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Abstract
Recently, privacy has a growing importance in several do-

mains, especially in street-view images. The conventional way to
achieve this is to automatically detect and blur sensitive informa-
tion from these images. However, the processing cost of blurring
increases with the ever growing resolution of images. We propose
a system that is cost-effective even after increasing the resolution
by a factor of 2.5. The new system utilizes depth data obtained
from LiDAR to significantly reduce the search space for detection,
thereby reducing the processing cost. Besides this, we test several
detectors after reducing the detection space and provide an alter-
native solution based on state-of-the-art deep learning detectors
to the existing HoG-SVM-Deep system that is faster and has a
higher performance.

Introduction
Several street-view services such as Google Street View,

Bing Maps Streetside, Mapillary have systematically collected
and hosted millions of images. However, the privacy of an indi-
vidual is vital and hence concealing this information is important
for privacy protection. Typically, this is achieved by detecting the
privacy-sensitive content and then blurring it. However, this be-
comes increasingly challenging with growing image resolution.
In a commercial setting, it is preferred to exploit ultra-high res-
olution images which are updated frequently. A higher resolu-
tion offers a clearer view of the important content and allows to
extract specific details, while the frequent updates provide better
tracking of possible changes. However, these benefits come with
higher production effort of images that incurs further processing
cost for privacy protection. In this research for street-view imag-
ing, since the commercial imaging vendor Cyclomedia transitions
from a 100-Megapixel (Mpix) to a 250-Mpix camera system with
LiDAR, we present a privacy protection solution, which offers
better performance and similar processing cost to the existing sys-
tem.

Currently, Cyclomedia offers 100-Mpix 360◦ panoramic im-
ages (cycloramas), which are taken at a driving interval of every
5 meters. The new system will have 250-Mpix cycloramas along
with LiDAR data acquired at the same capturing frequency. How-
ever, the current detection algorithm has a quadratic computation
cost that makes it infeasible for the processing of the 250-Mpix
images. The proposed system exploits the LiDAR to preprocess
the 250-Mpix cycloramas such that the search space is largely re-
duced for the detection algorithm. To account for the quadratic
cost of the current detector, we replace it with a Convolutional
Neural Network (CNN) detector that has a linear cost for com-
putation. We extensively test several detectors to reach the best

trade-off between speed and performance. Finally, the proposed
method achieves a higher detection performance and a computa-
tion cost similar to the 100-Mpix system.

Related Work
Various approaches are available for privacy protection in

street-view images. The typical way to achieve this is to detect
and blur objects in images. One of the first approach for pri-
vacy protection explores a two-stage detector [1]. The first stage
comprises of two detectors running in parallel, one with high re-
call and another with high precision. This is followed by a post-
processing step that converts the output regions in the bounding
box to a feature vector that is passed to a neural network. If the
output from the neural network exceeds a certain threshold, then
it is blurred. Apart from detection and blurring methods, there are
only a few approaches that simultaneously detect, remove and in-
paint pedestrians [2, 3]. However, inpainting based on the context
leads to inaccurate content and is not preferred for commercial
applications.

With the advances in deep learning, object detection has im-
proved significantly. Object detection provides a reliable way
to localize and detect objects of interest. Several deep learning-
based object detection algorithms are available with trade-offs be-
tween speed and performance. They are built on top of CNN ar-
chitectures such as ResNet and its variants [4, 5]. Each of the
CNN architectures has a meta-architecture on top that completes
the object detection framework. Popular meta-architectures in-
clude Faster-RCNN, Region-based Fully Convolutional Network
(RFCN) and Single Shot Multi-box detector (SSD) [6, 7, 8]. Both
Faster-RCNN and RFCN are two-stage detectors. Faster-RCNN
has a region proposal network (RPN) that utilizes predefined an-
chor boxes which are later refined, whereas RFCN has a position-
sensitive RoI pooling that encodes class-specific positional infor-
mation into specific feature maps. SSD is a single-stage detector
that directly predicts a bounding box and its score at each spa-
tial position using a small convolution layer. Compared to both
Faster-RCNN and RFCN, SSD is faster due to its single-stage
approach. However, the two-stage networks offer better perfor-
mance. In this research, we compare the performance of these
meta-architectures on top of different CNN architectures, in order
to find a detector that is suited to replace the existing face and
license plate detectors.

Nowadays, LiDAR-based system are becoming more preva-
lent in the autonomous driving industry. RGB-D-based object
detection has been explored in [9, 10]. However, to the best of
our knowledge, this is the first work that utilizes depth obtained
from LiDAR to reduce the search space of a detection algorithm.
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Figure 1. Overview of the new detection system. The input RGB-D image is converted to a point cloud and the planes are extracted using RANSAC. The found

horizontal planes are combined and are reprojected to an image plane. The red region indicates the removed areas of the ego-vehicle, the yellow region shows

the extracted ground planes and the green region depicts the buffer added to the top boundary of the extracted planes (bottom-right image). The extracted areas

(green and yellow regions) are processed by the object detector.

