [5].  

However, it is not known how low- level visual saliency and 
higher-level cognitive derived information drive human eye 
movements in dynamic stimuli such as videos. On one hand, there 
are many abrupt luminance changes and multiple sources of motion 
information across the entire visual field during video viewing. 
Therefore, it is plausible that these low level dynamic features 
predict eye movements. In fact, it has been shown that flicker and 
motion information provide better prediction than static features 
such as luminance and color [6]. On the other hand, videos provide 
richer semantic information than static images, and people might 
track the motion histories of different objects and follow the 
storyline of the entire video. Therefore, it is possible that higher-
level cognitive-derived information better predicts gaze patterns. 
For example, both human and monkey gaze tends to cluster around 
biologically relevant social stimuli during video watching [7]. 

In the current study, we directly compare how low-level 
saliency and higher-level information guide eye movements during 
video watching. We collected human eye movement data while they 
watched videos depicting various life events. We then generated 
seven eye movement prediction maps based on different types of 
information, a Static Saliency Map, an Object Map, Two- and Multi-

Frame Flicker Maps and Two- and Multi-Frame Optical Flow Maps, 
as well as a centering bias map. The Static Saliency Map reflect 
bottom-up saliency based on local differences in color, intensity and 
orientation. The Two-Frame Flicker Map and Optical Flow Map 
reflect bottom-up transient information that could be captured by 
low level motion detectors. On the other hand, the Object Map 
reflects information that can only be obtained after an object is 
recognized. Similarly, the two Multi-Frame dynamic features reflect 
information that allows memory and integration over longer time 
periods. We found that the Multi-Frame Flicker and Optical Flow 
Maps, as well as the Object Map, better predict human eye 
movements than the lower-level maps. We also found that the 
Object Map performed equally well as the two multi-frame dynamic 
feature maps, and provide significantly better prediction than the 
two two-frame dynamic feature maps. These results suggest that 
top-down, higher-level object-based information and temporal 
integration of the previous frames play an important role in guiding 
human eye movements during video watching. 

Method 
Human Eye Movement Data Collection 

Six observers participated in the experiment. All had normal or 
corrected to normal vision. The protocol for the study was approved 
by the Institutional Review Board at the Smith-Kettlewell Eye 
Research Institute, and also adhered to the Declaration of Helsinki. 
Informed consent was obtained for experimentation with human 
observers. 

We collected eye movement data while observers watched 
videos in an established video dataset, the SumMe dataset [8]. The 
SumMe dataset contains 25 videos depicting various life events such 
as kids playing, scuba diving and river crossing. The videos last 
from one to six minutes and are minimally edited. During the 
experiment, all of the original videos were resized to have the same 
width (1920 pixels; 43.6 degrees of visual angle). The audio was 
muted to ensure only visual stimuli guided the eye movements. 
Videos were presented using Psychtoolbox-3 [9, 10] for MATLAB. 

The experiment was divided into six blocks, each of which 
contained 4-5 videos and lasted about 10 minutes. A chin rest was 
used to minimize head movements. Observers watched the entire 
videos without instructions or additional tasks. An Eyelink-1000 eye 
tracker recorded the location of the observer’s right eye at 1000 Hz. 
At the beginning of each block, eye movements were calibrated 
using a standard 9-point calibration method. Since the temporal 
resolution of the eye movement data is higher than the frame rate of 
the videos (15 to 30 Hz), before the data were analyzed we averaged 
gaze positions of the same frame (33 to 67 gaze samples per frame) 
to obtain a single eye movement location of each video frame. 
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Computation of Eye Movement Prediction Maps 
For each video frame, we generated seven maps to predict 

human gaze location. Each map was based on a different type of 
feature information. In each map, the higher the value assigned to a 
given pixel, the higher the probability that an eye movement was 
made to that location. 

Centering Bias Map 
People in most studies on video watching show a centering bias 

[11]. Therefore, as an initial validation of our methods, we asked 
whether our observers watching videos from the SumMe dataset 
showed this characteristic bias. To this end, we first created a 
Centering Bias Map (Figure 1b). For that map, the value of each 
pixel is proportional to the inverse of its Euclidean distance from the 
screen center. Therefore, in this map the center pixel of the screen 
has the largest value and the four corners of the video frame have 
the smallest one.  

Static Saliency Map 
The Static Saliency Map (Figure 1c) depicts the uniqueness of 

different locations in terms of low-level static features, including 
color, intensity, and orientation. It can be considered as a static map 
calculated through pure bottom-up processes and does not include 
temporal or features derived through cognitive processes. We ran 
the Saliency Toolbox [12], which implements an algorithm that 
computes salience at each location over the entire image [13]. For 
each pixel, higher values indicate more salient locations. 

