
Modeling lens optics and rendering virtual views from fisheye
imagery

Filipe Gama, Mihail Georgiev, Atanas Gotchev
Tampere University, Tampere, Finland

Abstract
Production of high-quality virtual reality content from real

sensed data is a challenging task due to several factors such as
calibration of multiple cameras and rendering of virtual views. In
this paper, we present a pipeline that maximizes the performance
of virtual view rendering from an imagery captured by a camera
equipped with fisheye lens optics. While such optics offer a wide
field-of-view, it also introduces specific distortions. These have to
be taken into account while rendering virtual views for a target
application (e.g., head-mounted displays). We integrate a generic
camera model into a fast rendering pipeline where we can tune
intrinsic and extrinsic camera parameters along with resolution
to meet the device or user requirements. We specifically target
CPU-based implementation and quality in par with GPU-based
rendering approaches. Using the adopted generic camera model,
we numerically tabulate the required backward projection map-
ping and store it in a look-up table. This approach offers a trade-
off between memory and computational complexity in terms of
operations for calculating the mapping values. Finally, we com-
plement our method with an interpolator, which handles occlu-
sions efficiently. Experimental results demonstrate the viability,
robustness and accuracy of the proposed pipeline.

Introduction
In recent years, Virtual Reality (VR) has attracted the at-

tention of the general public and scientific community due to its
ability to deliver immersive and interactive experiences like never
before. Nowadays, VR content may be experienced in many ar-
eas, including entertainment, healthcare, engineering, education,
military training, flight simulation and therapy. What makes VR
unique is that the user has the feeling of “presence” inside the
content. Thus, VR is often characterized based on the number of
Degrees-of-Freedom (DoF) provided to the final user, which are
typically 6-DoF or 3-DoF. In 6-DoF VR experience, the user has
the possibility to move freely in a virtual space volume [1, 2, 3].
In this case, 3-DoF corresponds to the rotational motion of the
user and the other 3-DoF to the translational motion. In simi-
lar fashion, 3-DoF VR expirience refers to rotational motion in
which the user can only look around from the same viewpoint
(a.k.a. omnidirectional VR system) [4]. On top of that, there
are other factors that are equally important when it comes to de-
liver immersive experiences. One of them is deeply connected
to human visual system [5]. In short, VR requires display sys-
tems (e.g., head-mounted display) that can provide realistic depth
cues, spatial resolution, and field-of-view to meet human’s eye
sensitiveness and resolution power. Moreover, the overall display
system should also be responsive to accommodate human’s head

or body motion. Another key factor in VR concerns the captur-
ing setup or content production. VR content can either be fully
computer-generated (explicit geometry), image-based (no geome-
try) or a mixture of these two (implicit geometry). In image-based
capturing systems [6], the output VR content is often represented
in the form of panoramas, concentric mosaics, or light fields and
variants of these. This paper aims at studying conventional VR
systems intended to capture real scenes through multiple cameras
with wide-angle lenses (a.k.a. fisheye lenses) in order to serve any
of these formats.

The conventional way of capturing a surrounding panorama
for VR applications is either by rotating a camera around a sin-
gle point [4, 6] or by using a 360-degree camera rig, like in [7].
To reduce the amount of cameras, capture non-static scenes, and
in many cases achieve real-time performance, the scene can be
captured through cameras with wide Field-of-View (FoV), i.e.,
cameras with wide-angle lenses. However, such solution has two
main drawbacks. Firstly, wide-angle lenses impose significant
optical aberrations. In this paper we consider only image dis-
tortions, which are taken into account digitally, after image ac-
quisition. Secondly, cameras with wide-angle lenses impose a
trade-off between angle-of-view and sensor resolution. The scene
information gathered by a camera with wide-angle lens tends to be
squeezed near the edges of the respective fisheye image. In other
words, fisheye images are the result of a non-uniform sampling
of the captured content so that it can fit in a reasonable camera
sensor size.

