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Abstract

In this paper{ﬂ we propose a novel vision-based on-street
parked vehicle detection method via view-normalized classifiers.
Our method consists of two phases: (1) an offline process to train
site-independent object classifiers and set various site-specific pa-
rameters and (2) a runtime process where streaming video frames
are analyzed to determine the occupancy of the parking site. We
incorporate temporal filtering, view-normalization, and tempo-
ral correlation into a core computer vision-based parked vehicle
detection method to achieve real-time determination of on-street
parking occupancy. Our method combines image processing tech-
niques with machine learning to yield efficient and accurate re-
sults. It does not require site specific re-training of the classi-
fiers and thus is most suitable for large deployment or for quick
parking occupancy surveys covering a wide-area of interest. Two
experiments are conducted. The first experiment consists of six
cameras monitoring a block of a street. The results show that our
method is robust against site variations as well as camera varia-
tions. The other experiment is a small-scale deployment, where 11
cameras are used to monitor four blockfaces of a city. The results
confirm that our method can achieve adequate accuracy without
re-training of vehicle classifiers or refinement of parameters.

Introduction

Urban parking management is an important component for
intelligent transportation systems. Studies [1] - [3] have shown
that vehicles cruising for parking has contributed significantly to
increasing waste of gasoline, and the increase of emission and
traffic. Being able to provide parking availability and fee infor-
mation to drivers in a timely manner can greatly reduce such
cruising time or behavior [3[]. Hence, there are a great deal of
interests in developing technologies and tools for parking man-
agement. In the areas of collecting availability information, many
sensing technologies, visual or non-visual , can be used for park-
ing occupancy determination. A brief review can be found in [4].
In this paper, we are interested in determining parking occupancy
through visual sensing due to its low cost and extensibility to other
surveillance applications. Furthermore, our focuses are mainly on
developing methods for on-street parking.

Although having detailed information for all street blocks in
the city are great, it may not be cost effective or necessary. Var-
ious modeling and survey methods can be applied to determine
how to best allocate parking sensors for acquiring real-time oc-
cupancy information. For example, one can collect parking me-
ter data over a period of time to build a spatial-temporal parking
occupancy prediction model. For another example, one can con-
duct surveys by monitoring streets and recording their occupancy
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over time. More effectively, one can also combine all sources
of information to build a model. Since these data can be highly
heterogeneous (different time and space, scale and resolution, ac-
curacy and cost, etc.), the modeling can be challenging. But in
any case, the resulting models and the understanding of parking
usage pattern can then be used by city officials for better planning
and management (e.g., through legislation, pricing, etc.). The in-
formation can also be used to determine optimal parking sensor
allocations for collecting on-going real-time parking occupancy
information. Since the pattern may change seasonally or due to
policy change, constant update of the model is beneficial.

With that, we are particularly interested in enabling a solu-
tion called, mobile survey system, with our parking occupancy
determination (PCD) method. A mobile survey unit consists of a
trailer with pole-mounted cameras (see [, [6]) and a computer
running PCD algorithms on the streaming videos. Several of the
units can then be moved around the city to collect parking oc-
cupancy information. Although, there are many existing vision-
based parked vehicle detection methods available for PCD. Not
many are real-time. One possible candidate is the method in [7].
Reference [7] presents a real-time vision-based on-street parking
occupancy determination method. It utilizes several components
of video processing and computer vision to accomplish this task.
One of the key limitations for applying this work to large deploy-
ment or mobile survey applications is the efforts needed for an
off-line training of specific vehicle classifier for each site/street
(i.e., site-specific). There are also parameters in its video pro-
cessing steps that require fine-tuning for each site. It is thus most
suitable for applications, where the camera is installed at a fixed
location with fixed field of view (FOV); and the intention is to use
that camera for a long period of time. That is, it is most suitable
as a stationary solution. Since a mobile survey unit will be posi-
tioned on each street block for only a short period of time (e.g.,
a few days), video analytics for PCD for the mobile system will
have to work without complicated setup or re-training of the clas-
sifier for each particular street. It is thus our goal to develop a
method that can address issues from large deployment and appli-
cations like mobile survey system.