Object Map 
Each Object Map (Figure 1d) is also derived from static 

information within a single video frame, but the map reflects higher-
level cognitive processes beyond low-level features, since the 
objects must be recognized. The Object Map depicts locations that 
contain objects with semantic meaning in each frame. The SumMe 
dataset contains a total of 109,813 frames across the 25 videos. To 
obtain the Object Map in an efficient way, we used the Tensorflow 
Object Detection Application Programming Interface [14] to 
automatically detect objects that are presented in each video frame.  

We ran the Faster R-CNN ResNet-101 model [15, 16] pre-
trained on the COCO dataset [17], which detects the presence of and 
determines the locations of 80 different categories of objects, such 
as a person, a plane, or a table. Since all of the SumMe videos were 
recorded during real life events, the COCO categories cover most of 
the objects presented in the videos. We used the model-generated 
confidence score of the presence of an object at each pixel to create 
the scores for the Object Map. The higher the value, the more 
probable there is a meaningful object present at that location. We 
further applied a Gaussian filter of 1 degree of visual angle to 
smooth the rectangular boundaries of the detected objects.  

Two- and Multi-Frame Flicker Map 
Besides static low- and higher-level features, we also consider 

dynamic features. The first type of dynamic feature we considered 
is flicker. Flicker measures abrupt changes in luminance at the same 
pixel across contiguous video frames. To capture transient flicker 
information that is obtained through bottom-up processes, we 
computed a Two-Frame Flicker Map (Figure 1e), which contains the 
absolute luminance difference between the current frame and 
immediately preceding frame. We also computed a Multi-Frame 
Flicker Map (Figure 1f), which contains the maximum absolute 
luminance change across the previous five frames. Since the Multi-
Frame Flicker Map characterizes luminance changes across a longer 
time interval than the Two-Frame Flicker Map, it may reflect 
temporal integration required for higher-level cognitive processes 
such as memory.  

Two- and Multi-Frame Optical Flow Map 
The second type of dynamic feature we considered was optical 

flow. In the computer vision literature, optical flow measures how 
motion information is distributed in an image [18]. To capture 
transient motion information that could be simply detected by 
lower-level motion detectors, for each frame, we computed the 
Two-Frame Optical Flow Map (Figure 1g) by applying the Horn and 
Schunck method [18] to calculate the optical flow between the 
current frame and the previous frame. To study the role of higher- 
level cognitive processes, we investigated how well motion 
information from multiple previous frames predicts eye movement 

 
Figure 1. A sample video frame from the ‘Kids Play in Leaves’ video of the SumMe dataset (a), together with its different types of prediction maps (b to h). 
The colored dots in (a) show gaze locations of the six observers. Note that the gaze locations from three observers were very close to each other, as indicated 
by the almost overlapping red, blue and yellow dots. In prediction maps, higher intensity pixels indicate higher probability an eye movement was made to that 
location.. 
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patterns. To this end, we generated a Multi-Frame Optical Flow Map 
(Figure 1h) that integrates optical flow information across 10 
previous frames. For example, to generate the Multi-Frame Optical 
Flow Map of the 10th frame of a video, two-frame optical flow was 
first computed for all of the first 10 frames, and then summed 
together to get the map of the 10th frame. This map tracks the longer 
range of motion information that could be obtained if the observer 
temporally integrated motion information across multiple frames.  

Computation Details 
For the sake of computational efficiency, we first converted all 

frames in the SumMe dataset to images of 320 by 240 pixels. We 
then generated each map using the methods described above. 
Finally, for each video frame, each map was normalized to the range 
of 0 to 1. A sample video frame with its different types of prediction 
maps are shown in Figure 1. 

Evaluation of Eye Movement Prediction Maps 
We used the receiver operating characteristic (ROC) method 

and area under curve (AUC) values to evaluate how well each map 
predicts human eye movements [19]. For each map, at each given 
threshold, if the value at a pixel is greater than the threshold, then 
the pixel is treated as a predicted gaze location. We then used the 
proportion of real gaze locations across all human observers 
included in the predicted area as the “true positive rate”, and use the 
size of the predicted gaze area over the area of the entire image as 
the “false positive rate.” We applied the ROC tool provided by the 
GBVS toolbox [20] to obtain the true and false positive rates at 
various different thresholds levels. We calculated the AUC value 
from the ROC curve to serve as a measure of how well the map 
predicts human gaze location. Higher AUC values suggest better 
predictability. 

We first calculated the AUC values of each map for each video 
frame, then obtained the average AUC value for each movie. We 
were therefore able to treat each movie as a ‘subject’, and perform 
statistical tests among different maps to compare their ability to 
predict human eye movements.  

Results 
Consistent with previous studies [11], we found that the 

Centering Bias Map has the highest AUC value (0.812), and predicts 
human gaze patterns significantly better than all the other maps, 
suggesting that people have a strong bias to look at the center of the 
screen (all ps < 0.001). 

