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Abstract
Background subtraction is a fundamental problem in com-

puter vision. Despite having made significant progress over the
past decade, accurate foreground extraction in complex scenarios
is still challenging. Recently, sparse signal recovery has attract-
ed a considerable attention due to the fact that moving objects in
videos are sparse. Considering the coherent of the foreground in
spatial and temporal domain, many works use the structured spar-
sity or fused sparsity to regularize the foreground signals. Howev-
er, existing methods ignore the group prior of foreground signals
on multi-channels (such as the RGB). In fact, a pixel should be
considered as a multi-channel signal. If a pixel is equal to the
adjacent ones that means all the three RGB coefficients should be
equal. In this paper, we propose a Multi-Channel Fused Lasso
regularizer to explore the smoothness of multi-channels signals.
The proposed method is validated on various challenging video
sequences. Experiments demonstrate that our approach effective-
ly works on a wide range of complex scenarios, and achieves a
state-of-the-art performance.

Introduction
Background subtraction can be defined as segmenting fore-

ground in videos from static cameras. It plays a critical role in
variety of computer vision applications, such as intelligent visu-
al surveillance, content-based video coding, human-machine in-
terface, and behavior understanding. Over the past decades, ex-
tensive work made remarkable efforts to background subtraction,
while the background subtraction in realistic environments usu-
ally encounters many challenging situations, such as illumina-
tion changes, dynamic background motions, camouflage, camera
shaking, low contrast, and high sensor noise. It remains an open
problem to design a background subtraction model which can ro-
bustly handle a wide variety of scenes.

A popular framework for background subtraction is the s-
parse signal recovery, since the foreground signals in video are
sparse. The basic idea is to factorize the given matrix of the ac-
cumulated frames into the low-rank background and sparse fore-
ground as outliers, such as the famous Robus Principle Compo-
nent Analysis (RPCA) [1], which uses the Principal Component
Pursuit (PCP) to perform the low-rank and sparse matrix decom-
position. A further prior for foreground is that the moving objects
are spatially coherent clusters, namely, if a pixel is a foreground,
its neighboring pixels would also belong to foreground, and vice
versa. Therefore, variety of constraint has been utilized to en-
force the spatial contiguity among the neighboring pixels of the
foreground. In DECOLOR [2], Zhou et al. employed the Markov
Random Fields (MRFs) to impose the smoothness on the fore-
ground matrix. Also, the group lasso regularization was applied

to model the foregrounds in GOSUS [3]. Liu et al. [4] pro-
posed a low-rank and structured sparse decomposition where the
(stacked frames) matrix is divided into overlapping groups of pix-
els to enforce structural sparsity constraints. Aim to enhance the
continuity of foregrounds, the group clustering prior on nonze-
ro coefficient was emphasized in the method [5]. In [6] [7], the
local sparseness constraint was exploited by total variation (TV-
RPCA) penalty and generalized fused Lasso (GFL) to better deal
with corrupted data. However, existing methods had few con-
siderations on the homogeneity of the channels. When dealing
with color images, a typical option is to convert the RGB to gray
frame [2] [3] [4], and another way is to apply sparse recovery in-
dependently to each of the three RGB channels [6] [7]. In fact, the
pixel should be considered as a multi-channel feature, if a pixel is
equal to the adjacent ones that means all the three RGB coeffi-
cients should be equal. So it is necessary to enforce homogeneity
of the channels at group levels. This paper aims to explore the
prior of multi-channel group-sparse for background subtraction.

In this work we take into account the prior of multi-channel
group-sparse on foreground, and propose the Multi-Channel
Fused Lasso (MCFL) regularizer, to enforce a multi-channel fore-
ground to be piece-wise constant at group level, being adjacen-
t groups equal in all the different channels at the same time.
Inspired by the Fused Lasso penalty for preserving continuous
structure on signals, we introduce a modification of Fused Lasso
that uses the `2,1 norm instead of the `1 norm to handle multi-
channel structural smoothness. Furthermore, we propose a two-
pass framework for background subtraction. Firstly, a low-rank
and sparse matrix decomposition is utilized on video slices along
X-T and Y-T planes, segmenting a video sequence into the low-
rank background and the sparse foreground (a rough foreground
candidate for next pass). Then, a sparse signal recovery with M-
CFL regularizer is used to refine the foreground. The main novel-
ties and contributions are summarized as follows:

1. We propose a new formulation of sparse signal recovery
via the Multi-Channel Fused Lasso (MCFL) regularizer. It explic-
itly reconstructs multi-channel foreground signals with a spatial
structure that reflects smooth changes along the group features.