In this paper, we propose a novel vision-based on-street
parked vehicle detection method via view-normalized classifiers.
An overview of our method is shown in Fig. [[] Like many ex-
isting vision-based object detection methods, our method consists
of two phases: (1) an off-line process to train site-independent
object classifiers and set various site-specific parameters (dashed-
line path) and (2) an on-line/run-time process where streaming
video frames are analyzed to determine the on-going occupancy
of the parking site (solid-line path). More details will be discussed
in the later sections.

The remainder of this paper is organized as follows. In Sec-

265-1

1.IPAS-265
2019, Sociely for Imaging Science and Technology



{ Training of view- |

normalized
i vehicle classifiers

Temporal

Temporal filtering _{
correlation

for outlier rejection

e
m
-

_{ Spatial ’ _{ Parked vehicle > Occupancy

transformation (1) detection

Video -{

—

)

Figure 1. Vision-based on-street parked vehicle detection method via view-
normalized classifiers

tion 2, off-line parameter settings: training of view-normalized
classifiers and view-normalization technique, are discussed. Our
vision-based on-street parked vehicle detection method are pre-
sented in Section 3. Section 4 presents the experimental re-
sults on the robustness of our method and the results of applying
our method to a small-scale real-world deployment of four street
blocks. Conclusion and future work are presented in Section 5.

Off-line parameter setting or learning

Prior to applying our algorithm for on-street parked vehicle
detection, there are two off-line parameter setting/learning pro-
cesses needed. The first off-line process is to define the ROI for
each deployment site and then derive the view-normalization pa-
rameters to be used in the later analysis of this site. This step is
site-dependent, since we need to specify these parameters for ev-
ery site. However, it only needs to be done once per site. The
other off-line process is to train view-normalized generic clas-
sifiers, where the training data can be extracted from various
sources of on-street parking images. The source can be from part
of the deployment sites or somewhere else and thus is independent
of the deployments. More details are described in the following.

Regions of Interest and view-normalization

In order to monitor the on-street parking occupancy of a
scene via pole-mounted cameras, one need to first specify the
parking regions and/or the position of the individual stall. Various
scene understanding techniques may be applied to perform such
task automatically. However, this can be a challenging task on its
own and is beyond the scope of this paper. Instead, we choose to
develop a simple GUI to facilitate human operator to specify the
ROL. Since this only needs to be done once for each site, we think
that a GUI is a good interim solution to achieve faster time to the
market of our method. Figure 2] illustrates our process of ROI
definition and the derivation of view-normalization parameters.

Via GUI, first we specify the ground outer corners of each
parking stall (cyan squares in Fig. Zh). Then we specify at least
two top corners of the entire parking zone (yellow squares in Fig.
Eh). The top corners are used to provide information about the
height range of the vehicles and to fine tune the vertical orienta-
tion of the camera view. We then extend the region outward for 30
pixels and fit two second-order polynomial curves (red and blue
curves in Fig. Ph). These two curves define the ROI within a
parking area of interest for on-street parking occupancy determi-
nation. By sampling uniformly along the two curves and across
them (cyan mash in Fig. Qn), we can derive a transformation 7
that will convert image of the ROI into a fix height Hy image
strip shown in Fig. Zk. The red line shows the boundaries de-
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fined by the marked stall corners in the ROI. As shown in the
figure, the width of each stall is different since the projective dis-
tortion is not yet corrected by 7. Given that the corresponding
position of the corner of each stall is known, a second transfor-
mation 75 is computed to make every stall having the same width
Wy as shown in Fig. 2Jd. A final view-normalization transforma-
tion T for the given ROI can be thus computed as the composite
of T5(T). In effect, it converts the image of the ROI into a fixed
height image strip with each stall having the size Hy x Wy. The
view-normalization parameters, 7', are stored for run-time analy-
sis of images of this site.

(© (d)

Figure 2. Define ROI and derive view-normalization parameters T

Note that defining the ROI allows us to limit the region for
parked vehicle detection, thereby decreasing search time and in-
creasing accuracy. The view-normalization further allows us to
make all deployment sites look similar, which enables us to train
only a small set of classifiers while achieving acceptable accuracy
across wide range of deployment sites.

