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Abstract 

For person re-identification (re-ID), nearly all person re-ID 
algorithms use public person re-ID datasets, where these datasets 
all consist of predefined image crops containing a single person. 
Unfortunately, these image crops are not optimal for video analysis, 
so that the person detection becomes suboptimal and person re-ID 
obtains a lower performance score. In this work, several techniques 
are presented that customize the person images of a popular public 
person re-ID dataset.  

These techniques consist of customization algorithms based on 
postprocessing the person-detection bounding boxes using the 
original frames, resulting in several customized datasets to better 
facilitate person re-identification. We have evaluated five different 
ways for customization, based on widening the image crops, various 
aspect ratios and resolutions, and person instance segmentation.  
We have obtained a significant increase in performance with 
widened image crops, yielding a convincing performance increase 
of nearly 3% in the resulting Rank-1 score. Furthermore, when the 
applied random-cropping process is further optimized to this 
customization technique, an increase of even more than 4% is 
obtained. Both performance gains are a strong indication that any 
future person re-ID system may benefit from customizations based 
on the original video frames or from specializing the person 
detector. 

 
Index Terms— Person re-identification, re-ID, person 

detection, DukeMTMC, DukeMTMC-reID, original camera output, 
image crop widening, fixed aspect ratio, instance segmentation  

Introduction 
Automated person re-identification is important for numerous 

interesting applications related to surveillance and human behavior. 
Person re-identification (re-ID) enables a surveillance system with 
multiple cameras to automatically determine whether a person that 
appears in one camera was already previously encountered in 
another camera. If such a system is deployed with multiple cameras 
having non-overlapping views, person re-identification becomes 
more attractive for multiple reasons given below. 

For example, when using a smart city-monitoring system 
having multiple cameras all around the city, person re-ID can then 
be attractive, when detecting serious undesired behavior or for 
analyzing crimes captured with video material. More specifically, 
person re-ID can allow an operator to automatically obtain all 
previous locations of the suspect and visualize it as a trajectory 
through the city. This results in important information for event 
analysis, as there is most likely correlation between the person’s 
trajectory and the trajectories of possible associates, who can also 
be identified much more effectively. 

At present, indoor and outdoor environments are repeatedly 
captured by surveillance applications to monitor person behavior 
and crowd flow. Also, the surveillance allows to detect changes in 

infrastructure, buildings and the state of objects. Hence, there are 
many areas where person re-ID can be applied and can be beneficial, 
as person re-ID helps in lowering the burden to track people in multi-
camera surveillance systems, especially for longer periods of time.  

Despite the above advantages, the task of person re-ID is still 
challenging, due to busy city environments, varying weather 
conditions and camera viewpoint differences. This explains why 
only recently acceptable performance scores were reported.  

When concentrating on current research, interesting trends 
become visible. Nowadays, there are many public datasets available, 
and all adopt the same format. Hence, practically all person re-ID 
work is based on the same general approach and data setup. On one 
hand, this is attractive, since all datasets aim to be representative to 
practical circumstances, capturing persons in a wide variety, with 
realistic illumination- and pose variations. On the other hand, due to 
certain assumptions inherently present in all encountered public 
datasets, person re-ID is still complicated for practical realization.  

These assumptions originate from the format of the datasets. 
To obtain the datasets, firstly, a person detector is applied on all 
available imagery from all cameras, to obtain bounding boxes of the 
captured persons. Thus, from this process, only image crops remain. 
Next, these crops are annotated, i.e. every image crop is manually 
given a Person ID (PID), to determine which images belong to the 
same person. The problem of strictly using image crops are 
multifold and further discussed. 

The first problem is that the detection is based on the original 
camera output, while further processing strictly uses image crops. 
This blurs the relationship between detection imperfections and the 
final person re-ID performance score. Second, real-time execution 
constraints are not considered, whereas this is crucial for many 
applications. The third problem is that for privacy reasons, an open 

 
Figure 1. The effect of widening a person image crop in a typical public 
person re-ID dataset. Two example crops are shown here that are located 
very tightly around the persons. This happens quite often in any of the most 
popular public datasets encountered. At the top-right two image crops are 
shown from DukeMTMC-reID (from camera 2, frame 187077). Their locations 
in the original frame are indicated by the blue bounding boxes at the left. The 
black bars at the top-right emphasize the added region of widening, as shown 
at the bottom-right. When these images (bottom-right) are used instead of the 
original image crops (top-right), performance increases significantly. 
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set of people, where newly encountered people are continuously 
added is lacking, so that a reliable performance comparison cannot 
be made.  

This paper focuses on the first aspect, researching the influence 
of the person detection quality on the final person re-ID 
performance. To this end, we will present several techniques for 
post-processing the detected person bounding boxes, resulting in 
customized image crops, which are then used as the input images for 
the re-ID algorithm. The key to our contribution is that the dataset 
is customized, such that the dependence on the quality of the person 
detection becomes visible and can be analyzed. 