2. The experimental results on two benchmarks show that
the proposed method works well on a wide range of complex en-
vironments, and achieves a state-of-the-art performance for back-
ground subtraction.

Multi-Channel Fused Lasso for Background
Subtraction

From signal processing point of view, foreground detection
can be regarded as separating a source signal from the mixture of
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sources, which can be expressed in general as:

Y = B+F + ε (1)

where Y is the observed (a video frame) signal which are com-
posed by individual sources, namely the background B, fore-
ground F and noise ε . Given the assumption that foreground ob-
jects are usually sparse, then the signals of foreground and noise
can be considered as the residual R between the frame and the
background

R = Y −B (2)

According to the framework of the sparse signal recovery,
at time t, given a residual signal Rt ∈ Rs (s = w× h×C, where
w, h and C are the width, height and number of channels of an
input frame), its binarization for obtaining foreground mask can
be modeled as a denoising process:

Rt = Φx+ εt (3)

where Φx accounts for the recovered foreground signal Ft , and εt
is the noise. The x ∈ Rs is the coefficient vector, and x should be a
kx sparse vector and kx� s. In other words, the computed nonze-
ro part of x can be utilized to binarize the foreground mask. Here,
we employ an identity matrix I ∈ Rs×s as the complete dictionary
Φ for the foreground signals.

The moving foreground objects are spatially coherent clus-
ters, namely, if a pixel is a foreground, its neighboring pixels
would also belong to foreground, and vice versa. Therefore, vari-
ety of constraint has been utilized to enforce the spatial contiguity
among the neighboring pixels of the foreground, such as the fa-
mous Fused Lasso [8]:

min
z

1
2
‖Rt −Φx‖2

2 +λ1 ‖x‖1 +λ2 ‖Dx‖1 (4)

the term ‖Rt −Φx‖2
2 is the ordinary least squares minimization

criterion for counting reconstruction error, where ‖ · ‖2 denotes
the `2-norm. The term ‖x‖1 is the sparsity constraint on coeffi-
cients, where ‖ · ‖1 denote the `1-norm. The λ1 and λ2 are reg-
ularization parameters which control the relative contributions of
the corresponding terms. The term ‖Dx‖1 is the Total Variation
(TV) regularizer which penalizes the differences between consec-
utive coefficients, where D ∈ R(s−1)×s is the differencing matrix,
that is, Di,i =−1, Di,i+1 = 1 and Di, j = 0 elsewhere

D =


−1 1

−1 1
. . .

. . .
−1 1


As discussed in the section Introduction, existing methods

ignore the group prior of foreground signals on multi-channels
(such as the RGB), commonly, a grey-scale operation is utilized
to simplify the multi-channel task to a sole-channel one. However,
the pixel should be considered as a multi-channel signal. If a pixel
is equal to the adjacent ones that means all the channels’ (three

RGB’s) coefficients should be equal. Considering Ft has N pixels
(N = w×h), and a pixel pi of Ft has C channels, therefore

Ft =(

p1︷ ︸︸ ︷
p1,1, p1,2, · · · p1,C,

p2︷ ︸︸ ︷
p2,1, p2,2, · · · p2,C, · · ·

pN︷ ︸︸ ︷
pN,1, pN,2, · · · pN,C)

>

From above, we can find that foreground signal Ft has a
group structure, namely, Ft has NC components that come in N
groups with C channels. As such, multichannel of a pixel should
be considered as irrelevant or relevant as a whole, and not each
component independently as in the traditional model. In other
words, all the coefficients of a particular group (pixel) should be
zero, or nonzero, at the same time, so the sparsity of x is achieved
at the group level. Based on this observation, in this paper, we
propose a Multi-Channel Fused Lasso model to explore the s-
moothness of multi-channels signals. The objective function is
defined as:

min
x

1
2
‖Rt −Φx‖2

2 +λ1 ‖x‖2,1 +λ2 ‖Gx‖2,1 (5)

where the ‖ ·‖2,1 denotes the `2,1-norm. Since the sparsity should
be achieved at the group level, for a coefficient vector x, the term