Plane fitting in point clouds using Random Sample Consensus
(RANSAC) is well studied and several improvements have been
proposed [11]. In this research, we utilize depth data obtained
from LiDAR to create a point cloud which is later used to esti-
mate planes. The estimated planes are further applied to reduce
the search space in the cycloramas.

Overview of Architecture
The final objective of the ideal 250-Mpix system is to have a

processing cost (on the cloud) similar to that of the current 100-
Mpix system. The current system is deployed on CPU, whereas
the proposed system utilizes the GPU architecture. To provide a
fair comparison, we compare the processing time with a specific
constraint. The constraint is that cost of processing on the GPU
is 6 times more expensive than the CPU. Hence, the new system
should process a single image in one-sixth of the current system’s
processing time. The emphasis is on achieving high recall since
privacy protection is crucial. False positives that may lower the
precision can be manually removed.

Camera system and dataset
Currently, the cycloramas (360◦ panoramas) are captured at

the 100-Mpix resolution. They are processed by the current de-
tection system on CPUs in the cloud. The new camera system
captures 250-Mpix cycloramas along with the LiDAR data. The
LiDAR data is processed to produce a depth map corresponding
to every pixel in the RGB image. The dataset consist of approx-
imately 3000 cycloramas with 50,000 objects (faces and license
plates). The images are taken from various parts of the Nether-
lands, United States and Germany. The dataset is divided in the
ratio of 70:30 for training and test sets.

Current detection system
The current system at Cyclomedia is composed of an ensem-

ble of eight cascaded HoG-SVM detectors. Five of the detectors
are trained to detect faces, whereas three of them are used for the
detection of license plates. Each of them is a HoG feature-based
SVM object detector that is stacked three times forming a cas-
cade, followed by a CNN classifier that is used to remove false
positives. The detectors try to achieve a high recall at the cost
of higher false positives. Each detector is also trained with hard
negative mining to reduce false positives. The detectors follow
a multi-scale approach for training and inference. Each image is
processed over 50 scales to maximize the recall. For simplicity,
we refer to this complex pipeline as HoG-SVM-Deep. The disad-
vantage of this system is that with growing resolution, the number
of scales that needs to be scanned for the objects of interest also
increases. Empirically, we have found that the cost of process-
ing increases approximately by 6.5 times in the transition from
100-Mpix to the 250-Mpix system.

Proposed detection system
The proposed system is composed of two parts, a pre-

processing step to reduce the search space for the detection al-
gorithm, and a deep learning detector step which offers a good
trade-off between speed and performance. An overview of the
proposed system is shown in Figure 1. A cyclorama may con-
tain objects of interest at different parts of an image. However,
some regions such as sky or the area covered by the ego-vehicle
do not inherently contain any objects. In the current system, these
regions are removed prior to the detection and only 66% of a cy-
clorama is processed by the detector. However, the regions where
the object of interest is present are dependent on the ground plane.
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Figure 2. Precision recall curves for different detectors for face and license plate detectors.

We expect objects such as faces and license plates to be present
at most two meters above the ground level. We utilize the depth
maps (calibrated and corrected) from the LIDAR scanners to esti-
mate the ground planes. We first project the depth map to a point
cloud, then fit the planes using RANSAC.

Projecting a 250-Mpix image to a point cloud and fitting
planes are computationally expensive operations. Therefore, the
RGB-D image is downsampled prior to projecting to a point
cloud. The image is downsampled by a factor of 10 in both x−
and y− directions. The planar segmentation results in vertical and
horizontal planes. We filter out the vertical planes and retain the
horizontal planes, as they may contain people or vehicles. The
horizontal surfaces are reprojected into the image plane, to obtain
a mask that possibly contains the objects of interest. We select
a rectangular region around the boundaries of the mask, with the
region size at about one-third of the cyclorama height.

The region obtained from the mask has high resolution that
cannot be directly processed by a CNN. Therefore, it is converted
into patches of 1200 × 600 pixels which is later supplied to the
detection algorithm. Due to the dynamic nature of the ground
planar segmentation, there is a significant reduction in the area
for object detection. We have found that on average only 31% of
the cyclorama needs to be processed by the detection algorithm.
This is less than one half of the manually estimated processing
area in the current detection system.

Experiments and Results
We have experimented with several deep learning detectors

and compared them with the currently deployed existing HoG-
SVM-Deep system. We have tested deep learning detectors with
three meta-architectures, namely SSD, RFCN, and Faster-RCNN
(abbreviated as FRCNN in the table) with Inception v2, ResNet-
101 and Inception ResNet v2, as the backbone architecture. We
train on the above-mentioned dataset with a model pretrained on
the COCO dataset. We train each network for 200,000 iterations

Table 1: Time vs. Performance of 100-Mpix and 250-Mpix cam-
era systems on face and license plate detectors.

