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Abstract
JPEG compression is one of image degradations that of-

ten occurs in image storing and retouching process. Estimating
JPEG compression degradation property is important for JPEG
deblocking algorithm and image forensic analysis. JPEG degra-
dation exists not only in JPEG file format but also in other im-
age formats because JPEG distortion remains after converting
to another image format. Moreover, JPEG degradation property
is not always uniform within an image in case that the image is
collaged from different JPEG-compressed photos. In this paper,
pixelwise detection of JPEG-compression degradation and esti-
mation of JPEG quality factor using a convolutional neural net-
work is proposed. The proposed network outputs an estimated
JPEG quality factor map and a compression flag map from an
input image. Experimental results show that the proposed net-
work successfully infers the quality factors and discriminates be-
tween non-JPEG-compressed images and JPEG-compressed im-
ages. We also demonstrate that the proposed network can spot a
collaged region in a fake image which is comprised of images that
have different JPEG compression properties. Additionally, the
network reveals that image datasets Set5 and Set14, often used to
evaluate super-resolution algorithms, contain JPEG-compressed
low quality images, which are inappropriate for such evaluation.

Introduction
Image degradation estimation has been a hot topic for

decades since identifying degradation properties plays a key
role in image restoration [27] and other applications. Many
degradation estimation techniques such as noise level detection
[19, 21, 20], blur map estimation [24, 35] and haze map estima-
tion [29] have been researched because they are essential process
in image restoration algorithms, i.e. denoising [6], deblurring [4],
and dehazing [10, 12]. Pixelwise degradation parameter estima-
tion is also powerful for image forensic analysis like fake image
detection because it reveals unnatural degradation patterns in a
target image.

JPEG compression is one of the image degradations which
occurs in an image capturing pipeline and image retouching pro-
cesses. Detecting JPEG-compression and estimating JPEG qual-
ity factor (Q-factor) give crucial information for JPEG deblock-
ing algorithms. Moreover, detecting JPEG-compression from the
pixel data is significant to understand the history of the image as
part of image forensic analysis.

There are mainly two approaches for JPEG quality factor es-
timation of an image. The first approach is exploiting metadata
and the DCT coefficients in the JPEG image file. Li et al. [18]

proposed a method to detect a tampered region of collaged image
by analyzing the DCT coefficients. Their method successfully
spots the tampered region, however, it is only valid as long as
the image is in JPEG format. Once the image is converted to an-
other file format such as BMP and PNG, the method cannot be no
longer applied.

The second approach is to use the pixel data of a target im-
age. This is more general way to estimate the JPEG quality factor
because it is independent from the file format. Fu et al. [11] pro-
posed a model-based estimation method for JPEG quality factor
by pixel data. Their method is able to infer the JPEG quality fac-
tor of a target image, however, it is not possible to generate pix-
elwise JPEG quality factor map which is suitable for fake image
detection.

The objective of this study is to estimate pixelwise degra-
dation property, focusing on degraded images caused by JPEG
compression, from the pixel data of an image. JPEG compression
degradation exists not only in JPEG-format image but also PNG,
BMP and other file format image because the JPEG degradation
remains after the image is converted into another file format. To
adapt to general image file formats rather than JPEG format, the
estimation algorithm is required to use only the pixel data of an
image, i.e. without referring to DCT coefficients and other meta-
data. Additionally, pixelwise estimation is vital because it enables
to detect Photoshopped regions in an image that is collaged from
JPEG-compressed and non-compressed images.

Proposed Method
In this section, we propose a neural network for JPEG quality

factor estimation and for the detection whether the input image is
JPEG-compressed or not.

Network Structure
Figure 1 shows a convolutional neural network (CNN) struc-

ture to estimate JPEG quality factor pixel-by-pixel. The proposed
network consists of seven dilated convolutional layers with the
dilated rate of one, two, three, four, three, two, and one, respec-
tively. The filter size is 3×3 and the activation function is ReLU
for all layers except the last one. The network structore is similar
to [33]. The input of the network is an RGB image and the net-
work outputs two maps; a JPEG quality map and a compression
flag map. The output maps have the same size as the input im-
age. The JPEG quality map is a pixelwise estimated JPEG quality
factor whose value is linearly normalized to [0,1]; zero is for the
JPEG quality 100% (and for no-compression) and one is for 0%.
The compression flag map is a pixelwise estimation whether the
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Figure 1: Proposed network structure

pixel is ever JPEG-compressed or not. The value is binary where
one means JPEG-compressed and zero means non-compressed.
Note that a JPEG compressed image with the quality factor 100%
is not equal to the no-compression image because JPEG compres-
sion is lossy even for the quality factor of 100%. Thus, the com-
pression flag map is important to discriminate high quality JPEG
image and no-compression image.

