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Abstract. The evolution of modern sensors for image acquisition
brings as much obstacles as many possibilities to obtain
multidimensional data with high resolution and rich information. One
of the most perceptible destructive factors in visual data is noise.
Due to complexity of modern sensors and approaches to signal
collecting or preprocessing, noise model becomes complicated. The
article’s goal is to introduce and solve a problem of suppressing
additive spatially correlated noise (ASCN) which is present in images
due to different sources and has various levels of correlation. It is
shown that even modern filters attempting to suppress correlated
noise often demonstrate unsatisfactory efficiency. Here we propose
and analyze two modifications of 2D discrete cosine transform
(DCT) based filter and the state-of-the-art BM3D technique. Both
are based on accounting spatial spectrum of the noise by setting
frequency-dependent thresholds. Furthermore, the modified BM3D
filter exploits a similarity measure robust to noise spectrum in block
matching. c© 2018 Society for Imaging Science and Technology.
[DOI: 10.2352/J.ImagingSci.Technol.2018.62.6.060401]

1. INTRODUCTION
A large amount of available information about real-world ob-
jects obtained from modern imaging systems is provided by
complex sensors and appropriate preprocessing of obtained
data to represent images in a convenient form [1]. Images
(multidimensional data) with high resolution can be a rich
source of useful information for various applications [2, 3].
Sophisticated methods of signal collecting and operations
applied to acquired data bring informative features but,
at the same time, introduce distortions. One of dominant
destructive factors in visual data is noise [4] that can originate
from various sources and have different nature. In practice,
the so-called denoising procedure is applied to improve the
quality of images.

Basically, the denoising takes into account the type of
noise, its model and parameters. The commonly accepted
noise model in image processing is an additive white
Gaussian noise [4]. Practically, this assumption is quite
idealistic because the noise distribution can be other than
Gaussian and power spectrum can be nonuniform [5].
Such disaccord can affect negatively the efficiency of image
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denoising or postprocessing and, consequently, visual quality
of output image [6]. Thus one has to use more adequate
noise models and adapt image processing to them. Spatially
correlated noise (SCN) in images arises in general from
mutual impact of neighbor signal samples and its noisy parts
having the same characteristics. Due to this, SCN power
spectrum concentrates mostly in low spatial frequencies [7].
As a result, its appearance on images has a ‘‘grain’’-like
structure. The size of such ‘‘grains’’ depends on spatial
correlation degree, i.e., the area of neighbor noisy signal
samples impacting the noise component in each pixel.
There are many observed variants of SCN: additive, signal
dependent and mixed. In this article, we consider only
the case of additive spatially correlated noise (ASCN)
suppression. For other models of SCN, reduction to additive
model (ASCN) can be performed (for example, by applying
a proper variance stabilizing transform [8]).

Let us consider in detail different origins of SCN and
its characteristics in spatial and spectral domains. The
first origin of spatially correlated noise is speckle noise
in synthetic-aperture radar systems [8] in remote sensing.
SAR-based imagery acquires data in the following way.
A set of sensors mounted on a moving platform collects
signals scattered from a sensed surface. While the platform
is moving, a way the sensor travels over a target creates a
large-sized antenna aperture to obtain the signal with higher
resolution. Multiple signal reflections taken from the same
target on a surface collected in different moments of time
have random structure. The SCN origin in this case deals
with principles of signal collecting and spatial sampling.

Other sources of spatially correlated noise presence
are caused by data preprocessing. One of them is a joint
processing of two or more satellite images of the same area
in different moments of time or by various sensors [9].
Nonlinear operations with data result in changing the
statistical and spectral properties of the noise. Spatially
correlated noise can be also caused by demosaicing applied
to raw data in digital cameras [10]. The sensors with Bayer
filter mosaic produce raw data that are demosaiced (inter-
polated). Any interpolation uses sensor pixels depending on
wavelength illumination with close location. While signal
processing exploiting neighbor samples of the same color is
performed, spatial correlation of the resulting noise appears.
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The latter noise origins deal with software processing of
already acquired data. In such circumstances, the standard
noise model is no longer adequate and special efforts to
denoising adapting to noise properties shall be made. Note
that researchers arrive at the necessity of using SCN models
in applications of image processing [11] such as magnetic
resonance imaging, thermals and cameras.

There are plenty of modern denoising techniques
oriented on AWGN suppression [12]. It is worth mentioning
the state-of-the-art filters [13] for AWGN case that have
high efficiency. There are filters performing in spatial
domains likeNonlocalmeans [14] (NLM) that uses similarity
of image patches in a certain region and carries out
denoising by the joint processing of the collected similar
parts of noisy signals. Due to patch similarity of the signal
component, filtering efficiency greater than that for classical
window-based denoising methods is achievable. Spatially
iterative filtering SAIF [15] has been proposed as a further
evolution of NLM exploiting its kernel and performing
optimization for its parameters. One exemplar of an effective
technique that works only with extracted features in spatial
domain is principal component analysis with local pixel
grouping [16] (LPG-PCA). Note that the filters with data
processing in spectral domain usually demonstrate higher
performance than spatial-domain filters. The basic principle
of such denoising is to represent the signal in a sparse form
and to distinguish it from noise distributed over the full
dataset. Bayesian least squares of Gaussian scale mixtures
(BLS-GSM) [17] and 2D DCT-based filter (DCTF) [18]
exploit the spectral representation of signal and remove the
noise by a shrinkage. Using both approaches of nonlocal
denoising and data processing in spectral domain, the
block matching and 3D filtering technique (BM3D) [19]
outperforms the aforementioned filters in many cases,
especially in images with a high degree of self-similarity.
Finally, among other classes of filters, it is worth mentioning
the idea of a global nonlocal approach to restore image
patches from previously learned dictionaries under image
data. The K-SVD [20] and K-LLD [21] techniques form their
dictionaries in different ways: globally from entire images
and locally from some dataset.