The structure of this paper is as follows. The next section gives 
more background information and presents related work from 
literature. Afterwards, the descriptions of the exact post-processing 
techniques are provided in a succeeding section. The performances 
of the presented techniques are presented in the Experimental 
Results section. Finally, the paper is concluded in the last section.  

Related Work 
Through the years, several surveys on person re-ID were 

published [1][2][3]. When Convolutional Neural Networks (CNNs) 
were introduced, re-ID performance quickly started improving, 
which hence served as a turning point for person re-ID as well. All 
recent person re-ID state-of-the-art work employs a CNN and ever 
few traditional methods with handcrafted features achieve 
performances near that of a CNN. Nevertheless, many traditional 
algorithms were published over the years, of which [4]-[7] are 
promising. Thereafter, approximately at the time of emerging CNN 
reporting, studies [8][9] were published, where CNNs clearly 
outperformed conventional algorithms. 

A typical CNN produces a likeliness score for every class, 
where for person re-ID a class is the specific Person ID (PID) in the 
CNN input image. Consequently, if such an early CNN would be 
used, the number of output classes (the CNN output vector size) 
would quickly grow with the number of persons. Even worse, for 
each new set of people, the CNN would require re-training to 
maximize performance. To deal with this issue, several solutions can 
be found in person re-ID literature, roughly divided into verification 
CNNs and metric-embedding CNNs.  

When verification CNNs are considered, the CNN takes as 
input two images of persons and the network then provides a score 
that describes how likely it is that both images contain the same 
exact person. Alternatively, when considering metric-embedding 
CNNs, the CNN learns to embed a metric. As such, the CNN takes 
a single-person image as input and then determines a feature vector, 
a so-called embedding (of the person properties). Thereby, the 
distance between the embeddings of images of the same person are 
supposed to be small (i.e. distance in the embedding space, 
measured with e.g. the Euclidian distance), while those of different 
persons are supposed to be relatively high. When compared to a 
verification CNN, this type requires less computation. That is, since 
a verification CNN can only focus on two images at a time, it must 
apply the network for every possible image pair between the current 
query and the full database. This is more expensive than using a 
metric-embedding CNN, where at test time, the CNN is applied only 
to the query image, in order to evaluate its distance to the database 
embeddings, which are computed in advance. Hence, adopting such 
a CNN makes a re-ID algorithm more feasible in practice and this 
explains why all current top-performing re-ID algorithms [10]-[12] 
are based on metric-embedding networks. 

Lastly, the categorization of using global and local features is 
worth mentioning as well. When using global features, the algorithm 

obtains a single global feature vector per person image, preferably 
end-to-end learned by a CNN. For local features, the algorithm 
obtains one final feature vector per person image that consists of a 
combination of multiple partial feature vectors. In this description, 
a global feature vector is a vector obtained by looking at the 
complete person image, while a partial feature vector is obtained by 
considering some part of the person image, e.g. one of the body 
parts. For local features, it is also possible that a global feature vector 
is part of the combination. 

Interestingly, research typically shows that combining partial 
features yields improvements over a single global feature [13]-[16]. 
Yet, two of the currently available re-ID algorithms [11][12] yield a 
high performance and are based on using global features. However, 
the work in [11] represents a fusion of the two categories, as it uses 
local features, but only during training and not at test time. 

Finally, the overall conclusion of studying the related work is 
that all previously mentioned algorithms have in common that they 
are based on solely using image crops of all persons. This blurs the 
relation between the detection imperfections and the final person re-
ID performance score. To find this relation, we will present an 
algorithm based on post-processing of detected bounding boxes, 
resulting in a customized dataset which leads to higher re-ID 
performance. 

Research Method 
This section outlines the processing steps of this study, where 

the flowchart of these steps is depicted in Figure 2. As illustrated, 
we have customized the DukeMTMC-reID dataset in several ways. 
To further clarify the exact differences between our customization 
techniques, Figure 3 contains a sample of each resulting customized 
dataset in an enlarged view. To show that typical re-ID algorithms 
do depend on the quality of the person detection as embedded in the 
applied datasets, we use the approach that is depicted in Figure 2.  

As evident in the diagram of Figure 2, several paths can be 
taken to determine the re-ID performance score of a path. Each path 
corresponds to a different dataset customization, and we will refer 
to each path as a customization variant. Prior to defining each 
individual path, we first focus on the general aspects applicable to 
all customization variants. More specifically, in the next subsection 
Datasets, the necessity of using the DukeMTMC-reID dataset is 
discussed. Then, in the Preparation Processing subsection, the 
preparation steps are considered applying to all customization 
variants. Consequently, these two subsections cover all diagram 
actions prior to the Customization Technique blocks of Figure 2. 
Thereafter, in the next subsection, the CNN-based re-ID Algorithm 
block of Figure 2 is defined. Next, the optimizations related to the 
re-ID algorithm hyperparameters are discussed in the corresponding 
subsection, which concludes the general aspects of all customization 
variants. Finally, the succeeding subsections discuss all individual 
customization techniques, six in total. 