Training
Training the network is achieved by optimizing parameters

within the convolution layers so that the network can predict the
true quality factor and compression flag map for a given input
image. To ensure that original images for training dataset have
never been JPEG compressed, only raw images are used for the
dataset.

Training data is generated online from image patches
cropped from the raw images. The training data is a mix-
ture of two types of images: JPEG-compressed image and non-
compressed image. As for JPEG-compressed images, the qual-
ity factors are randomly chosen for each image patch while the
values of the compression flag map are set to one. As for non-
compressed image (i.e. raw image), the values of the JPEG qual-
ity map and the compression flag map are set to zero.

The network parameters are optimized by using general opti-
mization algorithm such as stochastic gradient descent (SGD) and
Adam [17]. As for the loss function, mean squared errors for the
quality factor map and the compression flag map are used.

Inference
Inference of JPEG quality factor and JPEG compression flag

are simple feed-foward process. The trained network outputs the
estimated quality factor map and compression flag map for a given
input image. To normalize the range of output maps, the values
are clipped to [0,1].

If the input image is supposed to have a single quality factor
(i.e. not collaged), the mean value of the quality factor map and
the compression flag map are convenient to estimate the JPEG-
compression property of the image. If the mean value of the com-
pression flag is greater than 0.5, the input image is considered as
ever-JPEG-compressed.

Experiments
To validate the proposed network, the network is trained and

some evaluation tasks are executed with the network.

Training
In the training phase, 300 images from a raw image dataset

(i.e. RAISE-1k dataset [7]) resized to 10% in size (e.g. 493×326)
are used. Then, random patches (size of 60×60) are cropped from
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Figure 2: Performance on JPEG quality factor estimation

the resized images. For each patches, data augmentation by flip-
ping and rotating are applied to increase the data by eight times.
The proposed network is trained so that it can predict the true
JPEG quality map and the true compression flag map from a given
JPEG-compressed (or non-compressed) patch generated with a
random JPEG quality factor. 10% of the training patches are given
as no-compressed and the rest 90% are JPEG-compressed with
random JPEG quality factor ranging from 5% to 100%.

The optimization of the network parameters are done by
Adam. The mini-batch size is 128 and one epoch contains 5.3k
mini-batches. The training is finished after 80 epochs of optimiza-
tion. The implementation is written with Keras framework [5] and
run on a PC with a Nvidia TITAN-X GPU.

Experimental Results
We examined the trained network by three experiments as

follows. First, the accuracy of the JPEG quality and JPEG com-
pression prediction is measured. Second, we apply the network
to a photo compositing of two different images that have different
JPEG compression histories. Third, we assess image datasets to
uncover its JPEG compression history.

JPEG Quality Estimation
To evaluate the trained network, the performance on JPEG

quality estimation for JPEG-compressed images is examined.
Fifty images from RAISE-1k dataset [7] which did not used in
the training phase are selected. The images are resized to 10% in
size and JPEG-compressed with the quality factor ranging from
5% to 100%. Estimated JPEG quality factor for a test image is
taken as the mean value of the inferred JPEG quality map. The
average estimated JPEG quality factors and its standard deviation
for various JPEG quality factor on the test dataset is shown in Fig.
2. The network is able to infer the JPEG quality with small errors.
Relatively large errors occur for images with high and low quality
factor due to flat regions in the images. Since estimating a JPEG
quality in a flat region is an ill-posed problem, the network was
trained to predict the stochastically optimized value, i.e. around
55%, for the region. Thus, the averaged estimated JPEG quality
for images that have flat region tends to drift to mid-quality factor.

Table 1 illustrates the discriminability on JPEG-compressed
and non-compressed images. A test image is categorized to non-
compressed if the mean value of compression flag map is less than
0.5. The ratio of estimated as non-compressed images in the test
dataset are measured. The network exhibits high performance on
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Table 1: Performance on JPEG degradation detection

JPEG quality factor ratio of estimated as non-compressed
97% 0.00
98% 0.00
99% 0.00
100% 0.02

w/o JPEG comp. 1.00

the discriminability.

Fake Image Detection
Since the network can infer pixelwise JPEG quality map, it

is useful for fake image detection. We examine the feasibility on
a fake image detection task as an application of pixelwise JPEG
quality estimation.