‖x‖2,1 =
N

∑
n=1
‖xn‖2 =

N

∑
n=1

√√√√ C

∑
c=1

x2
n,c (6)

which is the group Lasso model, means the `1 norm of the
`2 group norms. In contrast with the TV regularizer, the ter-
m ‖Gx‖2,1 enforces the similarity among the coefficients corre-
sponding to nearby groups, namely the differences between con-
secutive groups should to be identically zero, as

‖Gx‖2,1 =
N

∑
n=2

√√√√ C

∑
c=1

(xn,c− xn−1,c)2

with G =


−I I

−I I
. . .

. . .
−I I


(7)

where G ∈ R(N−1)C×NC is a group differencing matrix, and I ∈
RC×C denotes the identity matrix.

Optimization Method via Proximal Splitting
As we know the `1 regularizer is not differentiable, which

rules out conventional smooth optimization techniques. In this
paper, we introduce the proximal splitting method [9] for optimize
Eq. (4), which can be formulated as convex optimization problem
of the form

min
x∈RM

θ1(x)+ · · ·+θm(x) (8)

The proximal splitting method is designed to split the ob-
jective into functions θ1(x), · · · ,θm(x) individually (minimizing
them independently) so as to yield an easily implementable al-
gorithm, and each non-smooth function in (8) is involved via its
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Video sequences

objective function: 

Second-pass

X-T slice as D

Y-T slice as D

X-T foreground F

Y-T foreground F

First-pass

objective function: 
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signal Rt  (RGB)

Foreground mask

(binary result)

Figure 1. Illustration of framework of the proposed method. The first-pass introduced a RPCA-PCP method to estimate the raw foreground signal (residual Rt ),

and a new sparse signal recovery with MCFL regularizer is proposed to obtain foreground masks in the second-pass.

proximity operator [9]. Specifically, if θi is a convex, lower semi-
continuous function, its proximity operator (denote as proxγ;θi

) at
x with step γ > 0 is defined as

zx = proxγ;θi
(x) = arg min

z∈RM

1
2
‖z− x‖2

2 + γθi(z) (9)

Recall that in Eq. (4), θ1(x) = ‖Ft −Φx‖2
2 is differentiable,

while θ2(x) = λ1 ‖x‖2,1 and θ3(x) = λ2 ‖Gx‖2,1 are convex but
non-smooth functions. Here, we note θ+(x) = θ2(x) + θ3(x).
Since both functions θ1(x) and θ+(x) are convex, according to
the proximal splitting method, the optimization of (4), namely
the minimization the sum of θ1(x) and θ+(x), can be achieved
through iterative minimization of θ1(x) and θ+(x) individual-
ly. Based on proximal gradient method [9] and Fast Iterative
Shrinkage-Thresholding Algorithm (FISTA) [10], an optimal x∗

can be obtained by optimizing the variable x and updating the
variables z and t iteratively, which solves the following three sub-
problems:

xk = proxγ;θ+
(zk− γ∇θ1(zk))

zk+1 = xk +
tk−1
tk+1

(xk− xk−1)

tk+1 =
1+
√

1+4t2
k

2

(10)

where ∇ denotes the differential operator, and γ = 1/L where L
is a Lipschitz constant for ∇θ1. Here, take z1 = x0, t1 = 1 for
parameters initialization.

For the term proxγ;θ+
, the proximity operators of the sum of

θ2(x) and θ3(x) are needed. For that, we employ the Dykstra-like
Proximal (DP) algorithm [9], which allows to compute the prox-
imity operator of the sum of two (or more) functions combining
their individual proximity operators in an iterative way. In our
case, the problem is

zx = proxθ+
(x) = arg min

z∈RM

1
2
‖z− x‖2

2 +θ2(z)+θ3(z) (11)

Based on the DP algorithm, an optimal z∗ can be obtained by
alternating between optimizing the variables z, y and updating the
variables α , β , which solves the following four sub-problems:

yk = proxγ;θ2
(zk +αk)

αk+1 = zk +αk− yk
zk+1 = proxγ;θ3

(yk +βk)

βk+1 = yk +βk− zk+1

(12)

we set z1 = x, α1 = 0 and β1 = 0 for parameters initialization. In
our case, for the term proxγ;θ2

