
Parameter optimization in H.265 Rate-Distortion by single-
frame semantic scene analysis
Ahmed M. Hamza; University of Portsmouth
Abdelrahman Abdelazim; Blackpool and the Fylde College
Djamel Ait-Boudaoud; University of Portsmouth

Abstract
The H.265/HEVC (High Efficiency Video Coding) codec and

its 3D extensions have crucial rate-distortion mechanisms that
help determine coding efficiency. We have introduced in this
work a new system of Lagrangian parameterization in RDO cost
functions, based on semantic cues in an image, starting with the
current HEVC formulation of the Lagrangian hyper-parameter
heuristics. Two semantic scenery flag algorithms are presented
and tested within the Lagrangian formulation as weighted factors.
The investigation of whether the semantic gap between the coder
and the image content is holding back the block-coding mecha-
nisms as a whole from achieving greater efficiency has yielded a
positive answer.

Introduction
The current H.265/HEVC (High Efficiency Video Coding)

standard contains several Rate-Distortion mechanisms within the

encoding modules that are controlled by decision making pro-

cesses of Coding Tree Unit (CTU) functions in the encoder. These

choices, in the hierarchical fashion of the HEVC coding, ulti-

mately determine which reference image segments are selected

at each CTU partition, and how each Unit is partitioned, there-

fore playing a central role in the bitstream characteristics of the

encoding signal.

The problem of parameter selection is of improving the

overall efficiency of compression by optimizing these processes,

where Lambda controls the balance of rate and distortion ef-

fects based on motion compensation cost functions that involve

λMOT ION and λMODE . Here, mode is the ultimate mode of block

division for that Coding Unit (CU).

For each possible choice in lambda constituent cost-

balancing parameters at any level (e.g., motion estimation, motion

vector prediction) there is a corresponding, non-deterministic, ef-

fect on the higher level parameter-controlled functions that make

the final coding decision:

JMODE = DSSE +λMODE R (1)

which in turn will affect partial distortion and rate of the overall

picture, i.e., which blocks to derive residuals from for the trans-

form modules of the encoding.

The simplified form derived for the Lagrangian multiplier

lambda in [8] was:

λ (Q) =−dD
dR

= c.Q2 (2)

with Q being the quantization value for the source. The relation is

derived based on several assumptions about the source probability

distribution within the quantization intervals, and the nature of

the rate-distortion relations themselves (constantly differentiable

throughout, etc.). The value initially used for c in the literature

was 0.85. This was modified and made adaptive in subsequent

standards including HEVC/H.265.

Our work here investigates further adaptations to the rate-

distortion Lagrangian by semantic algorithms, made possible by

recent frameworks in computer vision.

Adaptive Lambda Hyper-parameters in HEVC
Early versions of the rate-distortion parameters in H.263

were replaced with more sophisticated models in subsequent stan-

dards. Today, the Lagrangian is calculated based on several fac-

tors in addition to the QP/Q value, to take into account the frame

and reference location in the Group of Pictures (GOP) being

coded.

λmode = αWk2(Q−12)/3 (3)

A table of values for Wk and α is in the reference manual[5].

While this is dynamic, it is still a fixed-heuristic method that does

not take into account the visual information semantics that de-

scribe the nature of the image and its parts. In this paper, we

introduce a modification to the Lagrangian by replacing heuristic

α values with our scene-based profiler values, which biases λ by

visual content.

Parameter Optimization
Our scene understanding models aim to utilize high level

semantic features in the parameter estimation of HEVC, in that

the selection and refinement of rate-distortion parameters can be

based on them and not on fixed heuristics alone.

The main intuition behind this is that different types of

scenery imply different image characteristics, which can be in-

formative to the rate-distortion optimization of groups of frames,

single frames, and parts of an image.

Further to the semantic classification process is the task of

tuning the control parameters chosen. The Lagrangian λ is neces-

sarily linked to the quantization parameters due to the natural re-

lationship between them, and the basic form obtained for HEVC

as shown in Eq. 3. Since the quantization parameter is a transcod-

ing factor linked to quantization modules in the encoder (which

we do not seek to modify), our weight factoring α modification

aims to reduce on average the bits needed for transmission of the

CU collective across the entire sequence, at that set QP level.
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Semantic Segmentation Basis
We experimented with several state-of-the-art frameworks as

semantic inputs to our methods. With the success of convolutional

“deep” nets at object and face recognition tasks, several frame-

works such as these for image segmentation have gained traction

as robust vision tools on a multitude of image contexts. The seg-

mentation task is more difficult than just object recognition, which

is a prerequisite. Segmentation implies a shape mask of objects

detected, and additionally, semantic segmentation implies a dif-

ferentiation between objects of the same class within the image.