A. Datasets 
Besides the papers, many public person re-ID datasets appeared 

as well. Nowadays, the most important datasets for person re-ID are 
Market-1501 [17], CUHK03 [18], and DukeMTMC-reID [19][20]. 
These are the largest datasets, which is essential for training CNNs. 
However, there are also many smaller ones (e.g. i-LIDs, VIPeR, 
PRID, ETHZ, CUHK01, etc.), but they were used only earlier and 
are not further exploited in this study.  

As previously stated, all these datasets have adopted the same 
data format, based on only image crops without any original frames. 
However, there is a single exception: DukeMTMC-reID [20]. This 
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dataset is derived from the person-tracking dataset DukeMTMC 
[19], which also contains all original camera frames. Hence, this is 
the reason why we employ this dataset for our experiments to show 
the importance of the person detector quality.  

B. Preparation Processing For All Customizations  
The processing blocks in Figure 2 in the region prior to the 

stack of Customization Technique blocks represent the access to the 
original camera output, which is generally used to create image 
crops that extract a customized area of the frame.  

In more detail, the following is applied for every image crop in 
DukeMTMC-reID. First, the full frame (original camera output) that 
contains the current image crop is extracted from the DukeMTMC 
dataset. Second, the bounding box (bbox) that led to the current 
image crop is localized and customized, as dictated by the selected 
Customization Technique block. Third, this customized bbox is then 
used to generate the corresponding customized image crop by 
extracting the related area of the full frame. Finally, these three steps 
are repeated for every crop in the DukeMTMC-reID dataset. 

In conclusion, the re-ID performance obtained using our 
customized datasets are virtually fully consistent with the reported 
results on the original DukeMTMC-reID dataset. This is feasible 
conclusion because the same original frames are used and the 
processing is as specified in the original papers. This has been 
verified by the obtained scores of the various customization 
methods.  

C. Person re-ID Algorithm 
To test our hypothesis that the person detector quality has a 

high impact on the re-ID performance, we have adopted an existing 
person re-ID algorithm [10]. For the selection leading to this 
algorithm, several factors were considered. The selected algorithm 
in [10] is a customized ResNet-50 CNN implementation that uses 
the triplet loss function to perform deep metric learning and is 
trained end-to-end. Deep metric learning is an integral part of the 
whole learning process and is thus not a separate step. The ResNet-
50 architecture was customized by discarding the last layer and 
adding 2 extra fully connected layers. Consequently, even though 
[10] describes an algorithm that has been succeeded by many 
alternatives, it proved to be the best choice for adoption in our work 
because it is in many aspects similar to the actual state-of-the-art and 
still performing well. Hence, the results presented in this paper will 

indeed show that the results are comparable with recent person re-
ID methods. 

D. Hyperparameter Optimization 
Since the selected re-ID algorithm was not trained earlier on 

DukeMTMC-reID, it is necessary to verify that the algorithm is still 
tuned to this dataset and our newly-generated customization variants 
(five in total, see Figure 2). For this verification, only our first four 
variants were considered. Once their performance revealed that 
tuning the algorithm to each customization variant specifically 
showed that the hyperparameter values were hardly affected, we 
omitted the algorithm finetuning for our fifth variant, as it would 
lead to the same hyperparameter setting. Further details are found in 
the Experimental Results section, subsection Hyperparameter 
Settings.  

The following algorithm hyperparameters are involved in the  
algorithm finetuning, as they most likely impact the performance 
when a different dataset is used [10]: (1) the learning rate, (2) the 
total number of training iterations, and (3) the number of training 
iterations after which the learning-rate decay starts.  

E. Baseline For All Customization Variants 
The original DukeMTMC-reID dataset is used as the baseline 

for all our customization variants. By comparing the re-ID 
performance of these variants with the re-ID performance of this 
baseline, the performance gain can be determined. For convenience, 
we refer to this baseline as a customization variant in the remainder 
of this paper. 
  

 
Figure 2. Block diagram that shows the processing steps in our study. Prior to training the algorithm, all input images are re-distributed over the customized 
datasets. The bottom customization output arrow is in bold, because several output variations are used (explained in the text).  

 
Figure 3. Sample overview of the investigated dataset customizations related 
to Figure 2. The blue frames indicate the area of the corresponding full frame 
(see Figure 1) that is utilized for at least one of the other image crops. The 
black area of the rightmost crop is part of the CNN input and represents 
recognized background area. 
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F. Customization Variant ‘Widened’ 
In many cases, we have found that the image crops are cut so 

tightly around the actual person (in the full camera frame) that some 
of their body parts are cut-off. This is not a property of DukeMTMC-
reID alone, but appears in practically every public person re-ID 
dataset that we have studied. Therefore, we investigate here what 
happens if the image crops contain more of the original image 
information, i.e. if the crops are widened.  