Training of view-normalized classifiers

In this section, we describes how a set of generic parked ve-
hicle classifiers are selected and trained via machine learning and
view-normalization techniques. We use the term, generic, to con-
trast a typical site-specific classifier, which needs to be trained for
every deployment site and is suitable for that specific site only [7].
The basic idea is to pre-train a set of generic vehicle classifiers,
which we can choose from later for each deployment site. For effi-
ciency consideration, we choose to attack this problem using more
traditional approaches rather than deep learning approaches (e.g.,
YOLO?2 [8] and MaskRCNN [9]), where hand-crafted features are
used rather than learned feature. In particular, we use histogram
of oriented gradients (HOG) [[10] as the feature and support vector
machine (SVM) as the machine learning method to train a set of
HOG-SVM classifiers. In contrast to deep feature, hand-crafted
features are sometimes referred as shallow features. Although one
can attempt to train a single super capable generic classifier with-
out view-normalization for large deployment by collecting a large
training samples covering wide range of variations (similar to the
deep learning approaches). But this requires a large amount of la-
beled training samples and still may not yield desired performance
through shallow feature like HOG. This is because the shallow
feature is not as information rich as deep feature. A training data
set covering large variety of samples for shallow feature may ex-
ceed its capability. This is the reason why at some points one need
to training specific HOG-SVM classifiers for each site or for only
a group of sites with similar views to achieve good performance
as in [7]. To overcome this, we introduce view-normalization to
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reduce the number of generic classifiers needed while still yield-
ing a good performance.

To train view-normalized generic classifiers, samples are
collected from example street(s) by acquiring image frames of
the site(s), extracting ROI followed by a view normalization pro-
cess, and then cropping out view-normalized positive and negative
samples. Figure [3] shows examples of view-normalized training
samples. The training procedure is the same to that in[7] except
with the addition of view-normalization process. This step is per-
formed off-line; and the training samples can be collected from
sites other than the actual deployment sites.

(d)

Figure 3. Example training samples for generic view-normalized classifiers.

In summary, view normalization process attempts to make
each ROI appear as if it was acquired from the same camera per-
spective. If effective, this process can reduce the number of views
needed to be trained for the HOG-SVM classifiers. Ideally we
would like to reduce the number of views to one, however, we
found that using two views, separating out front and rear views,
is beneficial (see experimental section). The reason is that due
to physical constraints, we cannot image only the side-view of the
vehicles. Some portion of the front or the rear of the vehicles were
seen by the cameras causing additional variations across the two
views. This two-view method enables us to generate generic clas-
sifiers that can be applied to various sites without re-training and
without incurring significant accuracy degradation. This is par-
ticularly suitable for applications where our method can be used
for large deployment and provide valuable occupancy informa-
tion immediately. For the deployment sites where the long-term
occupancy monitoring is desired, our method can also gracefully
morph into using site-specific classifiers through active learning
techniques such as those in [11]] - [12] .

On-street parked vehicle detection

In this section, we describe the main flow of our method fo-
cusing on the run-time portion of the process (solid-line path in
Fig. [I). For each deployment site, first the ROI and its corre-
sponding view-normalization parameters are specified or derived
using method discussed earlier. The generic pre-trained classifier
is also selected based on the view of the camera (front view vs.
rear view). After that, the run-time processing for determining
parking occupancy can proceed.

Temporal filtering
First, we perform temporal median filtering on the raw video
frames to obtained a median frame for a given time of interest.
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More formally speaking, let us assume that we are interest in mea-
suring the occupancy of the parking area at time #;,i = 1,2,.... We

would extract the median frame [(r;) = median I(r), where,
ti—M<t<t;+M

1(¢) is the the raw video frame at time 7 and M is the half-duration
of the temporal median filter. By adjusting M, one can determine
the temporal scale where moving objects will be removed from
the resulting median frame. This is especially effective for park-
ing applications since the interest is in detecting stationary ve-
hicles rather than those in motion. As a result, temporal filtering
removes outliers such as occlusion due to adjacent traffic, pouring
rain/snow, and camera shake, etc. Figure []illustrates a compari-
son of image frames without vs. with temporal filtering (M = 15
second). As seen in Fig. Eb, transient information such as (1) a
big truck that blocks the view of a parked car at the far-end and
(2) an opened passenger door of the 3rd parked car are removed.
The removal of big truck allows our method to detect the parked
vehicle even in the presence of occlusion. The removal of opened
passenger door allows our method to detect this parked vehicle
more robustly.