MASK R-CNN [4] and SegNet [6], including Bayesian

extensions to SegNet [1], are Convolutional Neural-Net based

frameworks that have appended region-suggestion, entity classi-

fication, pixel-wise segmentation and entity differentiation layers

of reasoning on top of successful object detection models in ma-

chine vision.

Modeling alpha on image semantics
The pixel-wise segmentation of images allows us to produce

models for the hyper-parameters al pha by meaningful visual in-

terpretation in real-time.

In the current implementation [5] both α and Wk are weight-

ing factors that never exceed 1.0. The values are carefully de-

signed to be set at certain empirically-derived limits from the

HEVC testing, and set depending on the coding mode used.

Alpha, from the reference manual, is set thus:

α =

{
1.0−0.05×NumBPictures If referenced

1.0 Non-referenced
(4)

with the upper value clipped between 1.0 and 0.5. In other words,

it will only decrease Lambda, and at most by half. The greater the

number of referenced frames, the less emphasis on the decision

bit-cost the Lagrangian cost function.

Our approach is to allow the alpha hyper-parameter to ex-

pand beyond the clipped 0.5-1.0 weight limits, temporally learn-

ing its value as a function of both it’s normal setting and what we

call the semantic flag values (which are all between 0 and 1.0).

αm = w0F0 +w1F1 (5)

where the wi values are learned for all semantic scene flag param-

eters F set during the scene discovery phase. A statistical learning

process (we use a simple linear network) converges on the appro-

priate weighting scheme per scene model.

The task therefore consists of a) producing a semantic flag

output for classes of image or image region defined, and b) al-

lowing a pre-encoding step to learn the appropriate weighting of

these contributions to al pha for each 64x64 CTU.

The adaptive optimization process is based on adaptive

elements from [2], where reinforcement learning with simple

neuron-like linear models are used on the control problem. Our

choice of reinforcement learning method was dictated by the fact

that we cannot phrase the problem as purely supervised learning,

in the sense that “correct” values are not known for individual

learning elements at each discrete time step, but a reinforcement

error signal can be obtained indirectly from the learning environ-

ment as a whole: in this case from encoding bit-rate/size values

per frame.

The weight update mechanism is as follows:

wi(t +1) = w(t)+δ r(t).ei(t) (6)

where r is the reinforcement signal, δ is a positive real-valued

constant for rate of change and e is the eligibility function, re-

duced to 1 in our case (as opposed to the trace function in [2]).

This is because in the set of experiments presented below, the

potential input signal changes (i.e., flag inputs) happen at the per-

frame level, which is when the reinforcement signal is generated,

so no additional granularity of eligibility of update is needed. If

we were updating weights per CTU/block however (using addi-

tional CU-level semantic flags), the bursts of eligibility windows

may be needed.

Semantic Scene Models
We present here two full-picture descriptor models as seman-

tic flags in Eq.5.

The first, F0 is an indoor/outdoor confidence flag. This is set

simply according to the percentage of segmented pixels falling

into either class-group. This way, even if a scene is misclassified,

the properties of respective entities are captured.

The second flag confidence value is based on urban land-

scape imagery having distinct image features that may inform the

encoder process choice for lambda. This is detailed as follows.

Algorithm 1 Urban-outside flag determination process.

Ent ← SegmentationRun()

Con f idence ← 0.0
f lag0 ← RunAlgorithm0() //in/out-door flag procedure

if f lag0 < 0.3 then return -1.0 //Rule out strictly indoor scenes

end if
for all entities e in Ent do

if e ∈UrbanStructures() then
rc ← rc+ pixelCount(boundingRegion(e))

else
rc ← rc− pixelCount(boundingRegion(e))

end if
end for

return rc/getTotalViewPixels()

That is, if the overall majority of scene content belongs to an

urban type-class, and the outdoors flag is set above 0.3 threshold

(i.e., this is most likely outdoors), but with minimal human-or-

animate presence, we can classify the scene to be urban large-

scale.

Experimentation
Our ultimate goal is coding efficiency so our test setup re-

mains based on HEVC reference code[5] and test video sequences

listed in Table 1.

We use several pieces of software in our experimental setup.

For semantic and instance segmentation networks we use the

SegNet[6, 1] deep network architecture trained on its own ref-

erence indoor and outdoor datasets and the CityScapes [3] data,

so there is zero overlap between our own images and the training

set.

Trained on the difficult indoor SUN RGB-D[7] semantic un-

derstanding benchmark suite, SegNet is able to segment well into
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(a) Scaled input frame (b) Segmented image

Figure 1: A Kimono1 frame segmentation by SegNet. The class label assignments and region division present a successful differentiation

of the frame regions with different visual characteristics. No image frames from HEVC test sequences were used to train this SegNet

model.

