
Evaluating the effectiveness of image quality metrics in a light
field scenario
Giuliano Arru, Federica Battisti, and Marco Carli;
Department of Engineering; Universitá degli Studi Roma Tre, Rome, Italy.

Abstract
In this contribution, an objective metric for quality evalua-

tion of light field images is presented. The method is based on
the exploitation of the depth information of a scene, that is cap-
tured with high accuracy by the light field imaging system. The
depth map is estimated both from the original and impaired light
field data. Then, a similarity measure is applied, and a map-
ping is performed to link the depth distortion with the perceived
quality. Experimental test performed by comparing state-of-art
metrics with the proposed one, demonstrate the effectiveness of
the proposed metric.

Introduction
Light Field (LF) imaging is an emerging technology that al-

lows to capture richer visual information from the surrounding
world. Differently from traditional photography, which captures
a 2D projection of the light in the scene, in light field there are
other information, deriving from the angular domain. In fact,
light fields collect radiance from rays in all directions thus de-
multiplexing the angular information lost in the traditional pho-
tography.

On one hand, the higher-dimensional representation of the
collected data offers powerful capabilities for scene understand-
ing and its application substantially improves the performance in
many fields such as depth sensing, post-capture refocusing, seg-
mentation, video stabilization, or material classification. On the
other hand, the high dimensionality of LF opens new challenges
in terms of data capture, data compression, content editing, and
displaying.

It is useful to notice that LF data is prone to a wide variety
of distortions during acquisition, processing, compression, stor-
age, transmission, and reproduction phases. Any of these, may
result in a degradation of the data quality. Therefore, especially
for applications involving persons, the measure of the perceived
quality plays an important role.

Quality can be usually measured in two ways: subjectively
and objectively. Subjective methods are based on the judg-
ment given by a set human observers collected during an ad-hoc
designed experiment. These systems produce accurate results,
however they are time-consuming, expensive, and can not be
used in real time applications. Objective methods aim at design-
ing quality measures that can automatically predict perceived im-
age quality, overcoming the limits of subjective quality metrics.
However, the available metrics ore often well-performing only
for some specific distortions. Furthermore, their results may not
be related with the perceived quality. According to the avail-
ability of the original data or of some information about it, the
objective metrics can be classified into Full-Reference, Reduced-
Reference, and No-Reference.

In this contribution, we highlight the connection between
depth information and human perception in case of LF data and,
by studying the impact of LF data distortion on the estimated

depth, we define a Reduced-Reference objective metric for LF
image. In more details, the metric is based on the exploitation
of the depth information of a scene, that is captured with high
accuracy by the LF imaging system. The depth map is estimated
both from the original and impaired LF data. Then, a similarity
measure is applied, and a mapping is performed to link the depth
distortion with the perceived quality.

The rest of the paper is organized as follows: in Section
Quality assessment of Light Field images the LF is defined and a
literature survey of existing methods for quality assessment of LF
images is reported. The proposed metric is described in Section
Proposed method while, in Section Experiments and Results, the
test performed for evaluating its performances are reported. Fi-
nally, in Section Concluding remarks the conclusions are drawn.

Quality assessment of Light Field images
The LF may be represented through the plenoptic func-

tion [17], that is a multidimensional function which describes the
set of light rays traveling in every direction through every point
in 3D space, from a geometric optics perspective.
To collect this information, the light rays, at every possible lo-
cation (x,y,z), from every possible direction of arrival (θ ,φ), at
every light wavelength γ and, at every time t, should be mea-
sured. In more details, the plenoptic function is a 7D function
defined as follows:

L(x,y,z,θ ,φ ,γ, t) (1)

Under specific assumptions the complexity associated with
the sampling of the plenoptic function can be reduced. As a first
step, only the luminance component for still images can be con-
sidered, thus reducing the measured function to be monochro-
matic and time-invariant.

Then, the simplified model proposed by Levoy and Hanrahn
[1] and Gortler et al. [2] is adopted. The authors assume the
light field to be measured in free space. Under this hypothesis,
the light ray radiance remains constant along a straight line thus
obtaining the 4D function.