The AUC values of the remaining six types of prediction maps 
are shown in Figure 2. A repeated one-way ANOVA showed a 
significant difference among the AUC values of the proposed 
prediction maps (F(5, 120) = 14.1, p < 0.001), suggesting that 
different maps differently predict human eye movements during 
video watching. We then used paired t-tests to directly compare 
different maps with each other and applied Bonferroni correction to 
correct for familywise error rates of multiple post-hoc comparisons. 

The critical comparisons are between the low-level feature 
maps and higher-level maps. These comparisons were made for the 
static features and the two types of dynamic features respectively. 
For the static features, we found that the AUC value of the Static 
Saliency Map is significantly lower than the AUC value of the 
Object Map (t(24) =  5.67, p < 0.001). For the dynamic flicker 
features, the AUC value of the Two-Frame Flicker Map is 
significantly lower than the AUC value of the Multi-Frame Flicker 
Map (t(24) = 7.52, p < 0.001). Similarly, for the dynamic optical 
flow features, the AUC value of the Two-Frame Optical Flow Map 

is significantly lower than that of the Multi-Frame Optical Flow 
Map (t(24) = 6.11, p < 0.001). Together, these results suggest that 
for both static and dynamic features, information that can invoke 
higher-level cognitive processes can better predict eye movements 
than low-level features. 

An additional question could be answered by the current data 
is how different the static and dynamic features are. Therefore, we 
further compared the predictability of static and dynamic features. 
The Static Saliency Map has a significant lower AUC value than the 
average of the two lower-level Two-Frame dynamic features (t(24) 
= 3.39 , p = 0.002), and it is also lower than that of the average of 
the two higher-level Multi-Frame dynamic features (t(24) = 4.91, p 
< 0.001). These results suggest that static bottom-up salient features 
in videos do not predict human eye movement patterns as well as 
either bottom-up or higher-level dynamic features. 

The story is different for the higher-level Object Map. The 
Object Map provides a better prediction than the average of the two 
lower-level Two-Frame dynamic features (t(24) = 3.08 , p = 0.005). 
However, there is no significant difference between the Object Map 
and the pool of the two higher-level Multi-Frame dynamic features 
(t(24) = 1.02 , p = 0.32). These results suggest that the three higher-
level feature maps predicted human eye movements equally well. 

Together, the results suggest that information obtained through 
higher-level cognitive processes can predict human eye movements 
during video viewing better than other information. However, 
bottom-up transient dynamic information still predicts eye 
movements better than those using only static features. 

Discussion 
Previous studies found that human observers tend to look at 

meaningful regions of static images [5]. For videos, low-level 
dynamic features such as flicker and optical flow can better predict 
human eye movements [6]. On the other hand, studies have also 
shown that people also tend to look at biologically relevant stimuli 
in videos [7]. There is still a lack of direct comparison in terms of 
how low-level and higher-level features can guide eye movements 
during video viewing. 

In the current study, we recorded eye movements from 
observers while they watched videos with no additional instructions. 
We generated multiple eye movement prediction maps to determine 
whether low- or higher-level features better predict human eye 
movement patterns.  

 
Figure 2. AUC values of different prediction maps. Error bars show 
standard error of the mean across the 25 videos in the SumMe dataset. 
Significant critical pairwise comparisons (p < 0.001) are indicated by *. 
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Importantly, we found that compared to feature information 
that can be obtained through bottom-up processes, information that 
requires higher-level cognitive processes better predicts human eye 
movement locations in video frames. This is true for both static and 
dynamic features. The locations of objects identified by an object 
detection algorithm provides better predictions than those identified 
by static saliency algorithms. The results suggest that object 
recognition is important for guiding observers’ eye movements 
during video viewing. For dynamic features, flicker and optical flow 
across multiple frames may require higher level cognitive processes 
to store and integrate information. We found that these multi-frame 
dynamic features provide a better prediction than the two-frame 
dynamic features. Therefore, our results suggest that eye movements 
during video viewing are guided to a greater degree by higher-level 
temporal integration, rather than purely low-level abrupt changes in 
luminance and motion. 

We also found that while the static saliency information 
predicts eye movements the poorest, static object-based information 
predicts them as well as the two types of long-range dynamic 
features that we tested. Together, the results indicate that during 
video watching, previous history of luminance change and motion 
information, as well as object semantics may be the best predictors 
of where people look while watching videos. Furthermore, the better 
prediction by motion features found in previous work (e.g. [6]) may 
be due to higher-level factors that longer duration motion conveys, 
such as object-based motion tracking, rather than simply low-level 
abrupt luminance change or motion signal. 

The results of the current study potentially guide video 
compression and video retargeting for different devices. If we can 
better predict human gaze locations during video viewing, we can 
then select compression methods to ensure that visual quality is the 
highest at image areas where humans devote the most attention [21, 
22]. 
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