(a) Scaled input frame (b) Segmented image

Figure 2: A representative frame from the Keiba HEVC test sequence, run through SegNet trained on the outdoor CamVid model. Not

all class assignments match (CamVid classes are road-scene oriented) but the region division is successful.

the 37 object classes for our purposes, considering our overall

task is less demanding than the pixel-wise boundary precision

measures used in the vision challenges. Note that this particu-

lar indoor data set includes scene labeling data as well, but the

semantic segmentation of SegNet and comparable architectures is

geared towards segmenting entities, not scene understanding as a

whole, and this is the output we work with.

Although image category precision results vary across

weakly-trained and state-of-the-art methods, our generalized al-

gorithms, with the purpose of basic scene understanding, are

broad enough categorizations that tolerate pixel-level boundary

precision hits to a larger extent than the challenges the training

datasets (and their constituent parts) were developed for. For in-

stance, even if 70% of an object’s boundary pixels are correctly

labeled, the overall effect is still positive for our algorithm in op-

timizing parameters.

Encoding Results
Semantically guiding the alpha parameter per frame leads to

results shown below, averaged over 150 frames for all sequences.

We use the Bjøntegaard delta bitrate (BDBR) method to measure

the change in coding efficiency of the final quantized and trans-

formed frames. Not shown here is the variation in bitrate gains

Sequence Name Resolution Frame Rate

Traffic 2560×1600 30

BasketballDrive 1080p 50

BQTerrace 1080p 60

Cactus 1080p 50

Kimono 1080p 24

ParkScene 1080p 24

FourPeople 720p 60

KirstenAndSara 720p 60

RaceHorses 480p 30

BQMall 480p 50

Table 1: Test Video Sequence Details. We chose a variety of

size/frame rate combinations containing indoor and outdoor sce-

narios for visual content.

and losses over each invididual frame in the sequence, which

varies considerably by sequence.

Table 2 shows higher BDRATE efficiency gains in the intra

mode slices (usually the first frame in the GOP per HEVC de-

sign), where there is no temporal redundancy being exploited by

the encoder, and the decisions affected are in the SATD and SSE

cost functions for the prediction (rough) and final mode choice
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Figure 3: PSNR/bit-rate quality curve comparison between our

optimized process with Scene Understanding Unit, and the refer-

ence HM, for the Kimono1 sequence.

Figure 4: PSNR/bit-rate quality curve comparison between our

optimized process with Scene Understanding Unit, and the refer-

ence HM, for the Kimono1 sequence.

Sequence Name Intra BDBR (%) Inter BDBR (%)

Traffic -4.1 -3.0

BasketballDrive -2.2 -0.8

BQTerrace -2.1 -3.2

Cactus -5.6 -5.1

Kimono -5.2 -2.4

ParkScene -4.7 -2.3

FourPeople -2.6 -1.1

KirstenAndSara -4.3 -6.0

RaceHorses -4.3 -3.7

BasketballDrill -6.4 -5.5

Table 2: Test video sequence encoding results. Both intra and in-

ter (B-slice) coding benefits form training the composite, seman-

tically weighted α , and its effect on the Lagrangian. Test points

conducted at QP = 22, 27, 32, 37.

stages, respectively.

Discussion
An additional system of parameter optimization can be de-

signed involving deeper granularity for lambda. In this case, we

seek to modify our model even within the same picture, by region,

or by individual CTU/coding block. This is quite unusual for hy-

brid coding schemes in the modern line of standards, which gen-

erally make RDO parameter decisions without variation in cost-

function Lagrangians within the same image.

The rationale here is that different parts of the coded im-

age carry different characteristics in terms of lighting and move-

ment, therefore a semantic discovery of these regions can give

grounds to different base weighting schemes, unlike the currently

used heuristics by frame in HEVC, and our own modifications of

them by semantic weighting of scene content in this work.

Our results have favored scene variation sequences that in-

volve a large number of moving textures in non-background en-

tities, especially outdoor scenes. For instance the FourPeople se-

quence showed little improvement overall in either INTRA or IN-

TER modes.

Conclusion
We have introduced in this work a new system of La-

grangian parameterization in RDO cost functions, based on se-

mantic cues in an image, starting with the current HEVC for-

mulation of the Lagrangian hyper-parameter hueristics. The in-

vestigation of whether the semantic gap between the coder and

the image content is holding back the block-coding mechanisms

as a whole from achieving greater efficiency has yielded a posi-

tive answer: the rate-distortion regularization by a semantically-

weighted Lagrangian λ does indeed improve performance over

the fixed heuristics of image hierarchy level currently employed in

reference standard encoders, albeit more so in intra coded frames.
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