For practical applications, the generally adopted model for
representing the 4D light field function, relies on the parameter-
ization of the light rays by the coordinates of their intersections
with two planes placed at arbitrary positions. Let us denote with
(u,v) and (s, t) the coordinates system for the first and second
plane, respectively. An oriented light ray defined in the system
first intersects the uv plane at coordinate (u,v) and then intersects
the st plane at coordinate (s, t). Thus, the plenoptic function be-
comes:

L(u,v,s, t) (2)

reducing the dimensions from 7 to 4 dimensions, parametrized
by four coordinates.

In literature, the problem of measuring the perceived quality
for 2D images, video, and sparse multiview content, has been
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largely investigated. Only few attempts have been performed for
evaluating the quality of LF images.

In [18] and [19], the PSNR metric has been used for eval-
uating the performance of LF encoding methods. However, as
well known for classical 2D images, this metric is not well cor-
related with the perceived quality. In [20], Benoit et al. propose
an objective quality metric for stereoscopic images based on the
comparison of reference and distorted disparity maps. A survey
on the existing LF quality assessment metrics is presented in [6]
from Adhikarla et al. The authors propose an interactive light
field viewing setup for the subjective evaluation of angular con-
sistency. Furthermore, they extend the SSIM metric [3] to a 3D
context for light field-specific angular assessment, and evaluate
the performance of existing quality assessment metrics.

Proposed method
The proposed metric exploits the capacity of LF to capture

the depth information and relates the distortions of the processed
depth map to the perceived quality. In more details, the 4D LF
representation essentially contains multiple views of the same
scene, thus allowing a depth map estimation for each view pair.
The possibility to exploit these features from every sub-aperture
image pair leads to expands the disparity space to a continuous
space [10], making depth estimation more robust and precise.

In literature the link between depth map information and
visual attention or saliency model has been investigated in [21]
proving its connection with the perceived quality. In [22], the au-
thors show that depth quality is an essential aspect of perceived
quality for 3D stereoscopic images. In [23], Banitalebi et alt.
show that in 3D video the perceived quality is directly correlated
with depth map quality. The high correlation existing between
the perceived quality and depth map in the case of 3D images,
pushed us to investigate the role of depth map in case of LF im-
ages, and the relation eventually existing between LF depth map
and quality of experience. Our metric is based on the hypothesis
that the measure of distortion on depth map is highly correlated
to the LF image objective quality. That is:

QLF = f (dis) (3)

where Q is the perceived quality, f is a mapping function be-
tween metric and stimuli, and dis is a measure of distortion on
depth map.

In Figure 1 the disparity map extracted from a light field
scene affected by the neigh-bor interpolation (NN) distortion
with increasing distortion is presented. It is possible to notice the
correlation between the depth map degradation and the amount
of the distortions.

The quality score is computed in five different steps:

1. Disparity map estimation from the reference (original) LF
DisMapre f ;

2. Disparity map estimation from the distorted LF DisMapdis;
3. Estimation of the distortion level of the depth map compar-

ing the reference (DisMapre f ) and distorted (DisMapdis)
disparity maps, by using a similarity function.

dis = similarity(DisMapre f ,DisMapdis), (4)

4. Selection and application of the pooling strategy;
5. Using a mapping model to estimate the perceptual quality

of distorted LF;

It is worth to notice that the extraction of a gray scale dispar-
ity/depth map is an operation of dimensional reduction. In fact, a

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 1: Impact of neighbor interpolation (NN) distortion on
the estimated depth map. 1(a) Central View Reference LF. 1(b)
Depth map Reference LF. 1(c) Depth map from LF with distor-
tion NN with severity 4. 1(d) Depth map from LF with distortion
NN with severity 7. 1(e) Depth map from LF with distortion NN
with severity 10. 1(f) Depth map from LF with distortion NN
with severity 14. 1(h) Depth map from LF with distortion NN
with severity 24.