, namely the proximity operator of
‖x‖2,1 is the group soft-thresholding [11], defined as:

proxγ;‖·‖2,1
(xn,c) = max

(
0,1− γ

‖xn‖2

)
xn,c (13)

which indicates that any group xn with a `2-norm less than γ will
be zeroed. For the term proxγ;θ3

, we need to solve

proxγ;θ3
= arg min

z∈RM

1
2
‖z− x‖2

2 + γ ‖Gz‖2,1 (14)

which is a particular case of the more general problem
infz,y {η(z)+ γδ (y)} s.t. y = Gz where η(z) ≡ 1

2 ‖z− x‖2
2 and

δ (·) ≡ ‖·‖2,1, as such y ∈ R(N−1)C. Then, we can get its La-
grangian as L (z,y; µ) = η(z) + γδ (y) + µ · (Gz− y) with µ ∈
R(N−1)C. Inspired by [12] [13], we can transform the equivalent
saddle point problem infz,y{supu L (z,y; µ)} into the dual prob-
lem, as

inf
µ

{
η
∗(−G>µ)+ γδ

∗
(

1
γ

µ

)}
(15)

in terms of the Fenchel Conjugate [14] [13], the dual problem can
be transform as

min
µ

{
1
2

∥∥∥G>µ− x
∥∥∥2

2

}
(16)

which is quadratic with simple convex constraints [13], and it can
be solved by projected gradient method. Thus, follows from the
condition 0 = ∇zL = zx− x+G>µ∗, the proximity operator of
(14) can be recovered from the dual solution µ∗ through the e-
quality [13]

zx = proxγ;θ3
(x) = x−G>µ

∗ (17)

Two-pass Framework for Background Sub-
traction

We propose a two-pass framework for background subtrac-
tion. The framework is illustrated in Fig. 1. In the first-pass, a
low-rank and sparse matrix decomposition is introduced. In R-
PCA [1], Wright et al. considered background subtraction from
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(a) frames

 (e) X-T slice D (y=100)           (f) background B                (g) foreground F

  (b) Y-T slice D (x=78)             (c) background B               (d) foreground F

Figure 2. Illustration of the matrix decomposition (first-pass) results on

temporal slices Y-T and X-T.

a viewpoint of matrix decomposition problem, which can be ex-
pressed as follows:

min
B,F
‖B‖∗+κ‖F‖1 s.t. D = B+F (18)

where D ∈Rs×p is the observed video matrix which stacked by p
frames, and s is the size of a frame, κ is a regularizing parameter.
B and F denote the background matrix and foreground matrix re-
spectively. It is assumed that the background images are linearly
correlated with each other, forming a low-rank matrix B (‖ · ‖∗ is
the nuclear norm). And the `1-norm is employed to constrain the
foreground, since these regions should be a sparse matrix with a
small fraction of non-zero entries. However, this method ignored
the temporal continuity of foreground pixels.

Inspired by [15], we stack the temporal (T frames) slices a-
long X-T (D ∈ Rh×T ) and Y-T (D ∈ Rw×T ) as the matrices D.
Similar to Eq. (18), D can be decomposed into the low-rank part
B represent the background and the sparse component F corre-
sponds to the motion objects in the foreground. As illustrated
in Fig. 2, since background motion is usually smaller and more
regular than foreground object motion, the foreground object will
form a distinct trajectory from the background in a temporal slice
on the X-T and Y-T plane.

The motion matrices obtained from the X-T and Y-T slices
(planes) are integrated together as the residual Rt , namely the
input of second-pass. Then, in second-pass, we utilize the pro-
posed sparse signal recovery with MCFL regularizer to segment
the foreground masks.

Experiments
The experiments are conducted on real video sequences from

the I2R [16] and CDnet 2012 datasets [17]. To evaluate the effec-
tiveness of the proposed method, we compare it with six state-
of-the-art algorithms, including RPCA-PCP (PCP) [1], DECOL-
OR (DEC) [2], GOSUS (GOS) [3], TV-RPCA (TV) [6], GFL [7],
and also including a deep learning model using the Convolutional
Neural Network (CNN) [18]. For fair comparisons, all methods
are using the same input frames (matrix), and without any post-
processing (e.g., morphological operations). For parameters of
other algorithms, we employ the default settings in their codes.
Due to the pages limitation, in Fig. 3, we present several rep-
resentative results of I2R and CDnet 2012 dataset for qualitative
analysis. Here, we cannot provide the foreground detection results
of CNN [18] since its implementation is not publicly available.