Figure 4. lllustration: image frame (a) without and (b) with temporal filtering.

View normalization

Next, we perform a spatial transformation to obtain a view-
normalized ROI J(t;) from the median image frame f(t;). This
step, in effect, corrects the camera projective distortion and extract
and normalize the segment of image frames corresponding to the
normalized view of the ROI. As discussed previously, this process
can be achieved with a simple image warping using 7. That is,
J(t) = T(i(t;)). As illustrated in Fig. El the image of the ROI
segment in Fig. @1 was converted into a view-normalized segment
in Fig. Bp using pre-determined site-specific 7.

Vision-based vehicle detection

In this step, parked vehicle detection utilizing the classifier
selected (i.e., either front-view or rear-view) is performed. Like
many computer vision approaches, sliding window method with
non-maximal suppression is used to turn object detection into a
collection of object classification problem.

Temporal correlation

Depending on the parking behavior and the demand for each
site, different temporal scales may be needed for its occupancy
determination. To gain some efficiencies for slow varying site or
filtering out temporal inconsistency, we further perform temporal
correlation on the image content of the normalized views and the
temporal occupancy information and fuse the results with the cur-
rent occupancy information to yield the final current occupancy
information of the ROL.
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(b)

Figure 5. lllustration of spatial transformation for view-normalization.

These temporal correlation steps are performed before or af-
ter the parked vehicle detection depending on the particular algo-
rithms. The objective is to improve the efficiency and accuracy of
the results from the parked vehicle detection alone. Currently, we
performed the following temporal correction and fusion:

e Compute the correlation R between two temporally consec-
utive normalized ROl stripes, J(#;,—1) & J(t;). If R > ny, skip
parked vehicle detection and use the occupancy result from
a previous time-stamp #;_1). We found in our experiment
that 177 = 0.995 works well. This step is performed before
parked vehicle detection.

o Identify (pixel) locations of segments, where the occupancy
information was changed between two temporally consecu-
tive normalized ROI stripes. For each identified location of
segment, compute the correlation r; between the segments
extracted from the two temporally consecutive normalized
ROl stripes. If r; > 1, use the occupancy information with
higher confidence (e.g., based on SVM-score in vehicle clas-
sifier) for that segment. We found in our experiment that
12 = 0.95 works well. This step is performed after parked
vehicle detection.

Discussion

Key differences of our method to prior art [7] are two-fold:
(1) the introduction of generic classifiers with normalized views
and (2) the use of temporal filtering and correlation for outlier re-
moval and robustness rather than the use of motion-based video
processing. Aspect#1 allows us to eliminate the time and cost for
re-training classifiers for each site while minimizing the degrada-
tion of performance due to camera view variations of deployment
sites. The normalized view also allows us to use a smaller search
range of sliding windows for all sites in parked vehicle detection.
Aspect#2 can be considered as alternative steps for those motion-
based or foreground/background-based steps (video processing)
used in [7]. Our approach is more robust against occlusion, rain
or snow, and camera shake but computationally more expensive.
These two novel aspects enable us to provide a more scalable sys-
tem (i.e., with little to no parameter tuning or re-training) at the
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expense of some accuracy degradation. The accuracy degrada-
tion is inevitable due to the use of site-independent generic clas-
sifiers. However, the view-normalization minimizes the degra-
dation across various sites. Depending on the applications, it is
possible to first deploy our method and then apply active learn-
ing methods [12] to gradually adapt initial generic classifier to a
site-specific classifier to boost the performance. This is one of the
areas for our future work.