A fake image is created as follows. Two images of moun-
tain scenery from the RAISE-1k dataset, that are not used for the
training, are selected. They are resized by 10% in size. One image
is left uncompressed as shown in Fig.3a, and the other image is
JPEG-compressed with the quality factor of 80% as illustrated in
Fig.3b. Then, the two images are collaged into an image (Fig.3c)
with the layer mask of Fig.3d. The collaged image is a fake image
of fictitious mountain view.

To examine if the proposed network can spot the collaged
region, the JPEG compression detection is performed for the im-
age. Figure 3e demonstrate the compression flag map, which ob-
viously detects the collaged region. The failure detection in the
remaining snow area is caused by the ill-conditioned problem due
to the saturated flat region, as mentioned previously.

Image Assessment
Finally, we assess image datasets to reveal its JPEG com-

pression histories.
Image datasets Set5 [1] and Set14 [31] are often used to eval-

uate super resolution algorithms [15, 9, 16, 32]. Images in the
datasets are in BMP file format, however, they might have ever-
JPEG-compressed images because the history of the images is un-
known. Figure 4 and 5 show the mean estimated JPEG quality
and compression flag for each image. As for Set5, ‘baby’ and
‘woman’ are predicted as JPEG-compressed because the mean
value of the compression flag map is nearly one. As for Set14,
‘foreman’, ‘coastguard’, ‘ppt3’, and ‘zebra’ are inferred as JPEG-
compressed with high values of the compression flag map and rel-
atively low values of the estimated JPEG quality factor. Note that
we excluded grayscale images from Set14, namely ‘bridge’ and
‘man’ because the prediction for grayscale images is not reliable
due to the network training done by only color images.

Datasets BSD100 [22] and Urban100 [13] are also often used
to evaluate super-resolution algorithms [14, 28, 16, 26]. Figure
6 and 7 show the histograms of estimated JPEG quality factors
for BSD100 and Urban100, respectively. According to the esti-
mation, all BSD100 images are ever-JPEG-compressed with the
quality factor of around 95%. As for Urban100, it has 44 im-
ages that are estimated as ever-JPEG-compressed out of 100 im-
ages. Urban100 contains both high quality images without JPEG-
compression and low quality JPEG-compressed images with the

quality factor under 80%. Set5, Set14, BSD100, and Urban100
might be inappropriate for evaluation of super-resolution algo-
rithms because they contain low quality JPEG-compressed im-
ages.

Dataset Live1 [23] and BSD68 [22] are often used to evaluate
JPEG deblocking algorithms [30, 8, 25] and denoising algorithms
[34, 2, 3], respectively. Figure 8 shows the histogram of estimated
JPEG quality factors of Live1 dataset. It has 12 images that esti-
mated as ever-JPEG-compressed out of 29 images. The estimated
JPEG quality factors are relatively high, however, the pre-existing
JPEG compression in the dataset may affect the evaluation of the
performance of JPEG deblocking algorithms. Thus, the dataset
might not be suitable for that purpose. Figure 9 shows the his-
togram of estimated JPEG quality factors of BSD68 dataset. All
BSD68 images are estimated as ever-JPEG-compressed and most
images are estimated to have 90% to 95% of the quality factor.
With respect to the denoising evaluation, the JPEG noise exist-
ing in the dataset may lead to wrong evaluation of the denoising
algorithms.

Conclusion
CNN-based pixelwise degradation estimation for JPEG com-

pression is introduced. In previous works, only a single JPEG
quality factor is determined per an image or a small block. In
contrast, the proposed model infers pixelwise JPEG quality fac-
tor, which is useful for fake image detection. Furthermore, unlike
previous works, the proposed method can estimate whether the
image is ever JPEG-compressed or not from the pixel data. Con-
sidering that the JPEG compression degradation remains after be-
ing converted to another image format such as PNG and BMP, it
is advantageous for investigating the history of an image as part
of image forensic analysis. We have shown that the proposed pix-
elwise JPEG quality factor estimation helps for the fake image
detection and image assessment.
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(a) Original image A (w/o JPEG comp.) (b) Original image B (JPEG: Q-factor= 80%) (c) Composited fake image

(d) Grand truth (layer mask) (e) Estimated compression flag map

Figure 3: Detection of JPEG-compressed region in a fake image
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Figure 5: JPEG compression assessment for Set14 (except grayscale images)
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