Figure 2: Block diagram of the proposed metric.

single disparity map has a limited size with respect to the LF con-
tent and also to a single view. Therefore, the proposed metric can
be considered a reduced reference metric, since it uses only dis-
parity/depth map information of reference and distorted LFs for
estimating the quality. In this work, a multi-resolution approach
is used to compute the disparity map [4]. Multiple views of scene
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Figure 3: Central view images of all light fields in the dataset.

are used for estimating the depth map. In brief, a log-likelihood
functional of depth of field for a given pair of sub-aperture views
(center view and others view) is defined as the conditional joint
probability of the view given the depth of field divided by arbi-
trary function that does not depend on depth of field. The depth
map is expressed as a Maximum Likelihood estimate of the depth
of the functional, and a weighted median filter is used for render-
ing the estimated map. It is useful to underline that the adopted
depth estimation method, even if resulting in one of the most
accurate depth estimation methods, presents ambiguity in the se-
lection of the maxima of the likelihood functional in flat, uniform
areas. Therefore, lower performance are possible on flat regions
without textures.

To select the similarity function several tests were per-
formed. Mean Square Error (MSE), Peak Signal to Noise Ratio
(PSNR), and Structural Similarity index (SSIM) [3] have been
tested. SSIM includes three components: luminance, contrast,
and structure. It is based on the assumption that the Human Vi-
sion System extracts information from image textures. Higher
correlation with MOS has been obtained by using the SSIM.
This result can be explained by considering that the structural
information is an important feature for the depth map. Thus the
distortion on depth maps by measuring SSIM between reference
(DMre f ) and distorted disparity map (DMdis);

Dis = SSIM(DMre f ,DMdis) (5)

SSIM(DMre f ,DMdis) =
(2µxµy + c1)(2σxy)+ c2

(µ2
x +µ2

y + c1)(σ2
x +σ2

y + c2)
(6)

where c1 and c2 are two normalization factors. µx, µy, σx, and
σy are the mean and standard deviation and σxy is the covariance
of DMre f and DMdis respectively.

The output of structure similarity is a dissimilarity map. To
combine local quality results in a single quality score, different
pooling strategies are available in literature [5] (i.e., Minkowski,
Local Quality, Average, or Saliency). Based on performed tests,
in the proposed method the average strategy has been adopted.
The mean is a special case of Minkowsky pooling strategy where
p = 1:

M =
N

∑
i=1

mp
i (7)

N is the number of samples in the quality/distortion map, p is the
Minkowsky power and M is the global result obtained combining
the local scores.

In literature many studies have been performed to under-
stand the relationship between human perception and physical
stimuli. The relation between metric and stimuli can be com-
plex and not linear. To account this relation a mapping model

is needed to estimate the perceptual quality [7]. In this work,
the logistic function with five parameters (i.e., a logistic func-
tion with an added linear term, constrained to be monotonic), has
been used. In more details:

q(o) = a1

{
1
2
− 1

1+ exp[a2(o−a3)]

}
+a4o+a5 (8)

where o is the output of the metric. The parameters a1...5 are
optimized to minimize q given the goodness-of-fit measure.

Experiments and Results

(a) PEARSON

(b) RMSE

Figure 4: Comparative analysis of the performances of the pro-
posed metric. Above: Pearson Correlation Coefficient (Pearson).
Below: Root Mean Squared Error (RMSE).

To validate the proposed metric a dataset designed for the
light field metric evaluation is used [6]. In this dataset there are
nine synthetic and five real word scenes 3. They span a large
variety of different conditions, for example daylight/night, out-
door/indoor etc. All the light fields are of identical spatial and
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angular resolution (960x720x101x1 pixels). Four different dis-
tortions with six severity levels were applied to every scene. To
all the synthetic scenes were applied nearest neighbor interpola-
tion (NN), nearest linear interpolation (LINEAR), image warp-
ing using optical flow estimation (OPT), and quantized depth
maps (DQ). For all real-world scenes, it is used nearest neigh-
bor interpolation (NN), image warping using optical flow esti-
mation (OPT), Gaussian blur in angular domain (GAUSS) and,
3D extension of HEVC encoder (HEVC). Including original light
fields, the dataset consists of 350 different light fields. The MOS
for each image is available.