The first row of Fig. 3 (a) is the “Bootstrap” sequence from
I2R dateset [16], which is a typical indoor surveillance environ-
ment where walking people are always occupied in the scene. In
other words, there is no “clean” background frames in this se-
quence. The GOS lost a lot of foreground. DEC can detect the
most foreground pixels, but it produces more false alarms due to
the smoothness constraint of the MRFs. It is noted that GFL is a
related work to ours since it based on the fused lasso. However,
it still misses plenty of foreground pixels. The proposed MCFL,
PCP and TV can achieve better foreground mask than others in
“Bootstrap”. The next three rows of Fig. 3 (a) include some typ-
ically dynamic backgrounds, such as trees shaken by wind in the
“Campus”, flickering water in the “Fountain”, and the motions
of “Escalator”. Obviously, the PCP, GOS and TV yield a large
number of false positives. DEC cannot obtain foreground object-
s completely in the “Campus”. GFL with signal channel model
of fused Lasso failed to detect the people in the “Campus” and
“Fountain”. In contrast with GFL, the proposed multi-channel
fused Lasso model can promote the detection results obviously.
The last row “Lobby” is a video with the light switch on/off,
this typical illumination variation should be quickly updated into
background model, and the same time, the system should not lose
its sensitivity to detect real foregrounds. From Fig. 3 (a), we see
that the proposed method can handle that background changes.

To provide a better evaluation, in Fig. 3 (b), we present
the comparison results on another widely used CDnet 2012
dataset [17]. As shown in first two rows in Fig. 3 (b), the mo-
tion of vegetables seriously affects the foreground detection ac-
curacy of PCP, DEC, GFL and TV. Although GOS can tolerance
that background dynamics, it also filters out the real foreground
objects. We would like to point out a weakness of the proposed
method, as shown in “Fall”, our MCFL cannot restrain the back-
grounds movement entirely when they take up a large portion of
frame. The third row of Fig. 3 (b) shows the results of “Parking”
where a truck is stopping at the parking lot after a car just moved
away. We can find that TV, GFL, and GOS lose the foreground
completely. The last two (rows) sequences are used to test the
ability of model to handle the shadows, it can be seen that the
proposed method can depress the shadows without losing the sen-
sitivity to segment the real foregrounds. Qualitatively, the results
of MCFL are the closest to the ground-truth references.

Table. 1 Comparison Of F-Measure (%) on the I2R [16] and CD-
net 2012 datasets [17] (best: bold, second best: underline).

Methods
F-Measure

I2R CDnet

RPCA-PCP (PCP) [1] 58.74 72.86
DECOLOR (DEC) [2] 73.08 75.70
GOSUS (GOS) [3] 77.67 75.36
TV-RPCA (TV) [6] 74.89 73.42
GFL [7] 85.15 72.96
CNN [18] - 83.86
Proposed 86.39 83.81

This is confirmed by the performance of the F-Measure1 in

1F-Measure is defined as 2·precision · recall/(precision+recall).
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Frame          Ground truth MCFL (ours)       PCP                     DEC                   GOS                    GFL                     TV      

Escalator

Bootstrap

Fountain

Campus

Lobby

Fall

Bus Station

Backdoor

Parking

Highway

Frame          Ground truth MCFL (ours)       PCP                     DEC                   GOS                    GFL                     TV      

(a) Results on I2R dataset (b) Results on CDnet 2012 dataset

Figure 3. Detected foreground results of videos from I2R [16] and CDnet 2012 [17] data-sets.

Table. 1. In I2R dataset, the proposed method obtains the best
average F-measure against all the other methods. In CDnet 2012
dataset, the performance of proposed MCFL is litter inferior to the
deep learning model CNN [18], and better than others obviously.

Conclusion
In this study, we improved the accuracy of background sub-

traction in dynamic environments. This is achieved by enforc-
ing the smoothness or continuity of foreground via the proposed
multi-channel fused Lasso. Experimental results verified that our
method effectively works on a wide range of complex scenarios,
and achieves a state-of-the-art performance.
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