To construct these widened image crops, 20 pixels are added to 
each of the bbox sides, with limitations when the image borders are 
too near. This padding of surrounding data ensures that body parts 
are seldomly cropped off. However, it can still occasionally happen. 
Typically, this occurs when someone is walking quite fast and is 
captured when both legs are mostly spread. Widening by 20 pixels 
is empirically chosen and considered as a balanced choice. 

G. Customization Variants With Fixed Aspect Ratio 
(Fixed AsRO And Fixed AsRW) 

Traditionally, CNNs reshape images with variable aspect ratios 
to a fixed size, thereby changing the original aspect ratio. In case of 
person re-ID, this affects persons to become less slim than they are 
(or inverse). Since this corrupts the information on the person shape, 
it may negatively impact re-ID. 

Therefore, the two aspect ratio variants of this subsection 
ensure that all image crops have a fixed aspect ratio. This is achieved 
by extending the width of the image crops such that it fits to the 
height in the desired aspect ratio. As a result, the whole customized 
dataset has this aspect ratio. Afterwards, the common CNN image-
resize operation is still applied to ensure that the CNN is always 
supplied with images of fixed resolution, as this resizing is part of 
the person re-ID algorithm. Consequently, the aspect ratios change 
again, but it is now ensured that every image crop gets the same 
aspect ratio change from end-to-end.  

We have created two variants for the previous (effective) two-
step procedure. In the first variant, the image crops from the baseline 
are extended as described above. We refer to this variant as Fixed 
AsRO to indicate the overall fixed aspect ratio of the resulting 
customized dataset (Fixed AsRO refers to: Fixed Aspect Ratio 
Original). For the second variant, the image crops from the 
customization variant ‘widened’ are extended with the same method 
(referred to as Fixed AsRW: Fixed Aspect Ratio Widened). 

H. Customization Variant With Less Image 
Compression (Less ImC) 

This variant investigates how (higher) image compression may 
impact performance. We noticed that the image crops from the 
DukeMTMC-reID dataset reveal slightly different compression 
artifacts than the original frames (DukeMTMC). That is, the 
‘blockiness’ artifacts from block-based compression in the 
DukeMTMC-reID image crops do not align with the ‘blockiness’ 
artifacts of the original frames. This is most likely caused by the 
different block-grid location of the crops in the original frames, in 
combination with applying compression again. Therefore, in this 
customization variant, the original frame data at the desired image-
crop location are directly copied to recreate the image crops of 
DukeMTMC-reID with the original MPEG compression artifacts. 

I. Customization Variant Using Instance 
Segmentation (Inst. Segm.) 

With this customization, we investigate whether instance 
segmentation (i.e. person segmentation) can help improve re-ID 
performance, as this forces the network to solely learn the person of 
interest (PoI, see e.g. the segmented sample in Figure 3). 
Consequently, instance segmentation ensures that the network 
cannot coincidentally find some random property in the background 
that would help the re-ID. This approach as a whole makes it harder 
for the network to overfit. 

However, creating a proper instance segmentation mask for 
every PoI proved to be complicated. That is, in many image crops 
multiple persons occur, which results in multiple instance masks per 
image crop, even with a perfect instance segmentation. Hence, a 
selection process (see below) is required to localize the PoI for each 
image crop. Furthermore, the selection process may also be able to 
resolve some of the instance segmentation errors that occur, but is 
not always capable to correct those errors.  

The exact selection process, as used for this variant, first 
removes all masks that the instance segmentation classified as a car 
or an accessory, like a backpack or an umbrella. Unfortunately, 
sometimes the selection process cannot remove all non-person 
masks, because the instance mask that best describes the PoI is a 
misclassified mask. Next, the mask that has the most overlap with 
the middle area of the image crop is selected. Finally, all accessory 
masks that are located near the selected middle mask are re-added.  

To create the customized dataset, Mask R-CNN [21][22] is 
applied to every image crop from the widened dataset,  where the 
Mask R-CNN instance was pretrained on the COCO dataset, as a 
part of [22]. 

J. Optimizing Crop-Strength Of Random Cropping 
As a final step, the algorithm’s random cropping phase is 

finetuned to the best performing dataset customization, which is 
identified in the next section as Variant Widened. Prior to 
finetuning, the processing pipeline of the re-ID algorithm is first 
explained. The first step of the pipeline is resizing of the image crops 
from the customized dataset to a fixed resolution. The second step 
is the random cropping phase, where the resized images are cropped 
to another fixed-, but lower resolution and the remaining area of the 
image is selected randomly. Finally, the CNN is applied on these 
randomly-cropped resized images.  