As we have stated above, there are two modern
principles that allow to suppress noise effectively—the
nonlocal approach, i.e., block matching to collect together
similar image patches, and sparse representations of signal
to distinguish it from the noise easily. These approaches, in
standard usage, are not adapted to SCN. There are several
known attempts to adapt block matching for SCN [22]
and denoising in spectral domain [23] applied to SAR
images. These modifications have been proposed for certain
models of SCN with multiplicative nature of speckle. There
is also one method that employs modeling the signal of
interest in the wavelet domain to attenuate ASCN [24].
However, such modifications are unitary and oriented on
particular SCN cases with certain spatial correlation degree.
In this article, we propose the modifications of two existing
denoising techniques oriented on ASCN suppression with

(a) (b)

Figure 1. Real-life images corrupted by spatially correlated noise: (a) the
JPEG 2000-compressed image provided by Sentinel-2A system and (b)
one polarization image obtained from TerraSAR-X sensor.

different correlation degrees. Note that for multiplicative
or signal-dependent SCN suppression the homomorphic
processing and/or variance stabilizing can be applied [25].

The article is organized as follows. Section 2 shows
two real-life cases of SCN with estimated noise spectrum
characteristics. The modeling method of ASCN having
a variable spatial correlation degree is also presented.
Section 3 deals with efficiency analysis for modern denoising
techniques applied to different ASCN cases. Section 4
describes adaptation of two filters: DCTF and BM3D. Finally,
Section 5 presents denoising results with outcomes and
examples.

2. REAL-WORLD SPATIALLY CORRELATED NOISE
AND ITS MODELING

Let us consider real-life cases of spatially correlated noise.
The first one is a satellite image obtained from Sentinel-2A
compressed by JPEG 2000 and corrupted by ASCN with
a low correlation degree (Figure 1(a)). A more detailed
information about this image can be found using its entity
id—L1C_T35TNF_A008441_ 20170202T090155. Detailed
analysis of noise parameters can be found in article [26].
The second one is a single polarization image produced by
TerraSAR-X system. The noise model in this case is speckle,
the signal-dependent SCN with a high degree of spatial
correlation that can be observed from Fig. 1(b).

Most denoising techniques that perform in a spectral
domain usually have a block size of 8x8 pixels and SCNcan be
characterized by normalized power spectrum in block-wise
manner [27]. Practically any image has homogeneous regions
(also treated as noninformative). Such regions can be chosen
manually. Thus, it is possible to assume that only pure noise is
observed and estimation of its parameters can be done. After
homogeneous regions have been extracted from an image,
the obtained dataset can be divided into nonoverlapping
blocks. In Fig. 1, examples of such regions are marked by
white rectangles. Every block is then transformed by DCT
and transform coefficients are squared to obtain energy of the
noise for each frequency component. The first component
(DC) is not taken into account since it corresponds to mean
level of the signal that is out of our interest. After all energy
values of each component for all transformed blocks are
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(a) (b)

Figure 2. Block-wised (8x8 pixels) normalized noise spectrum in DCT
domain for (a) Sentinel product image and (b) TerraSAR-X image. Noise
spectrum for both cases has been calculated in homogeneous image
regions divided into blocks (marked by white rectangles in Fig. 1) without
signal components.

averaged, the normalized noise block spectrum is obtained
in the following manner:

Wkl =

√√√√√√B2
kl · (b2− 1)∑

k,l
B2
kl

, (1)

where B is a transformed block in the homogeneous region,
b is a block side, k and l are indices of components in
the transformed block, and W is a normalized spectrum.
See examples of calculated normalized block spectrum from
real-life images in Figure 2.

Note that the shown normalized spectra differ from each
other. The main part of energy unlike the case of AWGN
(with uniform distribution of all frequency components)
is concentrated mostly at low frequencies. The presented
examples demonstrate that spatially correlated noise can
have different degrees of spatial correlation. The case of SCN
with a minimal spatial correlation degree practically has no
difference with respect to AWGN case when the normalized
block spectrumhas all weights equal to 1. In case of SCNwith
a high degree of correlation, the normalized spectrum values
can differ by one or even two orders.