In terms of distortions, typically, only two components
are considered: radial and tangential or decentering distortions.
However, since the predominant distortion component of fisheye
lenses is radial distortion, and due to the manufacturing quality
of today’s cameras, tangential distortion is often omitted in the
literature. Nevertheless, modulation and compensation for these
distortions are taken into account in the so-called camera model.
It is upon this integration that most methods of the literature di-
verge because the camera model can be interpreted from different
perspectives. One option is to use the pinhole model as a base
to project a 3D point onto the image plane, and then apply a non-
linear distortion function in order to obtain the respective distorted
point [8, 9, 10]. Another way of tackling the problem is to con-
sider captured rays that impinge the lens. A relation is established
between the incident rays direction defined from a 3D point to the
optical center of the lens, and the distance between the projected
point and the principal point [11]. Both cases stated above start
by defining the forward projection function, i.e. how a 3D point
is mapped onto the camera sensor. However, one can also define
the camera model by starting from the camera sensor side. In this

IS&T International Symposium on Electronic Imaging 2019
Image Processing: Algorithms and Systems XVII 279-1

https://doi.org/10.2352/ISSN.2470-1173.2019.11.IPAS-279
© 2019, Society for Imaging Science and Technology

case, the camera model starts by defining the backward projec-
tion function [12]. Pinhole-based approaches work up to a certain
FoV, whereas in ray-based approaches this constraint may not ex-
ist. This particular observation is taken into account in this paper
since we consider wide-angle lenses that can reach a FoV value
greater than π rad.

In terms of visualization of captured VR content, many ap-
plications require (semi-)undistorted images. For instance, in
Head-Mounted Displays (HMDs) or virtual reality headsets, the
light passing through the device’s lenses gets distorted and this
has to be considered when displaying images [13]. In the conven-
tional VR rendering pipeline from fisheye images, the images are
first projected and stitched onto an unwrapped 3D surface (e.g.,
sphere, cylinder, cube). This unwarpped surface (or 2D plane),
referred to as panorama, is then used as a texture map, a tech-
nique widely used in computer graphics to render images around
a 3D object. Despite the functionality of this pipeline, there are
few drawbacks. Firstly, this pipeline requires backward projection
of the fisheye image data, which can be problematic when deal-
ing with non-linear functions [12]. Secondly, this is an extensive
pipeline that requires heavy computational resources. However, it
cases which do not explicitly require a panorama, it can be sim-
plified. Thus, another goal of this paper is to demonstrate how a
generic camera model can be applied efficiently to render desired
views in this context.

This paper is organized as follows: Section 2 introduces the
chosen fisheye camera model and justifies the use of a ray-based
model instead of a pinhole-based model. In Section 3 and 4, we
describe the procedure to simulate fisheye cameras and render an
arbitrary virtual view from it. Then, in Section 5, we present our
experiments and results. Finally, conclusions are given in Section
6.

Fisheye camera model
Cameras equipped with fisheye lenses can cover a large FoV.

In some cases, this type of lenses may achieve FoV values greater
than π rad, introducing severe image distortions namely radial
distortions. In the literature, most camera models are not ready
to handle such wide angles. Thus, the aim of this section is to
describe and stretch the importance of working with a generic
ray-based model to model any lens type, from wide to ultra-wide
angles.

The fisheye model considered in this paper is based on a ra-
dially symmetric ray-based model [11] with a small modification
in the distortion coefficients value. The model takes into account
the directionality of captured rays, expressed through a relation
between the incident angle and the fisheye image radius. For the
sake of simplicity, we illustrate the projection of a 3D world point
P in camera coordinates onto a 2D image point p in Figure 1. For
instance, in pinhole camera model, the distance r in pixels be-
tween an image point p’ and the principal point O increases with
the angle θ of the incoming ray:

r(θ) = f tan(θ) , (1)

where f is the focal length. This projection is valid for θ ∈
[0,π/2) rad. When θ approaches π/2 rad, a projected 3D point is
infinitely far from the principal point (r→ ∞). Therefore, fisheye
lenses require more sophisticated models that are either classified

as pinhole-based models or ray-based models.
Pinhole-based models are widely used in calibration of fisheye