Since the CNN input image dimensions are fixed and the 
algorithm cannot alter the image dimensions of the dataset itself, the 
first image resizing step effectively determines which part of the 
image is removed by random cropping. The desired image 
dimensions form a key parameter that defines the crop-strength of 
random cropping. In other words, this determines which area of the 
original image is supplied to the CNN. We refer to this area as the 
CNN Window. 

Additionally, this image resizing changes the aspect ratio as 
well. Therefore, in the experiments we have explored two aspect 
ratios with four resolutions each. This experiment makes it possible 
to find the best combination of resolution and aspect ratio for all 
cropping strategies. The first aspect ratio is based on the original 
DukeMTMC-reID dataset, while the second aspect ratio is using the 
default parameters of the re-ID algorithm.  
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Experimental Results 
This section is divided in four subsections. The first subsection 

(A) describes which hyperparameter setting proved to be optimal for 
DukeMTMC-reID and our customization variants. The second 
subsection (B) on Dataset Customizations indicates which 
customization variant yields the best re-ID performance. The third 
subsection (C) addresses which crop-strength of random cropping is 
optimal. Finally, the fourth subsection (D) evaluates instance 
segmentation. 

For every customization variant, several full training iterations 
are performed to determine the re-ID performance. This repetition 
is required to obtain stable output results, since every iteration leads 
to a slightly different performance score, even with constant hyper-
parameters. 

A. Hyperparameter Settings  
In the previous section, it was found that the first four 

customization variants resulted in the same optimal hyperparameter 
setting. In the subsection, we explain how we came to this 
conclusion and describe the underlying experiments. 

We first evaluate which value settings of the chosen 
hyperparameters optimize the selected person re-ID algorithm. This 
is repeated for every individual customization variant. Table 1 
depicts five different settings for the hyperparameter values. 
Figure 4 visualizes the scores for the five different parameter 
settings for each of the five shown customization variants. As 
mentioned above, training is repeated a number of times, therefore 
the error intervals in Figure 4 indicate the spread of the Rank-1 
scores of the repetitions per hyperparameter setting, while the 
rectangular bars indicate the average values. These averages result 
from the repeated experiments for every setting to obtain stable 
outcomes. 

To limit the total training time, training on each setting is 
repeated with a variable number of iterations. For the baseline, each 
hyperparameter setting was executed 3 times, except for Setting 3, 
which was executed 14 times. For all other customization variants, 
it proved sufficient to run Setting 1, 4, and 5 only once, since the 
performance of these settings compared to the baseline is nearly 
identical (the rectangular bars of these settings have therefore no 
error interval for that reason). Finally, Settings 2 and 3 executed 3 
and 14 times, respectively. 

The gain in Rank-1 performance score of each setting is plotted 
relative to Setting 3 of that customization variant, because this 
setting proved to be optimal for all customization variants. Setting 4 
comes close in performance to Setting 3, but shows less stable 
behavior, as it performs sometimes equal and sometimes higher. 
Furthermore, Setting 3 is in agreement with the hyperparameter 
values from the selected algorithm in [10], thereby confirming that 
this default setting is also optimal for DukeMTMC-reID. 

B. Performance Of Customizations Variants 
Now that the optimal setting of hyperparameters is found, 

training is repeated 14 times for each variant, see Figure 5 for the 
obtained results. The figure shows the performance distribution of 
the repetition iterations of each variant in the form of box plots.  

It can be observed that a significant performance increase is 
obtained by widening the image crops. This confirms that the 
original person image crops are indeed cut too tightly around the 
persons. Hence, it is logical to extrapolate that, when a recent state-
of-the-art detector would be deployed, the impact on performance 
would be even higher.  

From the other results in Figure 5, it is remarkable that both 
fixed aspect ratio variants do not outperform the widened variant. 
However, they do outperform the baseline. This performance 
increase is likely explained by the effective widening of the image 
crop due to the aspect ratio adaptation, so that more context pixels 
are inside the crop. This is in agreement with the Fixed AsRW variant 
performing better than the Fixed AsRO variant. However, this 
variant does also show that the network without any modifications, 
is not sufficiently able to learn to exploit the size of a person for re-
ID. After all, in most cases, the newly added extra pixel columns for 
these variants contain either background or adjacent persons. 

Table 1: The values of the three hyperparameters for every 
hyperparameter setting, as referenced in Figure 4. 

 
Learning 
Rate 
(LRate) 

Number of 
train iterations 

Starting point 
of LRate decay 

Setting 1  1 ∙ 10−4 50,000 35,000 
Setting 2  3 ∙ 10−4 50,000 35,000 
Setting 3  3 ∙ 10−4 25,000 15,000 
Setting 4  5 ∙ 10−4 25,000 15,000 
Setting 5  8 ∙ 10−4 25,000 15,000 

 
Figure 4. Gain in re-ID performance for the hyperparameter settings of 
Table 1, applied for every customization variant. For all rectangular bars of a 
dataset customization, the gain is shown relative to its Hyperparameter 
Setting 3 and all negative gain values are clipped at -5% to improve visibility. 
The error intervals on top of each rectangular bar indicate the 25th and 75th 
percentile of the repeated iterations.  