The next question arises—how spatially correlated
noise can be modeled to generate noisy images that have
noise characteristics corresponding to a considered practical
application? Due to the low-frequency nature of SCN, it is
possible to model it in the reverse order. The spectrum of
AWGN realization can bemodified via low-pass filtering and
transformed back into the spatial domain. A modification of
a spatial Fourier spectrum by a target function will produce a
desired degree of spatial correlation. A 2DGaussian function
that amplifies low frequencies and reduces high frequencies
is one of the examples of such target function:

Gij = exp

[
−π ∗

(i2+ j2)
2 ∗ σ 2

G

]
, (2)

where σG is a ‘‘tuning’’ parameter for varying the degree of
spatial correlation, i and j are target function indices, andG is
a target function. After modification of the Fourier spectrum
of AWGN realization by the target function (Eq. (2)), the

(a) (b)

Figure 3. (a) The target function for SCN modeling (σG = 1) and (b)
block-wised normalized noise spectrum in DCT domain for generated
SCN case.

inverse Fourier transform is applied to the pointwise product
of the Fourier spectra:

NSC = F−1
[F(NGaussian) ∗ F(G)], (3)

where F denotes Fourier transform and NSC is the output
SCN realization. After inverse transform, the SCN realization
must be corrected by scaling to provide a desired standard
deviation of SCN. In Figure 3(a), the example of target
functionG is shown (σG = 1), the corresponding normalized
block DCT spectrum of the noise is presented in Fig. 3(b).
The previously shown block normalized spectra for real-life
images (Fig. 2) approximately correspond to the modeled
cases of SCN with σG = 0.8 and σG = 1.5, respectively. It is
possible to assume that AWGN case is observed at σG ≤ 0.5.

3. DENOISING EFFICIENCY ANALYSIS FOR FILTERS
NOT ADAPTED TO SCN

Now let us consider different cases of ASCN with respect
to its spatial correlation degree and assess denoising effi-
ciency for filters intended to remove AWGN. For further
analysis, the following filters have been chosen: NLM [14],
SAIF [15], LPG-PCA [16], DCTF [18] (2D DCT-based
filter), BM3D [19], K-SVD [20] and K-LLD [21]. The
used image/noise model for the considered case of additive
spatially correlated noise is the following:

Inij = I trij +NSCij , (4)

where Inij are noisy image samples, I trij are samples of true
image. To obtain more reliable results of denoising, a wide
class of test images having different properties should be
used. For this purpose, known test images and images from
several databases have been used: six images from TID2013
database [28] (#1, 3, 5, 7, 13, 23), the test image ‘‘Grass,’’
one texture image from the database USC-SIPI [29] (#7) and
two remote sensing test images called ‘‘fr01’’ and ‘‘fr02’’ [30].
In our previous works [31–33], we have considered imaging
with different content to understand how image content
influences denoising efficiency. It has been demonstrated
that the task to suppress noise in texture images is the
most difficult, especially if the noise is spatially correlated.
Also potential limits of peak signal-to-noise ratio (PSNR)
determined in two ways—by nonlocal approach [34] and by
the technique [35]—show that various filters demonstrate
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Table I. PSNR results and PSNR improvements of denoising applied to images corrupted by ASCN (σG = 0.8) with SD = 10.

TID2013 TID2013 TID2013 TID2013 TID2013 TID2013 Grass USC-SIPI FR Test FR Test
#1 #3 #5 #7 #13 #23 #7 #1 #2

Noisy AWGN 28.145 28.144 28.147 28.144 28.149 28.147 28.236 28.161 28.190 28.153
BM3D AWGN 3.141 8.883 4.339 7.773 1.889 8.787 0.454 3.916 4.098 3.971
Noisy 28.127 28.127 28.130 28.127 28.130 28.128 28.213 28.137 28.171 28.128
DCTF 2.688 7.457 3.212 6.291 1.580 7.653 0.202 2.603 2.954 2.860
BM3D 2.727 8.128 3.810 6.999 1.592 7.922 0.249 3.203 3.626 3.458
NLM 1.257 7.631 2.464 6.312 −1.108 7.421 −5.393 2.425 1.875 1.490
SAIF 2.852 8.045 3.794 6.476 1.864 7.870 0.472 2.945 3.864 3.762
LPG-PCA −1.063 5.613 0.035 3.669 −2.450 5.973 −3.558 −0.079 −0.152 −0.484
K-SVD 2.815 8.089 3.456 6.707 1.734 7.928 0.229 2.776 3.231 3.141
K-LLD 2.049 6.575 3.239 5.949 1.168 7.074 0.307 2.551 2.983 2.809

Table II. MSSSIM results and MSSSIM improvements for denoising applied to images corrupted by ASCN (σG = 0.8) with SD = 10

TID2013 TID2013 TID2013 TID2013 TID2013 TID2013 Grass USC-SIPI FR Test FR Test
#1 #3 #5 #7 #13 #23 #7 #1 #2

Noisy AWGN 0.961 0.901 0.975 0.948 0.968 0.912 0.994 0.984 0.969 0.966
BM3D AWGN 0.013 0.082 0.013 0.040 0.001 0.072 1e-4 0.005 0.016 0.019
Noisy 0.951 0.878 0.970 0.937 0.959 0.893 0.992 0.980 0.963 0.959
DCTF 0.019 0.095 0.014 0.045 0.006 0.084 1.7e-4 0.004 0.018 0.022
BM3D 0.019 0.099 0.016 0.047 0.005 0.085 1.3e-4 0.005 0.019 0.023
NLM 0.003 0.097 0.010 0.043 −0.022 0.085 −0.016 0.002 0.011 0.015
SAIF 0.019 0.099 0.015 0.045 0.007 0.087 4.5e-4 0.005 0.020 0.024
LPG-PCA −0.030 0.092 −0.003 0.034 −0.058 0.081 −0.008 −0.015 −0.001 0.003
K-SVD 0.020 0.100 0.014 0.047 0.007 0.088 2e-4 0.005 0.019 0.023
K-LLD 0.013 0.079 0.013 0.039 0.002 0.073 1.5e-4 0.004 0.017 0.020

similar low efficiency. Among the chosen test images, there
are highly textured ones—TID2013 #13, Grass, USC-SIPI #7.
Other images have, at least, rich texture regions except the
images TID2013 #3 and #23.