𝑍𝑐

Xc

Yc

𝐏 = 𝑋𝑐 , 𝑌𝑐 , 𝑍𝑐
T

𝐩’
𝐩

𝑟
𝜑

𝜃

𝑥

𝑦

𝑓

Image plane

𝑢

𝑣

𝐶

𝑂

Figure 1. Projection of a 3D point P onto a 2D image point p (polynomial

model) and p’ (pinhole model). The incident angle θ is defined between

the optical axis and the incoming ray, and ϕ is given by the x-axis and the

distance r. C is the camera optical centre, O represents the principal point,

f is the focal length, and r is the distance between the principal point and a

projected point.

lenses with radial symmetry [9, 10]. In this group of models, a
3D world point is first projected onto the image plane using pin-
hole model. Then, the projected point is transformed according to
some distortion function [4]. In the literature, one can find differ-
ent functions to accomplish this task but essentially, their goal re-
mains the same: minimize the amount of parameters required by
the model (a.k.a. projection parameters, calibration parameters
or distortion coefficients) and be effective against strong radial
distortions. Since these models are built on top of pinhole model,
they are limited in terms of projected rays with high incident angle
(θ) values. On the other hand, ray-based models are more general
and less limited. The idea is to cast the ray and establish a map-
ping function (or forward projection function) that relates θ with
distance r. Like in the previous case, there are different models
including equirectangular, equisolid angle, orthogonal, equidis-
tance, and others [11, 12]. Equirectangular, equisolid angle, or-
thogonal and equidistance models use trigonometrical functions
or simple functions with almost no parameters. Therefore, they
are suitable for cameras with limited distortions and limited FoV.
Alternatively, polynomial functions proposed in [11, 12] are able
to address strong distortions and model any kind of lens. Polyno-
mial functions used for radial distortions have been tested along
with other methods mentioned above. Some authors have shown
that this particular type of functions are more effective against
strong distortions [14, 15]. In [11], the authors use a polynomial
function to map the rays onto the camera sensor. The same con-
cept is used in [12] but in inverse order i.e., mapping from camera
sensor to ray.

In our paper, we consider a generic model, similar to [11]:

r(θ) = f (m0θ +m1θ
3 +m2θ

5 + ...+mnθ
2n+1) , (2)

where {m0,m1, ...,mn} are the projection parameters or distortion
coefficients and n ∈ Z≥0. In this polynomial function and unlike
in [11], we assume m0 = 1 to distinguish focal length from dis-
tortion coefficients, which is convenient for calibration purposes.

279-2
IS&T International Symposium on Electronic Imaging 2019

Image Processing: Algorithms and Systems XVII

This assumption has a marginally positive impact in terms of ac-
curacy compared to the original one as shown in Section 5. In
general, the accuracy of this model increases with the number of
parameters. The authors in [11] suggest that a ninth order poly-
nomial provides sufficient DoF to approximate a variety of ray-
based models. The mapping of the incoming ray to the Cartesian
coordinates (x,y)T is defined as:[

x
y

]
= r(θ)

[
cos(ϕ)
sin(ϕ)

]
, (3)

where θ and ϕ are the angles related to the direction of the incom-
ing ray (Figure 1). In terms of Cartesian coordinates, both angles
can be expressed by:

θ = arccos

(
Zc√

X2
c +Y 2

c +Z2
c

)
, (4)

and

ϕ =

arcsin

(
Yc√

X2
c +Y 2

c

)
= arccos

(
Xc√

X2
c +Y 2

c

)

0←
√

X2
c +Y 2

c = 0

. (5)

In some works across the literature and available calibration soft-
ware such as OpenCV, θ is expressed using tangent function. This
may limit the model or add an extra degree of complexity because
one must choose the correct quadrant of the Euclidean plane to
obtain the correct θ value. Therefore, we ensure, by using Equa-
tion (4), that θ ∈ [0,π] rad. Finally, the pixel coordinates (u,v)T

are obtained as follows[
u
v

]
=

[
x
y

]
+

[
Ox
Oy

]
, (6)

with (Ox,Oy)
T being the coordinates of the principal point. This

model assumes radial symmetry but in practice real lenses may
deviate from it due to flaws in the optical elements. Therefore,
Equation (3) can be complemented with asymmetric radial and
tangential distortion components in a generic form as explained
in [11] or by adapting other models like the classical Brown-
Conrady model [16].