Experiments

The algorithm proposed in the paper was implemented in
MATLAB with real-time performance for 5 fps streaming videos.
In order to assess the expected performance of our method for
large deployment, we conducted two experiments. The first ex-
periment is a small-scale robustness test consisting of six cameras
monitoring a block of a street for up to three days. The other ex-
periment is a small-scale deployment, where 11 cameras are used
to monitor four blockfaces of a city for about a week.

Small scale robustness test

In the first experiment, we use the videos of six cameras for
one block of a street in the city over 2 ~ 3 days period. We tested
our method under various conditions (camera type, camera poses,
day or night, etc.) using the videos acquired from an on-street
parking pilot site. Figure [f] shows the layout and field of views
(FOV) of cameras used in our experiment. All cameras are aimed
to view across the street. Due to different mounting positions
(heights and angles) and locations, there still exists a wide-range
of camera poses to be dealt with even for just one block of a street.
The parking occupancy of blockface A can be monitored by AX01
via front-view or by AX02 via rear-view. The parking occupancy
of blockface B1 (a parking zone) can be monitored by any of the
AX03, AX04 or VT05. AX03 and AX04 are cameras of the same
model, mounted on the same pole but at different heights and an-
gles. VTO5 is a different model camera mounted on the same pole.
The parking occupancy of block-face B2 (a non-parking zone) is
monitored by VT06. Example snap-shots from each camera are
shown in Fig. [ as well, which illustrates the range of camera
poses tested in our experiments. More information can be found

in Table[Tl
J ° AX01
1 ° AX02

_ o AX03
—f— ° V105

- e e VT05
e VT06
BlockfaceB2 |

Figure 6. lllustration of camera layout and field of views for experiment #1.

|‘, S —
[ BlockfaceB1

As discussed earlier, a set of view-normalized generic HOG-
SVM classifiers for parked vehicle detection needs to be trained
before we can start running the system at various sites. To do that,
we use labeled training samples of blockface A collected from
several days of acquisition of AX01 and AX02 to train a set of
three generic classifiers: front-view classifier, rear-view classifier,
and dual-view classifier. In our proposed method, we prefer to
use front-view or rear-view classifiers for each site based on the
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camera pose. We also test the dual-view classifier to evaluate how
much gain in performance by having two-views rather than one.

Exp. Camera Np Ave. Accuracy

ID Usage My Mio) Mil)

e AXOT.F(A) E 4.4 (55%) (94%,1%) (79%,5%) (96%,0%)
AXO2R(A) 5 3.5 (59%) 97%,7%) (68%,18%) (99%,5%)

2 AX03.R(B1) ) 2.0 (49%) (88%,9%) (79%,15%) (98%,3%)
AX04R(BT) s T (27%) (83%,9%) (82%.9%) (700%,0%)

s VT05.F(B1) 7 1.7 (42%) (79%,-3%) (71%,-3%) (94%,-2%)
VT06.R(B2) 0 0.3 (8%) (81%,17%) (94%,5%) (100%0%)

Performance results on small-scale robustness test

We tested our method with a total of 200 hours of videos
(sampled every two minutes for parking occupancy ground-truth)
covering six different cameras/camera-poses and across up to 3
days. There is no site-specific parameter tuning of the algorithm
or re-training of the classifiers for the test. The only site-specific
step is in defining the ROI and specifying whether the camera-
view is front-view or rear-view.

Two types of performance metrics, My and M§d>, are used
for evaluating the accuracy of our system. Here, My =1 — %

(d)

measures vehicle detection accuracy and M|’ measure temporal

block face occupancy accuracy within d-error. For example, M 1<0)

is the fraction of time that the detected total occupancy is per-
fectly accurate for the entire blockface. MEI) is the fraction of
time that the detected total occupancy for the entire blockface is
within one error (41,0, or — 1) against the true occupancy. Ml(o)
is the strictest metric since it requires the system to be accurate on
the total occupancy all the time. Note that M is a more common
metric for evaluating object detection algorithms and is not bi-
ased by the capacity (Np) of the parking ROI. M fd), on the other
hand, may be more relevant for parking applications of our in-
terest. However, it is likely to be biased by the capacity of the
parking ROI. For example, it is more difficult to be accurate for a
ROI that can hold 10 cars than a ROI that can hold 5 cars since the
results need to be accurate for more stalls in the former. Note that
both metrics used here assess the accuracy in the unit of blockface
rather than on individual stall. The reasons are: (1) this requires
less efforts for ground-truthing and (2) this allows us to compare
the results from [7]).