To assess denoising efficiency, the following metrics
of visual quality are used in our analysis—output PSNR,
PSNR-HVS-M [36], MSSSIM [37] and FSIM [38]. To
characterize the denoising impact, we have also used ametric
‘‘improvement’’ value—the difference between the metric
value for the filtered image and the noisy one. Further the
prefix ‘‘I’’ before any metric denotes the improvement of
denoising.

The testing results are analyzed below for two cases
of spatial correlation degree of ASCN mentioned above
–σG = 0.8 and σG = 1.5. We call these cases as moderate
and large degree of SCN. The ASCN for both degrees are
generated with the noise standard deviations equal to 10
and 15, respectively. Moderate ASCN usually takes place
after data software processing like demosaicing. On the
contrary, the large degree of SCN corresponds to remote
sensing images where noise has high intensity. In Tables I

and II, PNSR andMSSSIM results for SD= 10 andmoderate
variant of ASCN are presented. The first two rows of Tables
I–VIII data are metrics values for AWGN denoising results.
The other data rows correspond toASCN. Bothmetric values
for noisy images corrupted by AWGNandASCN are given to
analyze visual quality decreasing. Improvements given by the
considered filters are shown below. Since the standard BM3D
filter is the state-of-the-art technique intended to AWGN
removal, its denoising efficiency of AWGN suppression is
used to assess improvement of visual quality provided by
considered filters.

From data in Table I, it is seen that for images
TID2013 #3, 7, 23 that have a quite simple structure
and strong self-similarity (further these three images will
be called as ‘‘simple’’ in the sense of denoising ease),
all filters, especially the nonlocal ones, demonstrate high
IPSNR up to 8 dB. It should be stressed that BM3D,
NLM, SAIF and K-LLD practically have the best results
among all considered filters for such images. The worst
results under even moderate ASCN are shown by LPG-PCA.
The aforementioned highly textural images are filtered
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Table III. PSNR-HVS-M results and PSNR-HVS-M improvements of denoising applied to images corrupted by ASCN (σG = 1) with SD = 10.

TID2013 TID2013 TID2013 TID2013 TID2013 TID2013 Grass USC-SIPI FR Test FR Test
#1 #3 #5 #7 #13 #23 #7 #1 #2

Noisy AWGN 32.201 30.723 32.939 31.615 32.559 30.870 36.425 33.920 32.619 32.628
BM3D AWGN 1.344 6.367 2.074 4.830 0.385 5.838 −0.158 0.521 1.731 2.049
Noisy 27.756 26.901 28.240 27.414 27.969 26.976 30.516 28.701 28.090 28.045
DCTF 1.832 4.464 1.491 3.337 1.099 4.278 0.067 0.475 1.685 1.738
BM3D 2.234 5.072 2.283 4.165 1.369 4.640 0.177 0.948 2.341 2.326
NLM 1.535 6.511 1.701 4.498 −0.086 5.870 −4.236 0.472 1.630 1.495
SAIF 1.914 5.827 2.095 3.787 1.151 5.213 0.339 0.551 2.609 2.734
LPG-PCA −0.601 5.501 0.217 2.945 −1.355 5.285 −1.547 −1.549 0.329 0.302
K-SVD 2.130 6.260 1.957 4.485 1.259 5.792 0.106 0.695 2.226 2.308
K-LLD 1.308 3.258 1.554 2.614 0.920 3.195 0.039 0.394 1.529 1.574

Table IV. FSIM results and FSIM improvements of denoising applied to images corrupted by ASCN (σG = 1) with SD = 10.

TID2013 TID2013 TID2013 TID2013 TID2013 TID2013 Grass USC-SIPI FR Test FR Test
#1 #3 #5 #7 #13 #23 #7 #1 #2

Noisy AWGN 0.962 0.929 0.975 0.957 0.973 0.932 0.990 0.988 0.969 0.969
BM3D AWGN 0.011 0.046 0.009 0.027 0.001 0.049 0.001 0.002 0.011 0.012
Noisy 0.928 0.867 0.952 0.919 0.948 0.872 0.980 0.975 0.940 0.939
DCTF 0.027 0.077 0.012 0.039 0.011 0.076 0.001 0.002 0.022 0.021
BM3D 0.030 0.082 0.017 0.045 0.013 0.078 0.002 0.004 0.027 0.027
NLM 0.021 0.091 0.015 0.049 −0.006 0.093 −0.010 0.002 0.023 0.024
SAIF 0.030 0.092 0.017 0.048 0.013 0.088 0.003 0.003 0.029 0.031
LPG-PCA −0.005 0.078 0.006 0.040 −0.029 0.091 −0.003 −0.007 0.013 0.016
K-SVD 0.031 0.094 0.015 0.049 0.012 0.093 0.001 0.003 0.027 0.027
K-LLD 0.020 0.059 0.012 0.030 0.010 0.057 0.001 0.002 0.018 0.018

by all techniques in an unsatisfactory manner. Practically
there is no improvement due to denoising applied to the
test image Grass. Moreover, NLM and LPG-PCA distort
textures more than filtering out noise. Similar observations
can be made for images TID2013 #13 and USC-SIPI #7
although improvements of PSNR are slightly better. For
other images TID2013 #1, 5 and FR Test #1, 2 (we further
call all of them as ‘‘miscellaneous’’), analysis shows that
moderate degree of noise spatial correlation influences not
significantly (is not too different from AWGN case) on
nonlocal approaches in cases of images with self-similarity
content and homogeneous regions. Generally, we can say that
there are a number of techniques able to handle moderate
ASCN.