From the point of view of practical applications such as cal-
ibration, a camera model must describe both forward and back-
ward projections. A high order polynomial model is effective
against high radial distortions however, there is no analytic for-
mula to compute its inverse. This is considered its main drawback
compared to other projection functions mentioned above. Never-
theless, the backward projection may be computed through nu-
merical methods [12], complex mapping functions [11], or Look-
Up Table (LUT) for more accurate results. The third option is
more convenient for the purposes of our fisheye lens simulator
described in the next section. The role of LUT is to store an-
gular information about the forward projection function, specif-
ically r(θ), cos(ϕ) and sin(ϕ) information. In the same fash-
ion, we could in principle store additional information regarding
asymmetric distortions. Thanks to LUTs, one can easily convert
projected points into ray information no matter the complexity of
our forward projection function. This approach offers a trade-off
between memory and computational complexity in terms of oper-
ations required to compute the mapped values.

Fisheye camera simulation
In the previous section, we discussed the advantages of uti-

lizing a generic ray-based model over a pinhole-based model. The
aim of this section is to describe a fisheye camera simulator be-
cause single dataset images are often not enough to validate or
compare different camera models, or even evaluate our virtual
view rendering approach described in the next section. In the pro-
posed simulator pipeline, the main goal is to import any camera
setup (e.g., 360-degree camera rig) and then, for each camera po-
sition, simulate the fisheye effect according to a certain camera
model.

For the simulation of fisheye images, we make use of a third-
party rendering software (e.g., Blender) to extract color and re-
spective depth (Z-buffer) information. This information is suffi-
cient to characterize any point in 3D space, its location and re-
spective color. The full pipeline of the developed simulator is
depicted in Figure 2. The first stage is dedicated to import in-
formation about the capturing system into the rendering software.
This includes orientation and location of each individual camera
in space. Then, for each camera, densely overlapped perspective
views are rendered (e.g., 9 perspective images) by purely rotating
the camera around its optical center. The result is shown in Fig-
ure 2-b). The goal of this stage is to gather information around the
camera within a 360-degree FoV. In conventional rendering sys-
tems, each rendered pixel takes into account the same amount of
rays. In other words, there is an uniform distribution of rays per
pixel across the rendered image. In our pipeline this is not pos-
sible. Thus, we render a set of very high-resolution perspective
images from the rendering software in order to ensure that in the
worst case scenario a rendered pixel is generated from a signifi-
cant set of rays to avoid resampling problems. These perspective
views follow Equation (1) and therefore, one can easily compute
the exact backward projection without any ambiguity. Finally, by
applying a desired camera model over the 3D information (i.e.,
point cloud or mesh data in world space), the fisheye image is
rendered using an optimized version of surface-fit algorithm [17].
The surface-fit algorithm is very similar to the process of raster-
isation used in computer graphics. It is efficient and it operates
at a high-computational speed. The method is notably local and
requires only a small amount of memory (values of three vertices
for each resampling position). The locality enables non-clashing
memory handling and therefore, it can take advantage of paral-
lelization.

Along with the rendered fisheye image, we store the gener-
ating angles θ and ϕ in a LUT. This angular information is then
utilized in the rendering process of virtual views as explained in
the next section.