 
Figure 5. Rank-1 performance score comparison between the dataset 
customization types, as described in the Research Method section. The box 
plots show the distribution of in total 14 repetitions. 
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However, it is possible that correcting for the person pose with 
respect to the camera may make the person size more clearly visible. 

Finally, with respect to the Less ImC variant, it can be 
concluded that extra image compression has negligible impact on 
the performance. 

C. Crop-Strength Of Random Cropping 
Performance can be increased even further when adjusting the 

crop-strength of the random cropping phase. This, we solely apply 
random cropping on the widened variant, which performed best in 
Figure 5. As mentioned, the input image is resized during random 
cropping. In Table 2, the used resizing resolutions and effective 
CNN Window of the input image are depicted. These resolutions are 
referenced in Figure 6, which presents the corresponding impact on 
the random-cropping performance. The CNN Window is chosen 
relative to the average input image size, which is 258 x 124 pixels 
for DukeMTMC-reID. If after resizing the dimensions increase, the 
CNN Window decreases, since the dimensions of the CNN input 
image (i.e. after resizing and after random cropping) remain 
constant. 

Both choices of the aspect ratio show that random cropping of 
less pixels improve performance. Furthermore, the default aspect 
ratio, where the image crops are resized such that their height is 
double the width, is shown to be most efficient (see the yellow area 
in Figure 6 and the corresponding values in Table 2). 

D. Instance Segmentation 
Figure 7 presents the results on the instance segmentation 

dataset. The blue area shows that setting the detected background 
pixels to either grayscale intensity value 0 or 1 has negligible impact 
on performance, as all results are approximately equal. Furthermore, 
a slight increase in performance is evident when we omit the images 
on which the instance segmentation fails to produce any masks. This 
indicates that these failure cases are unlikely to be responsible for 
the observed drop in performance.  

The yellow area of Figure 7, representing the final instance 
segmentation masks are dilated with an increasing number of pixels. 
The visualization of these dilation levels is shown in Figure 8. The 
results show that any positive level of dilation increases 
performance, up to even high dilation levels.  

Furthermore, when comparing the scores in Figure 7 with the 
widened variant, it is remarkable that none reach the score of the 
widened dataset. This can either mean that there are too many 
mistakes present in the instance segmentation such that the network 
can no longer learn person traits properly, or that the network is 
utilizing coincidental similarities found in the background that help 
to match people and thus indicate that the network is overfitting. We 
consider the first option most likely, since it is difficult to design a 
selection method that automatically selects the correct mask.  This 
holds particularly when the PoI is occluded by other people. 
  

Table 2 – The after-resizing resolutions as used in Figure 6, 
with similar color coding. The difference with the CNN input 
dimensions, which is 256 x 128, is removed by random 
cropping. In the CNN Window column, the effective CNN 
Window of the input image after random cropping is also 
indicated. This is relative to the average input dimensions, 
which is 258 x 124 for DukeMTMC-reID. The two bold table 
dimensions refer to the entry in the rightmost column. 

 After resizing,  
in [H x W] 

CNN Window (w.r.t. 
input) in [H x W] 

Aspect ratio 
based on 

Reso. 1 319 x 199 207 x 80 Non-
widening 
average 

Reso. 2 303 x 189 218 x 84 
Reso. 3 288 x 180 229 x 88 
Reso. 4 275 x 172 240 x 92 
Reso. 5 298 x 149 222 x 107 

Default 
parameters 

Reso. 6 288 x 144 229 x 110 
Reso. 7 278 x 139 238 x 114 
Reso. 8 268 x 134 246 x 118 

 
Figure 6. Influence of the crop-strength of random cropping for the resolutions 
as shown in Table 2. Bars in similar colored areas use the same aspect ratio. 

 
Figure 7. The instance segmentation results. In the blue area, the influence of 
either the background value (BG) or the exclusion of faulty segmentations 
(BG0 omit and BG1 omit) is shown. In the yellow area, the segmentation 
masks are increasingly dilated when going to the right. 

 
Figure 8. Impact of dilating the segmentation masks. These image crops 
correspond to the five dilation levels as indicated in the yellow area of 
Figure 7, respectively. 
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Discussion 
Since DukeMTMC-reID is the only dataset that publishes the 

original frames, we have reported results on this single public 
dataset to facilitate comparisons. Although the other datasets have 
not published the original frames, our reported results do provide a 
good comparison with related work. 