The corresponding results for MSSSIM are given in
Table II. The values of MSSSIM for highly textural images
(USC-SIPI #7 and Grass) that exceed 0.98 indicate that
visual quality of noisy images is high due to masking effect
of high-frequency components in textures [36]. On the
contrary, test imageswith large-size homogeneous regions do
not hide noise and, as the result, they have lower MSSSIM

values. Note that a small improvement of visual quality
metric values shows that a considered filter is unable to
suppress ASCN in high-frequency textures. This conclusion
is in a good agreement with our previous research dealing
with texture denoising underAWGNconditions [31–33]. For
miscellaneous images with textures and rich-content regions,
denoising efficiency is practically the same as for highly
textured images. Thus, the recommendation for spatial
correlation degree σG = 0.8 is to apply nonlocal denoising
techniques only to simple-structure images.

For a larger spatial correlation degree σG = 1, the
improvement of visual quality also depends upon image
properties (see data for PSNR-HVS-M in Table III). The
overall degradation of visual quality for this degree of ASCN
with the same noise SD is notable for all images. It is obvious
that for simple images the improvement of PSNR-HVS-M
can be acceptable for BM3D, NLM, K-SVD and SAIF filters.
Note that NLM efficiency assessed by PSNR-HVS-M shows
the best results for simple images. This can be explained by
the fact that low-frequency distortions are clearly perceived
by the humanvisual systemespecially in homogeneous image
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Table V. FSIM results of denoising applied to images corrupted by ASCN (σG = 1.5) with SD = 15.

TID2013 TID2013 TID2013 TID2013 TID2013 TID2013 Grass USC-SIPI FR Test FR Test
#1 #3 #5 #7 #13 #23 #7 #1 #2

Noisy AWGN 0.929 0.869 0.953 0.919 0.949 0.873 0.981 0.976 0.941 0.941
BM3D AWGN 0.022 0.094 0.017 0.053 0.002 0.096 0.001 0.004 0.025 0.027
Noisy 0.827 0.702 0.880 0.807 0.869 0.709 0.945 0.927 0.854 0.852
DCTF 0.043 0.097 0.022 0.055 0.026 0.101 0.002 0.005 0.038 0.033
BM3D 0.050 0.102 0.031 0.062 0.031 0.100 0.004 0.010 0.046 0.042
NLM 0.070 0.192 0.043 0.104 0.037 0.189 −0.001 0.006 0.069 0.067
SAIF 0.059 0.155 0.035 0.082 0.035 0.152 0.006 0.005 0.064 0.061
LPG-PCA 0.071 0.183 0.039 0.098 0.040 0.180 0.004 0.011 0.064 0.061
K-SVD 0.076 0.194 0.042 0.106 0.040 0.197 0.004 0.010 0.070 0.068
K-LLD 0.033 0.076 0.023 0.046 0.023 0.078 0.003 0.004 0.034 0.031

Table VI. MSSSIM results of denoising applied to images corrupted by ASCN (σG = 1.5) with SD = 15.

TID2013 TID2013 TID2013 TID2013 TID2013 TID2013 Grass USC-SIPI FR Test FR Test
#1 #3 #5 #7 #13 #23 #7 #1 #2

Noisy AWGN 0.925 0.826 0.952 0.905 0.936 0.845 0.987 0.966 0.942 0.937
BM3D AWGN 0.028 0.148 0.026 0.074 0.007 0.131 −0.000 0.011 0.032 0.038
Noisy 0.831 0.674 0.902 0.819 0.849 0.715 0.961 0.908 0.888 0.877
DCTF 0.030 0.115 0.021 0.061 0.016 0.107 −0.002 0.006 0.028 0.030
BM3D 0.035 0.119 0.027 0.067 0.020 0.108 −0.001 0.012 0.033 0.035
NLM 0.046 0.221 0.035 0.104 0.023 0.193 −0.014 0.006 0.047 0.054
SAIF 0.039 0.172 0.028 0.077 0.022 0.151 0.001 0.005 0.043 0.048
LPG-PCA 0.046 0.211 0.031 0.099 0.020 0.182 −0.004 0.009 0.042 0.048
K-SVD 0.053 0.216 0.035 0.104 0.027 0.194 −0.001 0.009 0.049 0.056
K-LLD 0.019 0.090 0.020 0.053 0.012 0.087 −0.001 0.004 0.026 0.027

regions. The kernel exploited in NLM smooths such notable
distortions easily. Meanwhile, the textured images denoising
by NLM have a negative effect. The reason is that the
smoothing mechanism is not suited for irregular textures.
LPG-PCA does not perform well due to the same reasons.
The DCTF that has not been yet mentioned in our analysis
demonstrates performance close to the general trend—high
efficiency is achieved for simple-structure images and lack
of improvement is observed for highly textured images. For
miscellaneous images, one can see that K-SVD and SAIF in
most cases have the highest efficiency compared to other
techniques. Despite K-LLDs high performance of AWGN
suppression, its performance is worse when compared to
other filters for SCN.