Rendering virtual views
In Section 2, the proposed forward ray-base model is in the-

ory efficient against high radial distortions and it is able to project
rays from a wide FoV. However, the backward projection is given
through LUTs containing all necessary angular information rather
than via an approximated inverse function like in [11, 12]. In this
section, we explore the advantages of using these LUTs to render
new virtual views and we also propose an alternative real-time
rendering pipeline.

Conventional rendering pipelines utilize the backward pro-
jection function to render new virtual views from fisheye imagery

IS&T International Symposium on Electronic Imaging 2019
Image Processing: Algorithms and Systems XVII 279-3

A
B

C

D

E
F

G

ܼ

ܺ

ܻ
H

Centroid

RGB Depth

Camera
data

 RGB + Z info.

 3D info.
(point cloud / mesh)

Figure 2. Fisheye camera simulator pipeline. a) Stage 1: information

about each camera {A, B, C, ..., H} in the camera rig; b) Stage 2: rendered

perspective images (RGB + Z) using a third-party software; c) Stage 3: 3D

structure of the scene represented as a mesh; d) Stage 4: Rendered fisheye

image.

e.g., render panorama images. As mentioned in previous sections,
the problem arises when the backward projection cannot be ob-
tained analytically, which is the case of high-order polynomial
functions. The use of numerical algorithms to compute its in-
verse results in two main problems. Firstly, it is an approximation
which may have influence in the quality of the rendered virtual
view. This error may be rather small if we fit a high-order polyno-
mial function over the roots of the polynomial used in the forward
projection. On the other hand, the error may be also significant
if we try to fit a low-order polynomial function. Secondly, this
is a computationally expensive operation because it must be per-
formed on every single pixel of the fisheye image. This problem is
mentioned but only partially discussed by the authors in [11, 12].
The authors in [12] developed a fast backward projection function
by sacrificing its accuracy. Despite its significant speed-up, it is
still far from real-time performance.

In 3DoF VR experiences, the panorama can be pre-computed
using any of these offline methods mentioned above. Once the
fisheye image is projected onto the panorama image then, virtual
views can be rendered from it in real-time. This is a two-step
approach that requires resampling the data two times and there-
fore, it can also lead to some artifacts in the final virtual view.
In this paper, we are interested in analyzing a standard render-
ing pipeline where the virtual images are rendered directly from
fisheye imagery.

The standard rendering pipeline starts by computing the
backward projection mapping (compute the ray information for
each pixel) or by utilizing LUTs to speed-up the process and
achieve better accuracy. Then, the rays are forward projected onto
the new virtual image grid. This gives origin to a non-uniform to
uniform image resampling problem which is a challenging task
and computationally expensive [18]. Instead of this procedure,
we propose the rendering scheme illustrated in Figure 3.

Our proposal starts by defining the desired camera model of
the new virtual camera (e.g., pinhole model). Then, for each pixel

𝐼𝑛𝑝𝑢𝑡 𝑐𝑎𝑚𝑒𝑟𝑎
(𝑓𝑖𝑠ℎ𝑒𝑦𝑒 𝑐𝑎𝑚𝑒𝑟𝑎)

𝑇𝑎𝑟𝑔𝑒𝑡 𝑐𝑎𝑚𝑒𝑟𝑎
(𝑒. 𝑔. 𝑝𝑖𝑛ℎ𝑜𝑙𝑒 𝑐𝑎𝑚𝑒𝑟𝑎)
𝑟𝑝 𝜃 = 𝑓 tan(𝜃)

a)

Uniform grid distribution
Non − uniform distribution

b)

c) e)d) f)

Figure 3. Proposed rendering pipeline. a) and b) represent the input and

output cameras, respectively. c) - f) are the four main steps used in the

proposed rendering pipeline: c) target camera with respective ray information

per pixel; d) forward projection of the rays onto the input camera; e) uniform

to non-uniform image resampling; f) rendered image in the target camera.

in the new virtual camera we compute the ray information. Since
we know the direct inverse of the pinhole model (i.e., extraction
of θ in Equation (1)) and the forward projection mapping of the
fisheye camera, we can then forward project the data onto the fish-
eye image grid. The new virtual camera could also follow any
other model as long as the forward and backward projection are
known. The final step is to resample the data, a uniform to non-
uniform image resampling problem using cubic or spline inter-
polation. Unlike in the standard pipeline, this rendering scheme
requires less computational resources and therefore it can be im-
plemented on CPU and still achieve real-time performance.

