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Abstract
The problem of increasing efficiency of blind image quality

assessment is considered. No-reference image quality metrics both
independently and as components of complex image processing
systems are employed in various application areas where images
are the main carriers of information. Meanwhile, existing no-
reference metrics have a significant drawback characterized by a
low adequacy to image perception by human visual system (HVS).
Many well-known no-reference metrics are analyzed in our paper
for several image databases. A method of combining several no-
reference metrics based on artificial neural networks is proposed
based on multi-database verification approach. The effectiveness
of the proposed approach is confirmed by extensive experiments.

Keywords: image visual quality assessment, full-reference
metrics, combined metrics, robust metrics

Introduction
Imaging systems are employed nowadays for numerous

applications [1,2] where mass user segment (digital cameras, smart
phones and so on) is the most known [2]. They produce a wide
variety of images that are of different visual quality due to many
factors: quality of an imaging system, conditions of imaging,
principle of operation, etc. In this regard, a problem of automating
analysis and enhancement of imaging data arises in digital image
processing [3, 4, 5].

The first and decisive stage of such automatic systems is
image quality assessment (IQA). As it is known, there are full
reference, reduced reference and no-reference image visual quality
assessment and various metrics used for this purpose [4]. In our
case, when an image is acquired and there is no reference, one has
to deal with a no-reference quality assessment. Due to this, there is
a growing need for an adequate, accurate and reliable no-reference
visual quality metric that, based on the characteristics of an image
itself, evaluate its visual quality [5].

Currently, for objective reasons, the existing metrics do not
provide appropriately high accuracy and stability [4]. The main
reasons are the following. Visual quality assessment requires
consideration of features of human visual systems (HVS), but this
area of research is extremely complex and it is difficult to take into
consideration all peculiarities of HVS. Therefore, the metrics are
usually based on fragmented and simplified models of visual
perception. In addition, a typical requirement to no-reference
metrics is to provide a high computational efficiency. This imposes
restrictions on the complexity of the mathematical models used
and limits practical use of many already proposed metrics. Hence,
efforts to design new or to modify existing no-reference visual
quality metrics continue.

One approach to solve the problem of no-reference metric’s
design is to combine them in one or another way. This takes place
for both full reference [6-8] and no-reference [9] metrics. There are
different ways to combine metrics (that we will further call
elementary). One way is to use some function of two or more
elementary metrics and to optimize its parameters, for example,

weights [10]. Another way, very popular nowadays, is to use pre-
trained neural networks [11] including those ones based on deep
learning [12]. The latter, trained on millions of images in the
process of multi-parameter optimization of millions of neurons,
form complex relationships. During their use, all analyzed images
are divided into small fragments, which are classified according to
their characteristics. After that, all parameters can be reduced to a
single coefficient, which also characterizes the visual quality of the
image. Deep learning has the advantages that it does not require
mathematical models of HVS and metrics (similar or even more
complex dependencies are formed during training). At the moment,
this approach is too resource-intensive, especially for portable and
low power devices. Besides, it requires intensive learning process
based on collected opinions of humans.

Any approach based on learning (training) possesses one
drawback. It might produce good results for data used in training
or similar ones. However, it’s effectiveness reduces immediately if
there are differences in training and verification data. Thus, both
training and verification should be done carefully.

Taking into account all these factors, this paper considers
different methods of creating combined no-reference metrics and
proposes a method of combining metrics based on neural networks
that is acceptable for various automated systems of image
processing. In addition, we pay attention to metric’s verification
using different sets of test images.

Image databases and metrics analysis
The mandatory step of metrics design and analysis is testing

them on a specific set of images and comparing the obtained
results with subjective quality assessments. These might be small
sets of images for specific tasks. But a generally accepted approach
is to use specialized image databases such as TID2008 [13],
TID2013 [14], LIVE [15], and others [16-19]. Such test sets
contain up to several thousand distorted images for which visual
quality estimates (mean opinion scores, MOS) are determined
based on the results of a large number of subjective experiments.

Note that image databases differ significantly in their
characteristics. This determines both the tasks that can be realized
on their basis and the effectiveness of the obtained solutions. A
favorable distinction of the class of no-reference quality metrics is
the possibility to use full-reference image databases. There are
following key indicators that should be considered when using
different image sets:

- Number of test images: full-reference image database
TID2013 contains 3000 distorted images, the no-reference
database KonIQ10k [16] contains more than 10,000 images.