Conclusion 
We have customized the public DukeMTMC-reID dataset in 

five different ways to analyze the dependence of the data input on 
the operational quality of a person detector that is used for person 
re-identification (re-ID). These five customizations involve a 
baseline system with the original tight cropping, a widened 
cropping, two croppings with initial constant aspect ratio (later 
modified for fixed resolution by the person re-ID algorithm), and 
finally a cropping with person instance segmentation. The results 
indicate that a significant performance increase can be achieved by 
widening the image crops alone. On the selected person re-ID 
algorithm, which compares well with related work, we witnessed a 
convincing increase in performance of nearly 3% Rank-1 score. 
When optimizing the crop-strength of the random cropping, an 
increase of even more than 4% is obtained. This is a strong 
indication that the bounding boxes used to obtain the original person 
image crops are indeed located too tightly around the actual persons 
of interest and person detector customizations are useful.  

Furthermore, since there is only one public person re-ID dataset 
that allows access to the original frames (DukeMTMC-reID), is also 
a strong indication that person detector customizations have not 
been actively pursued in research. Our study has clearly shown that 
a good object cropping algorithm can largely affect object re-ID 
performance.  

Acknowledgment 
The work in this paper is funded by the European PS-Crimson 

project, in the framework of the ITEA research program. 

References 
[1] Bedagkar-Gala A, Shah SK. A survey of approaches and trends in 

person re-identification. Image and Vision Computing. April 2014; 
32(4):270-86. 

[2] Zheng L, Yang Y, Hauptmann AG. Person re-identification: Past, 
present and future. arXiv preprint arXiv:1610.02984. October 2016. 

[3] Karanam S, Gou M, Wu Z, Rates-Borras A, Camps O, Radke RJ. A 
Systematic Evaluation and Benchmark for Person Re-Identification: 
Features, Metrics, and Datasets. IEEE Transactions on Pattern 
Analysis & Machine Intelligence. (1):1-1. February 2018 
NB: this is the 2018 revision, for all versions, see arXiv. 

[4] Farenzena M, Bazzani L, Perina A, Murino V, Cristani M. Person re-
identification by symmetry-driven accumulation of local features. In 
IEEE Conference on Computer Vision and Pattern Recognition 
(CVPR), June 2010, (pp. 2360-2367). 

[5] Ma B, Su Y, Jurie F. Bicov: a novel image representation for person 
re-identification and face verification. In British Machine Vision 
Conference, September 2012. 

[6] Zhao R, Ouyang W, Wang X. Learning mid-level filters for person re-
identification. In Proceedings of the IEEE Conference on Computer 
Vision and Pattern Recognition, June 2014, (pp. 144-151). 

[7] Yoon S, Khan FM, Bremond F. Efficient Video Summarization Using 
Principal Person Appearance for Video-Based Person Re-
Identification. In The British Machine Vision Conference (BMVC), 
September 2017. 

[8] Ahmed E, Jones M, Marks TK. An improved deep learning 
architecture for person re-identification. In Proceedings of the IEEE 
Conference on Computer Vision and Pattern Recognition (CVPR), 
June 2015, (pp. 3908-3916). 

[9] Xiao T, Li H, Ouyang W, Wang X. Learning Deep Feature 
Representations with Domain Guided Dropout for Person Re-
Identification. In Proceedings of the IEEE Conference on Computer 
Vision and Pattern Recognition (CVPR), June 2016, (pp. 1249-1258). 

[10] Hermans A, Beyer L, Leibe B. In Defense of the Triplet Loss for 
Person Re-Identification. arXiv preprint arXiv:1703.07737. March 
2017. 

[11] Zhang X, Luo H, Fan X, Xiang W, Sun Y, Xiao Q, Jiang W, Zhang 
C, Sun J. AlignedReID: Surpassing Human-Level Performance in 
Person Re-Identification. arXiv preprint arXiv:1711.08184. 
November 2017. 

[12] Almazan J, Gajic B, Murray N, Larlus D. Re-ID done right: towards 
good practices for person re-identification. arXiv preprint 
arXiv:1801.05339. January 2018. 

[13] Zheng L, Huang Y, Lu H, Yang Y. Pose Invariant Embedding for 
Deep Person Re-identification. arXiv preprint arXiv:1701.07732. 
January 2017. 

[14] Li D, Chen X, Zhang Z, Huang K. Learning Deep Context-Aware 
Features over Body and Latent Parts for Person Re-identification. In 
Proceedings of the IEEE Conference on Computer Vision and Pattern 
Recognition (CVPR), July 2017, (pp. 384-393). 

[15] Su C, Li J, Zhang S, Xing J, Gao W, Tian Q. Pose-driven Deep 
Convolutional Model for Person Re-identification. In IEEE 
International Conference on Computer Vision (ICCV), October 2017, 
(pp. 3980-3989). 

[16] Zhao H, Tian M, Sun S, Shao J, Yan J, Yi S, Wang X, Tang X. 
Spindle Net: Person Re-identification with Human Body Region 
Guided Feature Decomposition and Fusion. In Proceedings of the 
IEEE Conference on Computer Vision and Pattern Recognition 
(CVPR), July 2017, (pp. 1077-1085). 