In sum, it is important to emphasize two factors in this sec-
tion. First, LUTs can be used to speed-up the conversion of image
points to rays and vice-versa when the model is rather complex.
Second, the proposed pipeline avoids a non-uniform to uniform
resampling problem and therefore, requires less computational re-
sources while bringing better image quality as demonstrated next.

Experimental results
In this section, we present and discuss our experimental re-

sults including a comparison between the used ray-based model
and other models from the literature, the performance of our ren-
dering pipeline against the conventional rendering pipeline, and
different output results that can be obtained with our virtual view
rendering software.

The first set of experiments shown in Figure 4 compares the
standard rendering pipeline with the proposed one. In terms of
performance, the proposed pipeline was hundred times faster un-
der the same test conditions. For instance, from a fisheye image
with a 4k resolution and 195-degree FoV, a new virtual pinhole
camera with 2K resolution and 90-degree FoV was rendered 150
times faster using the proposed pipeline. In terms of image qual-
ity, we also compared both rendered images using Peak Signal-
to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM)
quality metrics as mentioned in the caption of Figure 4. This
comparison was only possible to perform because we could ac-
cess the 3D data structure of the scene, the same data used to
generate fisheye images. The results show a significant improve-
ment when our pipeline is used. As mentioned in the previous

279-4
IS&T International Symposium on Electronic Imaging 2019

Image Processing: Algorithms and Systems XVII

Figure 4. Visual comparison between different rendering pipelines. Indices 1 and 2 correspond to the first and second scenes. a): input fisheye image with

195◦ FoV for the first scene and 150◦ FoV for the second scene; b): ground-truth images with 90◦ FoV; c1) standard rendering pipeline output with a PSNR-Y of

32,52 [dB] and SSIM of 0,92; d1) proposed rendering pipeline output with a PSNR-Y of 35,00 [dB] and SSIM of 0,93; c2) standard rendering pipeline output with

a PSNR-Y of 28,46 [dB] and SSIM of 0,75; d2) proposed rendering pipeline output with a PSNR-Y of 30,50 [dB] and SSIM of 0,77.

section, conventional rendering pipelines face the process of non-
uniform to uniform resampling which may also be limited due
to the non-uniform distribution of the pixels information across
the fisheye image. The information is denser around the fisheye
image borders than in the center. In both pipelines, the output
quality of the rendered virtual view is affected by the process of
resampling. As shown in Figure 4, this process affects mostly the
high frequencies of the signal and as a result, the output images
have less details. For this particular experiment, our rendering
pipeline outperformed the standard rendering pipeline in terms of
computational speed and output image quality.

In our second experiment we have tested the model used in
this paper against two other generic ray-based models that are
widely used in calibration of fisheye lenses [11, 12]. For a direct
comparison with the model described in [12], it was necessary to
establish a connection between their backward projection and the
incident angle θ used in our formulation. This relation is given
by the the following equation:

θ(r) =
π

2
− arctan

(
f (r)

r

)
, (7)

where f (r) = m0 + m2r2 + ...+ mnrn, {m0,m1 = 0,m2, ...,mn}
are the distortion coefficients, r =

√
u2 + v2 is the distance in pix-

els from the principal point to the projected point, and n ∈ Z≥0.
Regarding the model described in [11], the forward projection
model is given by Equation 2. Figure 5 shows the Mean Squared
Error (MSE) for each model, i.e., the distance between four de-
sired curves (pinhole, stereographic, equidistance, and equisolid
angle projections), and the fitted ones, i.e., the proposed ray-based
model and the two other generic ray-based models [11, 12]. For a
fair comparison we have equalized the order of all polynomial
functions used in these ray-based models. For instance, for a
ninth order polynomial, the model in [12] requires about twice
more calibration parameters than the model in [11]. Based on
this experiment we can verify that there is no significant differ-
ence between the original ray-based model [11] and ours when

a)

c)

b)

d)

