
 

Depth from Stacked Light Field Images using  

Generative Adversarial Network 

Ji-Hun Mun and Yo-Sung Ho 

Gwangju Institute of Science and Technology (GIST) 

123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, South Korea 

 
Abstract 

The estimated depth map provides valuable information in 

many computer vision applications such as autonomous driving, 

semantic segmentation and 3D object reconstruction. Since the light 

field camera capture both the spatial and angular light ray, we can 

estimate a depth map throughout that properties of light field image. 

However, estimating a depth map from the light field image has a 

limitation in term of short baseline and low resolution issues. Even 

though many approach have been developed, but they still have a 

clear flaw in computation cost and depth value accuracy. In this 

paper, we propose a network-based and epipolar plane image (EPI) 

light field depth estimation technique. Since the light field image 

consists of many sub-aperture images in a 2D spatial plane, we can 

stack the sub-aperture images in different directions to handle 

occlusion problem. However, usually used many light field sub-

aperture images are not enough to construct huge datasets. To 

increase the number of sub-aperture images for stacking, we train 

the network with augmented light field datasets. In order to 

illustrate the effectiveness of our approach, we perform the 

extensive experimental evaluation through the synthetic and real 

light field scene. The experimental result outperforms the other 

depth estimation techniques. 

 

1. Introduction 
Light fields have a complex structure due to that collects the 

light ray information in any direction to hold the various direction 

of light ray. Due to that properties of light field, the light filed image 

includes spatial and angular directional spaces. The depth map 

estimation from light filed image is not simple problem, because of 

the low resolution and the distance between neighbor view point 

images which called sub-aperture images. Conventional depth 

estimation techniques have relied on various methods such as 2D 

stereo matching [1, 2, 3], geometric priors [4, 5] and depth from 

different light conditions [6, 7]. However, those methods are 

targeted on estimating a depth from a single-view camera or multi-

view camera image, so depth blurring and hole regions often appear 

in estimated depth map. In addition, those methods need a precisely 

calibrated image pairs such as rectification, color correction and 

light condition pre-processing [8, 9].  

In order to overcome that kind of limitations in conventional 

depth estimation, a lot of attention is given to generate accurate and 

robust algorithm for light field depth estimation. Since the light field 

image which captured from the lenslet array is convertible to multi-

view image, it can be changed with slightly different view point 

image using geometric converting method. From the converted light 

field image, the depth map is estimated thanks to the similar camera 

structure with multi-view camera system [10]. 

 
Figure 1. Light field depth estimation comparison results. (a) Input light field 
image. (b) Tao et. Al method result [11]. (c) Our learning based depth 
estimation method result 

Except for the light field image has narrow baseline and row 

resolution properties, depth estimation approach is very similar with 

the stereoscopic and monocular image based method. Widely used 

stereoscopic image depth estimation method mimic the binocular 

human visual mechanism. In addition, many of the dense baseline 

depth estimation methods have been developed on stereo vision and 

it also properly working in real time. However, those method is not 

optimized to apply in light field image depth estimation, due to the 

geometric condition of light field image is different from the general 

stereo and multi-view image. 

Various algorithms for robust light field depth estimation 

method are developed depending on different kind of light field 

images, such as epipolar plane images (EPI), light field to multi-

view, and defocus and correspondence. Existing light field EPI 

depth estimation method [12] suffer from the occlusion issue when 

measuring the slope of EPI. Thanks to the continuity sampling of 

light field sub-aperture image, we can estimate a depth map by 

exploring the slope of EPI. However, the EPI which stacked by 

angular directional sub-aperture image contains the cross edge 

region, that causes difficulty to estimate a correct depth label. 