The experimental results are summarized in Table [T} Meta-
data describing test conditions are included in the table to con-
vey the wide-ranges of conditions covered in our experiments. In
camera column, AX01.F(A) stands for camera AX01 with front-
view (F) and is monitoring blockface A. In accuracy columns,
each entry has two numbers: (p,Ap), where p is the accuracy
of our method using corresponding front-view or rear-view clas-
sifier; and Ap is the gain compared to using a dual-view classi-
fier. High positive Ap will justify the need of two separate views
rather than a single dual-view classifier. On average, our method
achieved 80% or higher accuracy for My, M 50) and M 51). Some
improvements may be needed for M. %0).

Our experiments can be viewed as three sub-experiments, E1
~ E3. In El, the site (blockface A) and camera (model and poses)
for the acquired videos are the same as those used for training
our generic classifiers (except that they are from different days).
This experiment is equivalent to the performance tests conducted
in [[7]. This only tests the robustness of the method when applied
to the same site but different days. As expected, our method per-

forms well (~ 95% accuracy for MO,Mfl) and ~ 85% accuracy
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for M 5()) for a block-face with capacity = 6 or 8). This is on par
or better than that in [7]], which only tested on a blockface with
capacity = 4. In E2, we test the scalability as well as robustness of
our method since the camera (same model but different poses) and
the site (blockface B1) are different from those used for training
our generic classifiers. This is a task that the method in [7]] cannot
perform well without re-training of classifiers. This test mimics
likely scenarios that would be experienced for large deployment
or mobile survey applications. As expected, the performance de-

graded (especially for MO,MI(O)) but is still accurate enough for
mobile survey applications. Note that the results also show clear
benefit of separating the classifiers into front-view and rear-view
(i.e., showing large positive Ap). In E3, a stress test is conducted.
In this sub-experiment, not only the sites are different from those
used for training our generic classifiers, the camera models and
poses are also different (Vivitek vs. Axis cameras). This is not
a likely scenario for our actual application since we would prefer
the camera model to be fixed. We use this test to see how far we
can extend this method. As expected, the performance is further

degraded but is still reasonable (note that M 1(]) is still above 90%,
which is sufficient in many parking applications). Note that in
this stress test, the gain of using view-selection is no longer sig-
nificant. Instead, the extra robustness gained by using dual-view
classifier seems to be slightly more beneficial. This calls for fur-
ther investigation for our future work.

Small scale deployment

In this section, we describe the test results from a small scale
of deployment of our method, where four mobile units were used
to monitor four blocks of on-street parking zones. Each mobile
unit consists of a trailer with four cameras mounted on its pole at
the height of 25 ft. The mobile units were parked at the corner or
in the middle of the opposite side of the street to be monitored.
Although there are four cameras on each unit, not all cameras
were used. Depending on the length of the street, two or three
cameras were used. Each unit recorded from 6AM to 10PM daily
for about a week at a rate of 5 fps. Due to the schedule of mobile
unit set-up and some operation errors, the available video lengths
vary (see Table [Z). Due to physical and regulation constraints:
such as width of the street, occlusion from tree, avoidance of fire
hydrant, available width of side walk etc., our data set covers a
wide range of camera poses and zooms in this experiment. Fur-
thermore, since the entire data set covers four dispersed blocks of
a city, our data set covers a wide range of background scenes and
daily parking demand patterns as well.

For assessing the accuracy of our method at stall level, we
manually ground-truth the individual half-stall occupancies of all
eleven views in the interval of every ten minutes. Instead of
ground-truth full stall occupancy, we acquired half-stall occu-
pancy by dividing each stall into half and labeling O or 1 if the
half-stall is more than 50% occupied by a vehicle. The reasons
of doing this are (1) most of the blocks we tested here are not
demarcated, and (2) there are some smaller vehicles: smart cars
or motorcycle that occupy half spaces or large vehicles: trucks
or buses which occupy additional fractional spaces. Smaller div-
idends can be used for ground-truth, however, this would impose
larger labeling efforts that we cannot afford. Table [2] shows the
results of our method for a fixed threshold 17 = 0.3 and the area

2655



under the Receiver Operating Characteristic (ROC) curves.