Figure 5. Mean squared error to approximate: a) pinhole projection,

θ ∈ [10,85]◦; b) stereographic projection, θ ∈ [10,110]◦; c) equidistance pro-

jection, θ ∈ [10,110]◦; d) equisolid angle projection, θ ∈ [10,110]◦.

m0 = 1. The original ray-based model in [12], that uses a fourth
order polynomial, is also comparable with its own version using
either a fifth or ninth order polynomial. From the calibration point
of view, increasing the polynomial order to compensate from dis-
tortions may not justify the complexity required in the calibration
process. Overall, for the same polynomial order, the ray-based
model [11] outperforms the model [12] and, as expected, it also
shows slightly better performance when m0 = 1.

The last set of experiments shown in Figure 6 illustrates
some of the properties of our rendering pipeline where one can
change the output camera model or any intrinsic or extrinsic cam-
era parameter online. For instance, one can change the target cam-
era model, or tune any intrinsic or extrinsic parameters such as fo-

IS&T International Symposium on Electronic Imaging 2019
Image Processing: Algorithms and Systems XVII 279-5

a) b)

c) d)

e) f)

Figure 6. Demonstration of different outputs from the proposed rendering

pipeline. Different projection models: a) Equisolid angle; b) Pinhole. Pinhole

model with: c) high resolution, d) low resolution, e) different focal length

value, and f) different camera orientation.

cal length, camera location or orientation, and camera resolution.

Conclusion
In this paper, along with the small details introduced in the

generic camera model, our main contribution goes to the fast ren-
dering pipeline of virtual views from images captured with cam-
eras equipped with wide-angle lenses. While such optics offers
a wide field-of-view, it also introduces severe distortions which
have to be taken into account while rendering desired virtual
views. Thus, one should use a proper camera model that sup-
ports any field-of-view value and different distortion magnitudes.
However, only a strict group of camera models are able to tackle
such problems. Furthermore, they are also difficult to manipu-
late due to their forward or backward projection functions. As a
result, they often require procedures that may lead to inaccurate
results or heavy computational burden. Nevertheless, thanks to
look-up tables, we can speed-up any rendering task and ensure
that there are no mismatches between the forward and backward
projections. Finally, the proposed rendering pipeline is not only
faster compared to conventional rendering pipelines, but it also
provides more accurate results and better rendered images quality.
Our procedures aimed at modelling fisheye optics and rendering
virtual views could be adopted by any virtual reality system or 3D
modeling software.

Acknowledgments
The work in this paper was funded from the European

Unions Horizon 2020 research and innovation program under the
Marie Sklodowska-Curie grant agreement No 676401, European
Training Network on Full Parallax Imaging.

References
[1] S. Overbeck, D. Erickson, D. Evangelakos, M. Pharr, and P.

Debevec, “A system for acquiring, processing, and rendering

panoramic light field stills for virtual reality”, SIGGRAPH Asia,
2018.

[2] A. Collet, M. Chuang, P. Sweeney, D. Gillett, D. Evseev, D. Cal-
abrese, H. Hoppe, A. Kirk, and S. Sullivan, “High-quality stream-
able free-viewpoint video”, ACM Transactions on Graphics, vol.
34(4), pp. 1-13, 2015.

[3] P. Hedman, T. Ritschel, G. Drettakis, and G. Brostow, “Scalable
inside-out image-based rendering”, ACM Transactions on Graphics,
vol. 35(6), 2016.

[4] R. Szeliski, “Image alignment and stitching: a tutorial”, Foundations
and Trends in Computer Graphics and Vision, vol. 2(1), pp. 1-104,
2006.