Among various deep learning methods, the unsupervised 

learning technique which do not require a pair of input and ground 

truth depth data for network training. Since obtaining ground truth 

depth maps from real and synthetic is very expensive and extremely 

hard work. Even though the data sets are abundant to training the 

network for depth estimation, we can easily contact the undesirable 

artifacts, such as blurring, inaccurate depth, and hole region in 

estimated depth map. 
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In this paper, we propose the accurate depth estimation 

throughout the various light field EPI with different angular sub-

aperture images. We explore the possibility of network training for 

depth estimation on synthetic and real light field image dataset. To 

secure the abundant dataset for training we propose various angular 

sub-aperture based EPI data generation and data augmentation 

techniques. In addition, previously existing light filed depth 

estimation problem is handled via domain style transfer network 

which is very well known generative adversarial network (GAN) 

with newly proposed loss function for training. By combining those 

two contribution, we estimate an accurate depth map from light field 

input image. 

 

2. Related Works 
Over the several years, various depth estimation methods using 

light field images are developed [12, 13, 14]. Also, various domain 

translation deep learning techniques [15, 16] are intensively 

activated to utilize for light field depth estimation.  

2.1 Depth from Light Field EPI 
The light field EPI is composed of directional sub-aperture 

images. Many of the EPI-based depth estimation method focus on 

the horizontal and vertical direction for generating EPIs, since that 

is easy to extract from a set of light field sub-aperture images. But, 

we can consider more available orientation for multi-directional 

EPIs as indicated in Fig. 2. 

 

 
Figure 2. Light field multi-directional sub-aperture images for EPI. (a) 

horizontal. (b) vertical. (c) 135° -directional sub-aperture. (d) 45°-directional 

sub-aperture 

The EPI contains linear combination of sub-aperture lines that 

is projected on the image and camera plane. In order to extract rich 

sub-aperture image for more EPIs, we need to consider the light filed 

ray structure in general case as shown in figure 3. From the image 

and camera plane, to express the EPI image plane 𝑦 is fixed to 𝑦∗ 

and camera plane 𝑡 is fixed to 𝑡∗, and simultaneously changing the 

light field coordinate 𝐿(𝑥, 𝑠) as represented in (1). 

 

𝐼𝑦∗,𝑡∗(𝑥, 𝑠) =L(x, 𝑦∗, s, 𝑡∗) (1) 

 
Figure 3. 4D light filed light field system with Image plane(Ω) and camera 

plane(π). 

As the EPI consist of line with various directional sub-aperture 

images, the depth value can be derived by measuring the slope of 

EPI. Wanner et al. [14] apply the structure tensor to measure the 

slope in EPI. But, the tensor structure highly relied on an angular 

resolution so that have affected by occlusion when orient estimation. 

Zhang et al. [17] use a spinning parallelogram operator (SOP) as an 

approach to compute the slop of each EPI for local depth value 

estimation. They measure the EPI slope from maximized 

distribution distance in two part of parallelogram window. Tosic et 

al. [18] invented ray detection for depth estimation throughout the 

normalized section derivation in Gaussian kernel. This method 

considers occlusion region by analyzing overlapped rays to 

determine the object order in image. If some region has small 

variance value, then that is determined as foreground area. However, 

this method assumes that the initially estimated depth map is 

accurate and simultaneously variance condition have to be satisfied. 

 

2.2 Learning based Depth Estimation 
Thanks to the improvement of machine learning technique and 

hardware improvement, variety of computer vision applications are 

developed such as 3D reconstruction, multi view synthesis [19], and 

semantic segmentation [20]. 

Even though various patch based depth estimation for light 

field images, they still contain inaccuracy and blurring artifacts in 

estimated depth map. To conquer those problems, learning based 

depth estimation techniques are highly recommended. For light field 

depth estimation Heber et al. [21] propose a CNN for EPI slope 

measurement and global optimization technique. They train the 

CNN to find out accurate orientation of EPIs. Their previous work 

also estimating a depth map via encoding and decoding end-to-end 

deep neural network. Anna et al. [22] propose the encoder-decoder 

network to evade a specular while estimating a depth map. The 

network effort to distinguish the specular and diffuse for accurate 

depth estimation without considering given circumstances. 