In Table IV, FSIM metric results for moderate ASCN
case are presented. FSIM values for noisy images and
the corresponding improvements of simple-structure image
denoising by nonlocal filters exploiting smoothing kernels
for denoising point out that such filtering is expedient.
Images from remote sensing FR Test #1, 2 are rich for
small-sized features and textures. Denoising applied for

such images does not give notable improvement of visual
quality and smears features of interest important for further
processing or analysis. This relates to all considered filtering
techniques.

An important conclusion is that σG = 1 can be treated as
a borderline casewhen standard nonlocal denoising intended
to suppress AWGN can be still applied for simple-structure
and some miscellaneous images that contain self-similarity
and are not highly textural. Expedience of image filtering for
such images can be carried out automatically in a fast and
accurate way [39].

Let us now present data for a large degree of SCN. Data
for σG = 1.5 and SD= 15 are given below in Tables V and VI
for visual quality metrics FSIM and MSSSIM. Comparing
the corresponding data in Tables IV and V, it is seen that
visual quality of noisy images significantly decreases if noise
correlation and its intensity increase. Dependencies of noise
suppression efficiency on image complexity are the same as
earlier. The provided improvements are slightly larger than
for σG = 1 and SD= 10. There are two reasons behind this.
First, efficiency of noise suppression always improves if noise
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Table VII. PSNR results of denoising applied to images corrupted by ASCN (σG = 2) with SD = 15.

TID2013 TID2013 TID2013 TID2013 TID2013 TID2013 Grass USC-SIPI FR Test FR Test
#1 #3 #5 #7 #13 #23 #7 #1 #2

Noisy AWGN 24.627 24.626 24.652 24.626 24.646 24.635 24.749 24.643 24.698 24.653
BM3D AWGN 4.480 10.311 5.325 8.967 2.953 10.271 0.720 5.034 5.300 5.094
Noisy 24.608 24.607 24.634 24.608 24.620 24.617 24.731 24.617 24.686 24.625
DCTF 0.392 2.174 0.371 1.686 −0.257 2.238 −1.313 0.014 0.374 0.276
BM3D 0.716 2.485 0.946 2.129 −0.010 2.473 −1.011 0.577 0.951 0.806
NLM 1.037 4.942 1.379 3.526 −0.263 4.715 −3.586 0.487 1.372 1.147
SAIF 0.728 3.311 1.006 2.129 0.269 3.193 −0.602 0.125 1.338 1.253
LPG-PCA 0.502 4.227 0.562 2.829 −0.625 4.053 −2.296 0.318 0.601 0.390
K-SVD 0.935 4.618 1.048 3.200 0.174 4.592 −1.284 0.211 1.183 1.063
K-LLD 0.207 2.053 0.654 1.653 −0.186 2.209 −0.653 −0.095 0.598 0.535

SD increases. Second, FSIMmetric has a nonlinear behavior.
The results for the metricMSSSIM (see Table VI) are in good
agreement with data in Table V. Simple-structure images are
worth denoising while filtering highly textural images is still
of question.

Finally, let us consider data for σG = 2. A part of data is
presented in Tables VII and VIII. The following conclusions
can be drawn. Although noise SD values are the same as
considered earlier, it is obvious that the visual quality of
test images corrupted by ASCN is decreased significantly
according to PSNR-HVS-M. The filters NLM, K-SVD and
LPG-PCA provide the best results for simple-structure
and some miscellaneous images. At this time, the DCTF
and BM3D filters do not perform well enough even for
simple-structure images. This is because they do not take
into account peculiarities of ASCN in the spectral domain.
Practically for all texture and miscellaneous images there
is no real gain of visual quality due to filtering. The
visual quality metrics for noisy images are small and the
improvement is small too. Some peculiarities of NLM should
be stressed. It produces the best results for simple-structure
and miscellaneous images and simultaneously produces
sufficient distortions in highly textural images. LPG-PCA
shows the results similar to NLM. K-LLD technique fails to
perform well. The provided improvement of visual quality
by the considered filters is sufficiently lower for large-degree
ASCN than for AWGN case.

Summarizing the obtained results one can conclude
the following. It is obvious that spatial correlation degree
impacts negatively on visual quality of distorted images and
denoising efficiency of all filters. Similar to AWGN case [31],
filtering of textural images is themost problematic. Then any
denoising can be canceled. Formoderate ASCN, the nonlocal
techniques SAIF, BM3D, K-SVD can perform appropriately.
Spatial correlation degree σG = 1 is the borderline case in
which filters adaptation to SCN can be neglected. In case of
large degree of SCN the adaptation seems needed.

As we have seen, BM3D and DCTF can demonstrate
appropriate performance for moderate degree of spatial

Figure 4. BM3D performance under large degree of SCN expressed by
improvement of PSNR-HVS-M with noise SD = 15.

correlation of ASCN (σG ≤ 1). Let us analyze BM3D
performance for high degree of spatial correlation. In
Figure 4, denoising efficiency is shown for ten test images
and three degrees of spatial correlation. When spatial
correlation degree becomes larger (σG ≥ 1), improvement of
PSNR-HVS-M decreases (Fig. 4). Thus we can confidently
state that some adaptation of filters to noise characteristics
is needed.