[5] J. Yu, “A light-field journey to virtual reality”, IEEE MultiMedia,
vol. 24(2), pp. 104112, 2017.

[6] S. Chan, H. Shum, and K. Ng, “Image-based rendering and synthe-
sis”, IEEE Signal Processing Magazine, vol. 24(6), pp. 22-33, 2007.

[7] R. Anderson, D. Gallup, J. Barron, J. Kontkanen, N. Snavely, C.
Hernandez, S. Agarwal, and S. Seitz, “Jump: virtual reality video”,
ACM Transactions on Graphics, vol. 35(6), pp. 1-13, 2016.

[8] R. Hartley, and A. Zisserman, “Multiple view geometry in computer
vision”, 2nd Edition, Cambridge University Press, 2003.

[9] A. Fitzgibbon, “Simultaneous linear estimation of multiple view
geometry and lens distortion”, IEEE Computer Vision and Pattern
Recognition, vol. 1, pp. 125-132, 2001.

[10] D. Claus, and A. Fitzgibbon, “A rational function lens distortion
model for general cameras”, IEEE Computer Vision and Pattern
Recognition, vol. 1, pp. 213-219, 2005.

[11] J. Kannala, and S. Brandt, “A generic camera model and calibration
method for conventional, wide-angle and fish-eye lenses”, IEEE Pat-
tern Analysis and Machine Intelligence, vol. 28(8), 2006.

[12] D. Scaramuzza, A. Martinelli, and R. Siegwart, “A Toolbox for easy
calibrating omnidirectional cameras”, IEEE International Confer-
ence on Intelligent Robots and Systems, pp. 56955701, 2006.

[13] F. Steinicke, G. Bruder, K. Hinrichs, S. Kuhl, M. Lappe, and P.
Willemsen, “Judgment of natural perspective projections in head-
mounted display environments”, ACM Symposium on Virtual Real-
ity Software and Technology, pp. 35-42, 2009.

[14] Z. Tang, R. Grompone von Gioi, P. Monasse, and J. Morel, “A Preci-
sion Analysis of Camera Distortion Models”, IEEE Image Process-
ing, vol. 26(6), pp. 2694-2704, 2017.

[15] C. Ricolfe-Viala, and A. Sanchez-Salmeron, “Lens distortion mod-
els evaluation”, Applied Optics, vol. 49(30), pp. 5914-5928, 2010.

[16] D. Brown, “Decentering distortion of lenses”, Photogrammetric En-
gineering. vol. 32(3), pp. 444-462, 1966.

[17] A. Chuchvara, M. Georgiev, and A. Gotchev, “A speed-optimized
RGB-Z capture system with improved de-noising capabilities”,
SPIE Image Processing: Algorithms and Systems XII, 2014.

[18] H. Sankaran, M. Georgiev, A. Gotchev, and K. Egiazarian, “Non-
uniform to uniform image resampling utilizing a 2D farrow struc-
ture”, Spectral Methods and Multirate Signal, pp. 3744, 2007.

Author Biography
Filipe Gama is a PhD student at Tampere University. His research inter-
ests include 3D scene capture, virtual reality and light field imaging.
Mihail Georgiev is a researcher at Tampere University. His research in-
terests include 3D scene capture, fusion and display technology.
Atanas Gotchev is a professor at Tampere University. His work con-
centrates on algorithms for multisensory 3D scene capture, transform-
domain light-field reconstruction, and Fourier analysis of 3D displays.

279-6
IS&T International Symposium on Electronic Imaging 2019

Image Processing: Algorithms and Systems XVII

• SHORT COURSES • EXHIBITS • DEMONSTRATION SESSION • PLENARY TALKS •
• INTERACTIVE PAPER SESSION • SPECIAL EVENTS • TECHNICAL SESSIONS •

Electronic Imaging
IS&T International Symposium on

SCIENCE AND TECHNOLOGY

Imaging across applications . . . Where industry and academia meet!

JOIN US AT THE NEXT EI!

www.electronicimaging.org
imaging.org