[17] Zheng L, Shen L, Tian L, Wang S, Wang J, Tian Q. Scalable person 
re-identification: A benchmark. In Proceedings of the IEEE 
International Conference on Computer Vision, December 2015, (pp. 
1116-1124). 

[18] Li W, Zhao R, Xiao T, Wang X. DeepReID: Deep Filter Pairing 
Neural Network for Person Re-identification. In Proceedings of the 
IEEE Conference on Computer Vision and Pattern Recognition 
(CVPR), June 2014, (pp. 152-159). 

[19] Ristani E, Solera F, Zou R, Cucchiara R, Tomasi C. Performance 
Measures and a Data Set for Multi-Target, Multi-Camera Tracking. In 
European Conference on Computer Vision (ECCV), October 2016, 
(pp. 17-35). 

IS&T International Symposium on Electronic Imaging 2019
Image Processing: Algorithms and Systems XVII 268-7

https://arxiv.org/abs/1605.09653


 

[20] Zheng Z, Zheng L, Yang Y. Unlabeled Samples Generated by Gan 
Improve the Person Re-identification Baseline in Vitro. In 
Proceedings of the IEEE International Conference on Computer 
Vision (ICCV), October 2017 (pp. 3754-3762). 

[21] He K, Gkioxari G, Dollár P, Girshick R. Mask R-CNN. In 
Proceedings of the IEEE International Conference on Computer 
Vision (ICCV), October 2017 (pp. 2980-2988). 

[22] Abdulla W. Mask R-CNN for object detection and instance 
segmentation on Keras and TensorFlow. In GitHub repository, 
available from: https://github.com/matterport/Mask_RCNN, since 
October 2017, last accessed on 2018 July 17. 

Author Biographies 
Herman Groot is a PhD at the Electrical Engineering faculty of 

Eindhoven University of Technology (TU/e, the Netherlands). His 
PhD study currently focuses on person re-identification, but halfway 
through his PhD, the focus will shift more towards robotics, since – 
ultimately – he strives to be involved in future space-exploration 
missions. To this end, he would eagerly want to broaden his image 
processing skills in order to become an expert in space-related image 
processing techniques. Fittingly, he finalized several MSc elective 
courses at the Aerospace Engineering faculty of Delft University of 
Technology (TU Delft, the Netherlands) and did his MSc internship 
at the Netherlands Aerospace Centre in Amsterdam (NLR, the 
Netherlands). 

Egor Bondarev obtained his PhD degree in the Computer 
Science Department at TU/e, in research on performance predictions 
of real-time component-based systems on multiprocessor 
architectures. He is an Assistant Professor at the Video Coding and 
Architectures group, TU/e, focusing on sensor fusion, smart 
surveillance and 3D reconstruction. He has written and co-authored 
over 50 publications on real-time computer vision and image/3D 
processing algorithms. He is involved in large international 
surveillance projects like APPS and PS-CRIMSON. 

Peter H.N. de With is Full Professor of the Video Coding and 
Architectures group in the Department of Electrical Engineering at 
Eindhoven University of Technology. He worked at various 
companies and was active as senior system architect, VP video 
technology, and business consultant. He is an IEEE Fellow, has (co-
)authored over 400 papers on video coding, analysis, architectures, 
and 3D processing and has received multiple papers awards. He is a 
program committee member of the IEEE CES and ICIP and holds 
some 30 patents. 

268-8
IS&T International Symposium on Electronic Imaging 2019

Image Processing: Algorithms and Systems XVII

https://github.com/matterport/Mask_RCNN


• SHORT COURSES • EXHIBITS • DEMONSTRATION SESSION • PLENARY TALKS •
• INTERACTIVE PAPER SESSION • SPECIAL EVENTS • TECHNICAL SESSIONS •

Electronic Imaging 
IS&T International Symposium on

SCIENCE AND TECHNOLOGY

Imaging across applications . . .  Where industry and academia meet!

JOIN US AT THE NEXT EI!

www.electronicimaging.org
imaging.org


	Introduction
	Related Work
	Research Method
	A. Datasets
	B. Preparation Processing For All Customizations
	C. Person re-ID Algorithm
	D. Hyperparameter Optimization
	E. Baseline For All Customization Variants
	F. Customization Variant ‘Widened’
	G. Customization Variants With Fixed Aspect Ratio (Fixed AsRO And Fixed AsRW)
	H. Customization Variant With Less Image Compression (Less ImC)
	I. Customization Variant Using Instance Segmentation (Inst. Segm.)
	J. Optimizing Crop-Strength Of Random Cropping

	Experimental Results
	A. Hyperparameter Settings
	B. Performance Of Customizations Variants
	C. Crop-Strength Of Random Cropping
	D. Instance Segmentation

	Discussion
	Conclusion
	Acknowledgment
	References
	Author Biographies