- The number of various distortion types (the current
maximum values are 17 for TID2008 and 24 for TID2013).

- Testing methodology and accuracy of the results of
subjective experiments.

- The number of experiments and the final accuracy of the
obtained MOS.
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The analysis of different databases according to these
characteristics (criteria) has been carried out in [13,14] and a more
in-depth analysis has been done in [20] during development of
TID2013.

The following image databases are considered in our paper:
TID2013, NRTID [17], Live, Live MD [18], MDID [19], and
KonIQ10k. The values of the Spearman rank order correlation
coefficients (SROCC) of many open access no-reference metrics
[21-31] for aforementioned databases are presented in Table 1.

Table 1. SROCC values of no-reference quality metrics

Metrics Databases Time
secTID

2013
NRTID LIVE LIVE

MD
MDID KonIQ

10k
BIQI [21] 0.405 0.393 0.883 0.521 0.628 0.511 5,5
BLIINDS2 [22] 0.395 0.199 0.921 0.181 0.178 0.018 221
BRISQUE [23] 0.367 0.376 0.941 0.502 0.404 0.223 1,1
CDIIVINE [24] 0.373 0.597 0.958 0.235 0.489 0.491 72
DESIQUE [25] 0.069 0.157 0.404 0.199 0.056 0.078 1,5
DIIVINE [26] 0.344 0.492 0.817 0.660 0.532 0.431 53
FISH [27] 0.052 0.595 0.375 0.300 0.267 0.608 2,8
ILNIQE [28] 0.492 0.403 0.854 0.877 0.694 0.488 17
NIQE [29] 0.313 0.095 0.026 0.774 0.654 0.530 1,7
NJQA [30] 0.100 0.307 0.303 0.003 0.021 0.083 46,6
SMETRIC [31] 0.097 0.710 0.540 0.194 0.297 0.613 4,4

The above mentioned features and differences in the accuracy
of given image databases are the reasons for significant differences
in the correlation coefficients of each metric for the considered sets
of images (databases). For example, the database LIVE has high
MOS dispersion rate [13], which indicates a lack of MOS accuracy,
and five most common and studied types of distortion. Therefore,
this set is simple for quality metrics. As a result, high performance
on LIVE (0.9 and above) does not guarantee the quality of the
metric, since on other sets their accuracy may not exceed 0.2.

Analyzing the no-reference quality metrics themselves, we
note that, except LIVE, their performance indicators practically do
not exceed the range 0.6…0.7. Such values are quite low and
insufficient for practical application of quality metrics. This is the
reason for the lack and relevance of automated visual quality
analysis systems based on IQA.
The second significant drawback of some of no-reference IQA is
their computational complexity. In Table 1, the last column
displays computational time for metrics for test images with the
size of 1280 × 720 pixels from LIVE MD on a desktop computer
with 2.5 GHz processor. One can see from these numbers that it is
unfeasible to calculate these metrics for larger images on low
power mobile devices.

Simple approaches to combine no-reference
metrics

One way to improve metrics’ performance is to combine them
[6-11]. This can be done using simple functions or operation with
elementary metrics used as the arguments [10]. Examples of such
methods for reference quality metrics are considered, in particular,
in [6, 32].

In the paper [6], a resulting metric was obtained as a result of
robust estimation applied to transformed elementary metrics.
Optimization procedure presumes finding the best metrics (their
sets) among available ones. Elementary metrics are fitted using
MOS values and then linearized to avoid problems with different

ranges of metric variation as well as peculiarities of behavior of
elementary metrics.

In the second paper by Okarma [10], a combined metric of
two metrics is defined in a simple way as

ba
Multiplied MMM 21  (1)

where M1, M2 are some elementary metrics and the function
parameters a and b are optimized to provide maximum of SROCC.
Similarly, it is also possible to use three elementary metrics.

Let us consider these methods in more details. Below we
denote them as Median(3), Median(5), Alpha-trim(5),
Multiplied(2), Multiplied(3), respectively. Median(3) and
Median(5) perform as
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where lin
iM is i-th elementary no-reference metric after fitting and

linearization, ( )
lin
qM denotes the q-th order statistic. Thus, Alpha-

trim(5) performs trimming of the largest and smallest values with
averaging the remaining ones.

To obtain the resulting metric, we have made a fitting of
metrics for each of the test image databases that have a set of MOS
values for each image. Linearization was carried out taking into
account the results of the analysis and the recommendations in [6].
For the linearization, the function "Power2" was chosen since it
provides the best stability and accuracy. The correlation indices of
the combined metric for each of test images database are given in
Table 2. The best combination for each combination method from
all available ones has been determined by finding the maximum
value of SROCC.