Unlike aforementioned learning techniques for light field depth 

estimation, we propose to train a network which fully adopt the 

unsupervised learning technique which called GAN. However, our 

network is trained using a pair of light filed EPI and depth EPI, due 

to the duality of EPI in training procedure. At the same time, we 

train the network with multi-directional EPI, since each epipolar 

image has intrinsic characteristics which can treat the occluded 

region while estimating a depth map from EPIs. 
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2.3 Domain Transfer 
Image domain transfer methods are recently invented based on 

the GAN. After then, various astonishing approach and 

improvement have been suggested to change the domain from one 

to another. Some approach utilizes a MRF concept to control the 

image patch in order to transfer the image to aimed domain. Other 

method uses pixel updating approach that means they directly 

change the pixel value in the output image to translate an image 

domain [24]. In order to evade directly using pixel values to change 

the domain, some method pre-train the network through amount of 

training dataset [25]. 

Changing an image domain is similar concept with distribution 

optimization at target domain. Particularly, it is the same condition 

with minimize the distance between source image domain and target 

image domain to mimic the different domain style each other. 

Depending on those properties, we utilize a domain transfer concept 

to adapt our source image distribution (augmented light field images) 

to target domain distribution (ground truth depth dataset) 

 

3. Proposed Approach 
 

 Our proposed method composed of two main components. Firstly, 

to generate an abundant EPI training dataset, multi directional sub-

aperture images are exploited and augmented to extremely use the 

sub-aperture images for training. Then, the network is trained using 

GAN with newly proposed loss function which is devised to 

overcome the previously existing depth inaccuracy problem.  

3.1 Data Preparation 
 

There are many available light field datasets at the internet, also 

they provide various type of scene with ground truth data especially 

in case of synthetic datasets. However, those datasets are not enough 

to train the network in terms of variety of situation in capturing light 

field scene not only for the synthetic or rendered light field scene. 

In this paper, we exploit the 8 synthetic light field scene and real 

light field datasets that provides pair of texture and ground truth 

depth data. In this paper, we augment the input dataset through 

rotation, flipping, scaling and color range variation. The objective 

of this data augmentation is increasing the network training 

efficiency and yielding a high quality depth map. 

 The maximum angular resolution of light filed image which 

used in this paper is restricted to 7ⅹ7, due to the accuracy of 

estimated depth map does not show a critical differences when it 

compared with 9ⅹ9 and 11ⅹ11 as indicated in Table 1. Even 

though the mean square error (MSE) and bad pixel ratio (BPR) 

which determine the error when the pixel difference is larger than 

0.7, those value decreasing ratio is not show the enough 

performance with respect to the training cost. 

Table1. Depth map accuracy with different light field angular 

resolutions 

 
Light field angular resolution 

3ⅹ3 5ⅹ5 7ⅹ7 9ⅹ9 11ⅹ11 

MSE 2.762 2.172 1.834 1.779 1.714 

BPR 7.47 6.87 3.79 3.27 3.04 

 

While training the network through the input light field image, 

the resolution of image is gradually decreased. The low resolution 

image affects to the feature extraction on backpropagation 

procedure. In order to prevent the low resolution problem, we up-

scaled the input light field image for training by multiple of 2. 

The light field EPI includes characteristics of multi-directional 

sub-aperture linearity. By measuring the EPI orientation, the depth 

values are easily estimated, due to we perform the rotation 

augmentation on the light field sub-aperture images. The translation 

augmentation technique already has been widely used in depth 

estimation, optical flow and scene flow. The conventionally used 

rotation augmentation method only focus on the captured 2-

dimensional domain. But, due to the light ray recording property of 

light field, it composed of 4-dimensional (𝑥, 𝑦, 𝑢, 𝑣) domain. While 

rotating the image, the properties of light field EPI have to be 

preserved. The horizontal directional based EPI properties is 

different with the vertical directional based EPI properties. As 

indicated in Fig. 3, if the horizontal directional sub-aperture images 

are rotated in 90° then horizontal EPI property is changed to the 

vertical EPI property. 

However, when we apply not an addition of 90 degree for 

image rotation such as 30 degree and 45 degree, the EPI properties 

is not well preserved. This limitation is handled by applying a 

learning technique, and that will be explained in section 3.2. 