Detector Time (sec) Max Recall
current new Face L.P.

SSD Inception v2 16.50 16.98 44.8 67.8
FRCNN Inception v2 21.15 21.54 79.6 89.0
RFCN ResNet-101 44.64 45.94 86.9 94.1

FRCNN ResNet-101 86.54 89.06 82.6 92.4
FRCNN In. ResNet v2 378.68 389.62 88.7 95.3

HoG-SVM-Deep 215 879.12 57.8 75.2

with a batch size of 4 for all networks except SSD Inception v2.
The SSD Inception v2 network uses a batch size of 24 with a
learning rate of 1−05. The learning rates for the rest of the net-
works are set to 1−06. The computational costs of the different
detectors are presented in Table 1. Note that the reported times
are GPU execution times for the deep learning-based detectors,
whereas the HoG-SVM-Deep detector uses a CPU. The HoG-
SVM-Deep system is executed on the CPU as it is cheaper to
process on the cloud services, whereas the deep learning-based
detectors are more efficiently processed on the GPU. HoG-SVM-
Deep is executed on a Xeon E5-2673 v3 CPU, whereas the rest of
the detectors are executed on a Tesla K80 GPU.

The plane extraction is performed using RANSAC. Three
points are selected and the corresponding parameters are com-
puted. Depending on the given threshold, the outliers are removed
and a plane is fitted. This procedure is repeated until a plane with
a maximum number of points is obtained. Once a plane is esti-
mated, the points corresponding to that plane are removed and a
new plane is computed. This process is repeated until the top-10
planes are found. Usually, the largest plane is the ground plane.
However, we combine the largest 10 planes in the output image af-
ter reprojection of the point cloud, to maximize the area of ground
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Figure 3. Outputs from plane extraction algorithm. The red and the dark regions of the image are not processed. The bands of yellow and green area is

processed by the detector.

surface. We have tuned the RANSAC-based plane fitting to our
dataset. In our experiments, we have found that setting the dis-
tance threshold (distance at which a point is considered as an in-
lier for the model) to 0.5 meters results in the best estimation of
planes. After the planes are estimated and reprojected to the im-
age plane, we add a small buffer of 350 pixels (green region in
Figure 3) to the top boundary of the extracted plane (yellow re-
gion in Figure 3) on the reprojected image. We have observed
that such a small buffer is needed to account for people standing
on the ground farther away from the image. It was empirically
found that adding 350 pixels can account for all the objects of
interest present in our dataset.

After the planar segmentation and subsequent patching, each
patch of 1200 × 600 pixels is fed to the detector. The detector per-
formance on our dataset is presented in Figure 2 and Table 1. All
the networks except SSD Inception v2, offer better performance
than HoG-SVM-Deep for both face and license plate detection.
Only Faster-RCNN with Inception ResNet v2 has higher compu-
tation cost than HoG-SVM-Deep, but offers significantly higher
performance. Comparing the execution times of the current and
new system of all the detectors, it can be seen that they yield very
similar computation time. This is due to the search-space reduc-
tion achieved using depth data on the new camera system. The
processing cost of executing the current system on the CPU is
215 seconds. Following the constraint mentioned in the previous
section, we need a system that utilizes one-sixth of the current
system ( 36 seconds). From Table 1, only Faster-RCNN with In-
ception v2 satisfies that requirement. However, it offers much
higher performance than the current system. On the other hand,
RFCN with ResNet-101 have higher performance at the expense
of 28% longer processing time. Both options form feasible solu-
tions for the existing system.

Limitations
We have utilized the RANSAC plane extraction algorithm,

as it is effective and fast. However, this may be challenging in lo-
cations where the surfaces are not flat. The underlying assumption
that objects such as faces can be found only on the ground plane
have exceptions in scenarios where people are present on top of
a building. We found that such cases occur once in every 50,000
images. In such scenarios, the objects are manually blurred.

Conclusion
We have presented a framework that is an alternative to

the existing system used at Cyclomedia for privacy protection in
street-view images. The current system utilizes HoG-SVM-Deep
to process a 100-Mpix image. We propose a new detection sys-

tem for the 250-Mpix images that utilizes the depth data obtained
from LiDAR to reduce the search space. The reduction results in
processing only 31% of the 250-Mpix cyclorama. We obtain de-
tectors that are suited for our problem, namely Faster-RCNN with
Inception ResNet v2 and RFCN with ResNet-101. Both of these
detectors offer a higher recall than the existing system for detect-
ing both face and license plates, providing 37-50% and 18-25%
improvement in recall on face and license plate detection. On the
other hand, the proposed system using the new detectors results
in processing costs that are comparable to the existing 100-Mpix
camera system.
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