For further investigation on the performances of the pro-
posed metric, a comparison with the results achieved by exist-
ing state-of-the-art metrics on the same dataset has been per-
formed [6]. In more details, the following metrics have been
considered:

• Image-based: Structure Similarity (SSIM) [3], Peak Signal
to Noise Ratio (PSNR), Multi Scale Structure Similarity
(MS-SSIM) [9], Gradient Magnitude Similarity Deviation
(GMSD) [12];

• Video-based: Video Quality Metric (VQM) [11];
• Multiview-based: 3DSWIM [14], MP-PSNR [13];
• Stereoscopic image quality metric: SIQM [15] that is based

on the concept of cyclopean image where, it is averaged
scores obtained from all stereo pairs shown in our experi-
ment.

• Stereoscopic video quality metric: ST SD [16]

The performances of the proposed metric have been tested
versus the benchmark metrics by evaluating the Pearson correla-
tion and the Root Mean Squared Error (RMSE).

The goodness-of-fit scores were computed after the logis-
tic function fitting. For a fair comparison, a seven-fold cross-
validation was used where the whole dataset was divided based
on the scenes. Each fold was constructed by a testing set corre-
sponding to two scenes, while the others were used for training.

The experiments show that the proposed metric is one of the
best performing and confirms the hypothesis that depth map gets
a good approximation of the perceived quality. In Fig. 4 the ob-
tained results for the different performances indexes are shown.
The bars indicate the scores that are averaged after testing across
different cross-validation folds. If we consider the two differ-
ent indexes (PEARSON, RMSE), the proposed metric performs
better than all metrics except GMSD.

The proposed metric, even if is not the best performing for
some LF images, well matches the subjective scores as shown by
the Pearson correlation. This result confirms that for LF images,
the depth information can be used for estimating the impact of
distortion on the perceived quality. It is useful to underline that
the depth map, extracted from the original image, can be lossless
compressed and used as a reduce reference of the original signal.

In Table 1, the performance analysis of the proposed met-
ric with respect to the specific images in the dataset is shown.
As can be noticed, the content does not severely influence the
metric performances. Lower performances are obtained for the
scenes: Room and Blob. These images are characterized by uni-
form depth areas in low illumination.

In Table 2, the performance analysis of the proposed metric
with respect to the considered distortions is shown. Overall, the
metrics well matches the human judgment. Lower performances
are obtained for the distortions: image warping using optical flow
estimation (OPT) and quantized depth maps (DQ).

As a last test, the performances of proposed metric in case
of computer generated images have been considered. In fact, ad-

Scene RMSE Pearson

Barcelona 1.05 0.87
Bikes 1.13 0.87
Blob 1.38 0.76
Car 1.25 0.81

Chair 1.31 0.84
Cobblestone 1.46 0.81

Corner 1.22 0.78
Furniture 0.76 0.94
Gallery 0.93 0.88

Living room 0.83 0.96
Mannequin 1.19 0.91

Room 1.83 0.58
Toys 1.34 0.86

Workshop 1.17 0.80

Table 1: Performance analysis of the proposed metric with re-
spect to the images in the dataset.

Distortion RMSE Pearson

DQ 1.355 0.65
Gauss 1.10 0.87
HEVC 1.40 0.89
Linear 1.21 0.84

NN 0.89 0.90
OPT 1.45 0.60

Table 2: Distortion and content based analysis

vances in image synthesis techniques allow us to simulate the
distribution of light energy in a scene with great precision. Un-
fortunately, this does not ensure that the display end image will
have a high fidelity visual appearance. Therefore, it is useful to
test the metric for computer generated images. The results are
shown in Table 3. As can be noticed, the metric well performs in
both cases.

Scene type RMSE Pearson

Real 1.28 0.76
Synthetic 1.14 0.85

Table 3: Performances of the proposed metric averaged for real
and computer generated images.

Concluding remarks
In this contribution a Reduced Reference metric for assess-

ing the quality of LF images is presented. The proposed metric
exploits the capacity of LF to capture the depth information. The
metric is tested with a robust methodology and compared with
the state-of-art techniques. The experiments show that the effec-
tiveness of the proposed metric and confirm the hypothesis that
depth map is strictly connected to the perceived quality, even for
LF images. The reduced reference information can be used in
broadcasting scenario. On going work is devoted for coping with
flat and uniform depth areas.
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