Considering various angular directions for light field EPI shows 

robust depth map result especially on the occluded region. Since 

Hao et al. [23] assume that the occluded region in camera plane is 

very close to the slope of occluder, they adopt the detected occluded 

region during optimize the cost volume. With the similar perspective 

of that, we use the different orientation based generated EPIs for 

network training. 

 

 
Figure 3. EPI property transformation via sub-aperture rotation augmentation. 
(a) horizontal EPI property. (b) vertical EPI property.  

Lastly, generally used flipping method is applied for data 

augmentation. We flip the light field image through up/down and 

left/right. If the image was symmetrically flipped through left and 

right, then slope of the EPI also flipped. Due to the flipping, the 

estimated disparity value also has reversed, so we have to consider 
the flipped image training for the network. 
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Figure 4. Proposed light field depth estimation pipeline. The EPI depth estimation block compute the slope of EPI which generated through the rotated light field 
image via SPO. Learning-based depth generates a depth map by using GAN with domain transfer concept.  

3.2 Proposed Architecture 
Our proposed light field depth estimation pipeline is 

represented in Fig. 4. The proposed method composed with two 

main part. Firstly, we generate EPIs through the augmented light 

field image especially using rotation augmentation for depth map 

creation. Secondly, neural network is adopted to estimates another 

depth map. Those estimated depth map is optimized via guided 

image filtering for final depth map. 

 

EPI depth estimation: The objective of light field image 

augmentation is increasing a dataset whilst yield wide orientation-

based light field EPI generation. In EPI depth estimation operation, 

we adapt rotated light filed image through 4-angle θ =

{45°, 90°, 135°, 180°} . The EPIs which structured with different 

rotation angle sub-aperture image still preserve the property 

between the angular direction and viewpoint. In addition, from the 

various angular EPIs, we can estimate more robust depth map than 

horizontal or vertical directional EPIs. 

Multi-orientation EPIs also can be applicable to conventional 

light field EPI-based depth estimation methods [14, 17]. In this 

paper, to compute a direction of EPI, we adopt the spinning 

parallelogram operator (SPO) which proposed by Zhang et al [13]. 

Since SPO measure the slope of EPI lines by maximizing 

distribution distance in parallelogram window, it shows accurate 

EPI slope measurement performance than Zhang et al. [26] method 

which measure the slope within angular candidates. Instead of 

commonly used distance measure 𝐿2  norm, SPO use the Earth 

Mover’s distance (EMD) or 𝜒2 to measure the difference between 

the distance of pixel colors in window.  The difference of 𝜒2  is 

utilized in color histogram as defined in (2) 
 

𝜒2(𝑔𝜃 , ℎ𝜃) = ∑
(𝑔𝜃(𝑖) − ℎ𝜃(𝑖))2

𝑔𝜃(𝑖) + ℎ𝜃(𝑖)
𝑖

 

 

(2) 

where 𝑔𝜃(𝑖) and ℎ𝜃(𝑖) are the histogram of separated parts. If the 

𝜒2 value is large, that means the two parallelogram are different. As 

a result, we can assume that there exists straight edge in hypothetical 

matching line.  Throughout the (2), we construct a cost volume along 

the axis (Ω, Π, θ) for disparity space image construction. From the 

measured EPI slope via SOP on EPI, the EPI-based depth on each 

rotation angle is estimated using (3). 

 

𝜃𝜆(Ω, Π) = arg max
𝜃

𝑑𝜆(Ω, Π, 𝜃) 

 
(3) 

where λ is a set of angular EPI, 𝜃 represents corresponding maximum 

response of (3), and 𝑑 is indicates the histogram distance measured by 

the SPO. This value indicates the depth of the point in the center view. 

So, we can get the depth value for the each angular EPI image 

𝑑𝜆(Ω, Π, 𝜃) . However, we fix the λ  when finding a maximally 

matched cost value in (3), due to the proposed algorithm find an optimal 

EPI depth value by applying winner takes all (WTA) method. 