4. ASCN-ADAPTEDDENOISING
As discussed in Section 2, SCN can be characterized by the
normalized block spectrum. The SCN represented in spectral
domain mostly occupies at low frequencies. This means that
noise energy concentrates in such components. Local filters
working in spectral domain are usually simple procedures
due to linearity of applied transformations. DCTF uses
the discrete cosine transform which is a simple procedure
performed as blockmatrix multiplication. Direct and inverse
transforms applied in blocks are:

B= T · S ·TT (5)

S= TT
·B ·T , (6)
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Table VIII. PSNR-HVS-M results of denoising applied to images corrupted by ASCN (σG = 2) with SD = 15.

TID2013 TID2013 TID2013 TID2013 TID2013 TID2013 Grass USC-SIPI FR Test FR Test
#1 #3 #5 #7 #13 #23 #7 #1 #2

Noisy AWGN 27.927 26.983 28.516 27.583 28.178 27.096 31.019 29.089 28.345 28.362
BM3D AWGN 1.904 7.209 2.456 5.323 0.947 6.724 −0.303 0.788 2.324 2.487
Noisy 20.056 19.787 20.261 19.938 20.153 19.828 21.158 20.299 20.228 20.166
DCTF 1.249 2.104 0.951 1.691 0.933 2.073 0.094 0.446 1.088 1.048
BM3D 1.688 2.396 1.507 2.126 1.278 2.311 0.272 0.901 1.563 1.481
NLM 2.732 5.403 2.388 3.894 2.172 4.992 −0.248 0.986 2.622 2.547
SAIF 1.449 3.367 1.418 2.146 1.185 3.153 0.276 0.267 1.891 1.868
LPG-PCA 2.369 4.659 1.942 3.313 1.843 4.295 0.375 1.153 2.105 2.071
K-SVD 2.456 5.199 2.141 3.695 1.845 4.996 0.195 0.933 2.469 2.421
K-LLD 1.009 1.928 1.209 1.613 0.839 1.987 0.074 0.238 1.315 1.230

where S is a block in spatial domain, B is a transformed
block (in 2D DCT domain), T is a transform matrix. Such
transform implementation decreases computational burden
and avoids iterative calculation of basis cosine functions for
each block in the image. Its computation can be accelerated
by parallel implementations on GPU or FPGA devices.
Blocks with size 8x8 pixels are taken on the entire image
with full overlapping [18]. The denoising by DCTF for each
transformed block is performed by hard thresholding [27]:

Boutkl =

{
Binkl←

∣∣Binkl ∣∣>β · σ ·Wkl

0←
∣∣Binkl ∣∣≤ β · σ ·Wkl ,

(7)

where Bin is an input transformed block by Eq. (5), Bout is an
output filtered block in transformdomain,β is a thresholding
parameter (the default value is 2.7), σ denotes the a priori
known standard deviation of the ASCN that is assumed
to be zero mean. The DCTF adaptation to noise spectrum
consists of the following. The spectrum components that do
not exceed the introduced frequency-dependent thresholds
determined by noise standard deviation, β and normalized
noise spectrumare assigned zero values. TheDCT coefficient
placed at k= 0 and l = 0 (DC component) that corresponds
to mean level of a block is not used in filtering. After local
block thresholding by Eq. (7), the inverse DCT is applied. To
get a final filtered value for image pixel that can be covered by
different partially overlapped blocks, the filtered values from
all these blocks are averaged. Such mechanism essentially
improves denoising efficiency compared to nonoverlapping
DCTF version. Themodified version ofDCTFwill be further
called MDCTF.

In sense of used image data, the DCTF has a small
computational cost and simple realization. BM3D filter
works in the same manner as DCTF taking into account
that denoising in a spectral domain is collaboratively applied
to the group of identified similar blocks. Due to this, the
first basic procedure (block matching) is essential for BM3D.
The SCN presence makes the search for similar blocks more

complicated [40]. Thus, a similarity measure between blocks
should be able to distinguish really similar blocks with
respect to their content despite of ASCN presence. Hence,
it is worth exploiting similarity measure that is robust to
nonuniform normalized noise spectrum. It is useful to have
such a measure because SCN correlation degree can vary
depending on the nature of acquired images. According to
the results given earlier [41] we propose to use the Canberra
distance:

DC=
∑
k,l

|Pkl −Bkl |
|Pkl | + |Bkl |

, (8)

where B and P are the reference and candidate blocks in the
transform domains for similarity search, DC is a similarity
measure value. This measure or distance is commonly used
in cluster analysis [42] where data vectors contain disparate
values of some object properties and is applied for grouping
and hierarchy design. Despite to the real weights of different
frequency components distorted by SCN, the Canberra
measure summarizes relational impact of similarity among
two corresponding values. This leads to practical robustness
of this distance to the spatial correlation degree of SCN.