# of # of Nominal condition, n = 0.3 Area under

half-stall images TP FP Accuracy ROC
Camo01 12 536 0.919 0.108 0.912 0.941
Cam02 14 528 0.912 0.045 0.926 0.956
Cam03 14 520 0.811 0.111 0.837 0.894
Camo04 16 133 0.627 0.438 0.600 0.616
Cam05 16 677 0.827 0.186 0.819 0.831
Cam06 10 613 0.905 0.104 0.900 0.911
Cam07 4 483 0.863 0.028 0.937 0.927
Cam08 16 724 0.819 0.213 0.802 0.835
Cam09 8 730 0.942 0.399 0.787 0.800
Cam10 16 466 0.845 0.036 0.892 0.939
Cam11 14 294 0.884 0.038 0.906 0.943

Performance results on small-scale deployment test.

As shown in the Table, our method achieve 80% or higher
accuracy for all but one site (Cam04). Further investigation indi-
cated that Cam04 and Cam11 are the two sites that have much less
occupancy variations compared to the rest due to their relatively
short observations. This may cause the result to be questionable.
For more in-depth investigation, we would need to re-create the
view of Cam04 and collect more data in the future.

Our Method YOLO2 Mask-RCNN
Ave. Area under ROC 0.872 0.737 0.908
Weight Ave. Area under ROC 0.881 0.762 0.921
Computation (second/frame) 0.6846 1.2486 19.8754
Computation ratio 1 1.8 29

Performance comparison on small-scale deployment test

Table [3] shows the results of our method and those from
applying two pre-trained state-of-the-art deep learning methods:
YOLO?2 [8]] and Mask-RCNN [9]]. The computational assessment
is benchmarked on a CPU computer over 6000 frames and is com-
pared only on the vehicle detection task. As seen in the table, our
method is more efficient than YOLO2 and Mask-RCNN, by a fac-
tor of 2 and 30, respectively. Our accuracy is 4% less than that of
Mask-RCNN while 12% more accurate than that of YOLO2. In
essence, we gain 30x improvement in efficiency at the expense of
4% accuracy drop when compared to current pre-trained state-of-
the-art deep learning method.

Conclusion

In this paper, we propose a novel vision-based on-street
parked vehicle detection method via view-normalized classifiers.
Our method combines image processing techniques with machine
learning techniques to yield efficient and accurate results. It does
not require site-specific re-training of the classifiers and thus is
most suitable for installations for large deployment or for quick
surveys covering a wide-area of interest, i.e., mobile survey ap-
plications.

To validate our method, two experiments are conducted. The
first experiment is a small-scale robustness test consisting of six
cameras monitoring a block of a street for up to three days. This
allows us to test the robustness of our method before deployment
and allows us to compare our method to our prior method [7]. The
results show that our method is robust against site variations as
well as camera variations. It also shows that our method performs
on-par or better than that in [7] for seen sites while providing
sufficient accuracy for unseen sites without re-training. It is thus
more suitable for mobile survey applications, where method in [7]]
cannot be applied. The other experiment is a small-scale deploy-
ment, where 11 cameras are used to monitor four blockfaces of a
city for about a week. The results further confirm that our method
can achieve adequate accuracy for large deployment and mobile
survey applications without any re-training of vehicle classifiers
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or complicated refinement of parameters. Additionally, we show
that our method performs only slightly worse than current pre-
trained state-of-the-art deep learning method while is much more
efficient.

From the perspective of applying our method to large-scale
real-world scenario, there are two aspects in our current method
that need further improvement. One aspect is that our method
still requires site-specific manual set-up for defining the ROL. In
the future, we would explore scene analysis methods to automate
this step and make our method fully automated for mobile survey
applications. The other aspect is to improve the performance for
large deployment of fixed camera (stationary) solution. If some
incremental labeling efforts are allowed, active learning or do-
main adaption approaches can be explored.
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