 

Learning-based depth estimation: Assuming the initially 

estimated depth map from light field EPI is accurate, but it still 

includes blurring artifact near the object edge region. The goal of 
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our proposed network is providing a supplementary depth data for 

optimization in final step.  

As represented in Fig. 4, augmented light field images are used 

for input data in domain A. Simultaneously, the ground truth depth 

data is charged in domain B. The network learn a mapping function 

𝐺 ∶  𝐴 ⟶ 𝐵 from the source domain 𝐴(augmented light field image) 

to target domain 𝐵(depth image). So, the network effort to make a 

same result with 𝐺(𝐴) and 𝐵. From augmented light field source 

domain data, we train the network to estimate a depth map in target 

domain.  

Changing an image domain from one to other domain is already 

have been invented, such as Pix2Pix, Cycle-GAN[15], and Disco-

GAN. Among them, we utilize the style transfer approach in 

generative adversarial network which demonstrated in [15]. They 

suggest the cycle-consistency to minimize the discordance between 

source and target domain. That help to recover the specific domain 

image their own original domain with constraint condition. 

In order to define an adversarial network with cycle-

consistency, we need generator and discriminator which changing 

the domain and measure the faithful respectively. As represented in 

Fig. 4, 𝐺𝐴⟶𝐵 and 𝐺𝐵⟶𝐴 match the departure domain to destination 

domain. 𝐷𝐴  discriminating between 𝐴  and 𝐺𝐵⟶𝐴(𝐵) , 𝐷𝐵 

discriminating between 𝐵  and 𝐺𝐴⟶𝐵(𝐴)  in each domain. By 

combining those parameters, we can define the adversarial loss 

function for network training as shown in (4). 

 

ℒ𝐺𝐴𝑁(𝐺𝐴⟶𝐵, 𝐷𝐵) = min
𝐺𝐴⟶𝐵

max
𝐷𝐵

𝔼𝑏~𝑝𝑑𝑎𝑡𝑎(𝑏)
[𝑙𝑜𝑔𝐷𝐵(𝑏)]

+ 𝔼𝑎~𝑝𝑑𝑎𝑡𝑎(𝑎)
[log (1 − 𝐷𝐵(𝐺(𝑎))] 

 

ℒ𝐺𝐴𝑁(𝐺𝐵⟶𝐴, 𝐷𝐴) = min
𝐺𝐵⟶𝐴

max
𝐷𝐴

𝔼𝑎~𝑝𝑑𝑎𝑡𝑎(𝑎)
[𝑙𝑜𝑔𝐷𝐴(𝑎)]

+ 𝔼𝑏~𝑝𝑑𝑎𝑡𝑎(𝑏)
[log (1 − 𝐷𝐴(𝐺(𝑏))] 

 

 

(4) 

where 𝑝𝑑𝑎𝑡𝑎(𝑎) and 𝑝𝑑𝑎𝑡𝑎(𝑏)  indicate data distribution in A and B 

domain with sample a and sample b respectively. The style transfer 

loss function can be defined as consequence of min-max problem. 

In theoretically, adversarial network can train the mapping 

function 𝐺  to precisely coincidence with each other domain. 

However, among the amount of training dataset the network does 

not guarantee a source image correctly mapping on the target image 

vice versa. For example, we randomly select augmented light filed 

image from domain 𝐴 to change the domain to 𝐵 for depth inference. 

But, if we do not provide any constraint conditions, the back-

propagated image will not correctly match with that own domain. 

As a result of that, the adversarial loss function defined in (4) 

cannot be used alone. In order to constraint the adversarial loss, a 

cycle-consistency loss is added which help the source image 𝐴 

transform the domain to target domain via  𝐺𝐴⟶𝐵(𝑎) , then it 

correctly back into the source domain via 𝐺𝐵⟶𝐴(𝐺𝐴⟶𝐵(𝑎)) that is 

same with the 𝐴. The cycle consistency loss is defined in (5). 