After similar blocks are found, the second basic
procedure (namely, collaborative 3D filtering) is applied
to the grouped blocks. Similar to the standard DCTF, the
standard BM3D also uses a fixed (frequency-independent)
threshold that in SCN case leads to reduction of filtering
efficiency. Frequency-dependent thresholds for collaborative
denoising are set in a similar manner as for MDCTF [41].
First, after all potentially similar blocks are transformed,
similar blocks are grouped and represented in 3D combined
transformdomain. The separable 2DDCT transform and the
1DHaar transform in the similarity direction are applied and
represented as a 2D array using column-vector presentation
of each similar block. With respect to the size of obtained
block groups, local denoising procedure creates a similar
size 2D array where each column is the vectorized block of
frequency-dependent thresholds used in Eq. (7) for MDCTF.
The first row components that correspond to mean levels of

J. Imaging Sci. Technol. 060401-8 Nov.-Dec. 2018
IS&T International Symposium on Electronic Imaging 2019 Image Processing: Algorithms and Systems XVII



Rubel, Lukin and Egiazarian: Additive spatially correlated noise suppression by robust block matching and adaptive 3D filtering

(a) (b)

Figure 5. Denoising efficiency by improvements of (a) MSSSIM and (b) PSNR-HVS-M for (a) moderate ASCN (σG = 0.8, SD = 10) and (b) hard ASCN
(σG = 1.5, SD = 15).

grouped blocks are not used. After collaborative filtering is
performed, inverse 3D transform (first 1D Haar and then
2D DCT) have to be applied. The output filtered blocks are
collected together like MDCTF in a cumulative manner and
weighted with respect to the number of performed local
operationswith similar blocks. Thus,modifications of BM3D
filter relate to block matching based on Canberra measure
and adaptive thresholding.

5. COMPARATIVE ANALYSIS
For comparing the denoising efficiency of standard and
modified versions of DCTF and BM3D, ten test images
used in Section 2 are exploited in the same order. Figure 5
presents denoising results for two cases of ASCN—moderate
σG = 1 (Fig. 5(a)) and large degree σG = 1.5 (Fig. 5(b)).
For moderate case of ASCN it is apparent that performances
of the adaptive versions MDCTF and MBM3D are close to
the corresponding ones of standard filters. This confirms
that moderate-degree SCN can be suppressed well without
any modifications of the considered filters. On the contrary,
to attenuate large degree of ASCN, the filter adaptation is
required. The gain of both DCTF and MBM3D efficiency
can reach up to 4 dB according to PSNR-HVS-M for
simple-structure images and up to 2 dB even for textural
images (for instance, TID2013 #13) and other miscellaneous
images. For fully textural images like Grass or USC-SIPI #7
denoising is still useless.

Let us give examples of RS image fragment denoising
by all considered filters including two adapted techniques.
In Table IX, denoising examples of FR Test #1 image
fragment under ASCN (σG = 1.5, SD = 15) are shown.
In the noisy fragment, ‘‘grain’’-like structure of ASCN
and its high intensity can be observed. There are values
of visual quality metrics for filtered entire images given
under the corresponding image fragments. The DCTF
output shows low-frequency residuals and smoothed small-
sized features. There is no significant improvement for all
metrics. LPG-PCA output slightly differs from DCTF—
ASCN is suppressed better but all informative regions are
more blurred. NLM copes with noise in the same manner

demonstrating better results than for LPG-PCA. The K-LLD
technique attempts to preserve features in noisy data and
shows results similar to DCTF. SAIF as an iterative version of
NLM restores fine image details but has lower performance
according to PSNR-HVS-M, FSIM and MSSSIM metrics
due to worse noise suppression. Nonadapted BM3D cannot
handle large-degree ASCN better than the aforementioned
filters. The block matching procedure does not perform
correctly. As a result, collaborative denoising is applied
to distinct blocks. Besides, the fixed threshold does not
allow removing ASCN components concentrated at low
frequencies. K-SVD filter presents results comparable to
SAIF and NLM suppressing the SCNwith loss of fine details.
The modified version of DCTF effectively attenuates the
ASCN and preserves edges but introduces some artifacts
near features of interest. The MBM3D with both modified
blockmatching and 3D filtering demonstrates the best results
for the considered example according to all metrics. The
‘‘grain’’-structured noise is not practically visible and even
small features are preserved without introducing any blur.

The full dataset and executable code that is used in
experiments are available at https://github.com/asrubel/JIST
2019.

6. CONCLUSIONS
The presence of a spatially correlated noise impacts neg-
atively the visual quality of acquired images. The real-life
cases of SCN with different degrees of spatial correlation
are analyzed in the spectral domain. The normalized noise
block spectrum is proposed to characterize SCN which can
be easily generated. Obtained denoising results for standard
state-of-the-art techniques intended for AWGN suppression
applied to SCNshow that the use of such filters can be expedi-
ent only for a moderate degree of SCN and simple-structure
images. The SCN cases with larger correlation degree cannot
be handled by standard denoising techniques effectively. For
this reason, the following modifications of 2D DCT-based
filter and BM3D are proposed. First, frequency-dependent
thresholds are set for both filters according to a normalized
noise block spectrum. Second, Canberra distance robust
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Table IX. Examples (extracted fragments of test image FR Test #1) of denoising by
considered filters for hard ASCN case.

with respect to noise spectrum is used in a block matching
operation for BM3D. It is shown that the modified methods
demonstrate better denoising efficiency than the standard
filters even for large-degree SCN suppression.
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