 

ℒ𝐶𝑦𝑐𝑙𝑒 = 𝔼𝑎~𝑝𝑑𝑎𝑡𝑎(𝑎)
[‖𝐺𝐵⟶𝐴(𝐺𝐴⟶𝐵(𝑎) − 𝑎‖1] +

             𝔼𝑏~𝑝𝑑𝑎𝑡𝑎(𝑏)
[‖𝐺𝐴⟶𝐵(𝐺𝐵⟶𝐴(𝑏) − 𝑏‖1]  

(5) 

 

For network training our final objective loss function is defined 

by combining (4) and (5) as follows: 

 

ℒ𝐶𝐺 = ℒ𝐺𝐴𝑁(𝐺𝐴⟶𝐵, 𝐷𝐵) + ℒ𝐺𝐴𝑁(𝐺𝐵⟶𝐴, 𝐷𝐴) + ℒ𝐶𝑦𝑐𝑙𝑒 ∙ 𝜎 (6) 

 

 At last step, we optimize the estimated depth maps which are 

obtained from EPI-based and learning-based depth estimation via 

the guided image filter. 

 

Implementation and training: All implementation of our 

network is coded by PyTorch. The learning based depth estimation 

network is built upon 3-convolutional layers with batch 

normalization. In addition, 6-residual block is added to preserve the 

image quality during training. In order to directly update parameters, 

the batch size is fixed to 1. For the back-propagation optimization 

approach, we use the ADAM with momentum 𝛽1 = 0.5 , 𝛽2 =
0.999. The multiplied weight value in cycle consistency 𝜎 is set to 

10. Overall training procedure, we set the learning rate to 0.0002. 

For the network training, we use the light field scene which 

captured by Lytro Illum from Wang et al. [27] and synthetic dataset. 

The training time for our network with those datasets takes 4 and 

half days through a NVIDIA GTX TITAN X. 

4. Experimental Results 
 

We evaluate our proposed method using both qualitative and 

quantitative comparison with other light field depth estimation 

methods. We use synthetic and captured light field images for 

evaluation. The estimated depth map accuracies of the proposed 

method and other method. Fig. 5 and Fig. 6 show the experimental 

result with proposed method and other methods on Illum dataset 

synthetic datasets. 

  

 

 
Figure 5. Experimental results of depth estimation with other methods in Illum 

datasets. (a) Lytro Illum, (b) Zhang et al. (c) Chen et al. (d) proposed result 

Our method shows better handle noise by combining the EPI 

depth and learning based depth. Especially, EPI depth consider 

various angular direction during computing a slope via SPO method. 

Due to that reason, EPI provide more robust depth value near the 
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object boundary region compare to the other light field depth 

estimation methods. 

 

 
Figure 6. Experimental results of depth estimation with other methods in 
synthetic dataset. (a) ground truth depth, (b) Zhang et al, (c) Chen et al, (d) 
proposed result 

In order to numerically evaluate our proposed method in 

synthetic dataset, a bad pixel error ratio is computed in Table 2. If 

the pixel value differences between estimated depth map is larger 

than 0.7 then that pixel is determined as bad pixel. 

Table1. BPR comparison results in synthetic datasets (%) 

Sequences Zhang et al Chen et al Proposed 

Livingroom 
Non-occ 7.4 6.7 5.8 

All 12.3 11.9 11.2 

Sculptures 
Non-occ 7.7 7.3 6.9 

All 12.7 12.2 11.3 

Bedroom 
Non-occ 7.1 6.5 5.1 

All 12.1 11.8 10.9 

Plant 
Non-occ 7.3 6.8 5.5 

All 11.8 11.1 10.3 

 

5. Conclusion 
In this paper we propose depth estimation approach by 

combining the EPI-based depth result and learning-based depth 

result via guided image filter. In order to handle the object boundary 

depth in accuracy problem, we augmented the light field dataset. EPI 

depth estimation operation only use the rotation augmented data and 

learning operation use all augmented datasets. Depth estimation 

network through augmented light field images is trained using 

adversarial and cycle-consistency loss function. By combining two 

loss function we can generate depth map which robust to the noise 

in an image. From the experimental result, we demonstrate that our 

proposed method generate more accurate depth map than other 

methods.  
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