Recall that the robust methods of combining elementary
metrics, such as Median(3), Median(5) and Alpha-trim(5) have
been successful applied in design of full-reference quality metrics
[6] for which SROCC values exceeds 0.8. After applying them to
no-reference metrics, the robust methods do not lead to significant
positive results. For all test image databases, except MDID and
KonIQ10k, their performance does not improve significantly
compared to the best elementary metric (see data in Table 2).

There is practically no improvement for the database LIVE
(although SROCC values for this database are already high
enough). There is no improvement (compared to the best
elementary metric, although note that the best elementary metrics
are different for different databases) for the databases LIVE MD,
NRTID, and TID2013. For the last two databases, MDID and
konIQ10k, the SROCC increase is more noticeable reaching 0.06
and 0.05, respectively, for the best combinations.

The metrics Multiplied(2) and Multiplied(3) after optimization
of parameters provide larger improvement of SROCC. It is small
for LIVE and LIVE MD databases, reaching 0.03 for NRTID,
TID2013 and KonIQ10k, and about 0.06 for MDID. Such results
are achieved using different combinations of metrics (individual
for each database) and this can cause problems in practice.
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Table 2 SROCC values of simple combined metrics

Method SROCC Names Parameters
LIVE

Single IQA 0.9582 CDIIVINE
Median(3) 0.9545 BLIINDS2, BRISQUE,

CDIIVINE
Median(5) 0.9525 BLIINDS2, BRISQUE,

CDIIVINE, DIIVINE, NJQA
Alpha-trim(5) 0.9567 BLIINDS2, BRISQUE,

CDIIVINE, FISH, NIQE
Multiplied(2) 0.9624 BLIINDS2, CDIIVINE 0.20, 0.70
Multiplied(3) 0.9624 BLIINDS2, CDIIVINE, NIQE 0.25, 0.75, 1.0

LIVEMD
Single IQA 0.8769 ILNIQE
Median(3) 0.8637 DIIVINE, ILNIQE, NIQE,
Median(5) 0.8507 BLIINDS2, DIIVINE,

ILNIQE, NIQE, SMETRIC,
Alpha-trim(5) 0.8737 BLIINDS2, CDIIVINE,

ILNIQE, NIQE, NJQA
Multiplied(2) 0.8859 BLIINDS2, ILNIQE 0.30, 1.00
Multiplied(3) 0.8863 BLIINDS2, CDIIVINE,

ILNIQE
0.25, 0.25,
1.00

NRTID
Single IQA 0.7098 SMETRIC
Median(3) 0.7020 CDIIVINE, DESIQUE,

SMETRIC
Median(5) 0.7017 BRISQUE, CDIIVINE, FISH,

NJQA, SMETRIC
Alpha-trim(5) 0.7131 BRISQUE, CDIIVINE, FISH,

NJQA, SMETRIC
Multiplied(2) 0.7398 CDIIVINE, SMETRIC 0.70, 1.00
Multiplied(3) 0.7424 CDIIVINE, DESIQUE,

SMETRIC
0.75, 0.25, 1.0

TID2013
Single IQA 0.4921 ILNIQE
Median(3) 0.4817 DESIQUE, DIIVINE, ILNIQE
Median(5) 0.4729 BRISQUE, DESIQUE,

DIIVINE, ILNIQE, SMETRIC
Alpha-trim(5) 0.4831 BIQI, CDIIVINE, DESIQUE,

ILNIQE, NJQA
Multiplied(2) 0.4938 DIIVINE, ILNIQE 0.50, 0.70
Multiplied(3) 0.5260 ILNIQE, NIQE, SMETRIC 1.75, -0.5,

-1.25
MDID

Single IQA 0.6942 ILNIQE
Median(3) 0.7212 BIQI, BRISQUE, ILNIQE
Median(5) 0.7324 CDIIVINE, ILNIQE, NIQE,

NJQA, SMETRIC
Alpha-trim(5) 0.7432 BIQI, BRISQUE, ILNIQE,

NIQE, NJQA
Multiplied(2) 0.7518 BIQI, BRISQUE -0.10, -0.10
Multiplied(3) 0.7617 BIQI, BRISQUE, SMETRIC -0.50, -0.50, -

0.25
KONIQ10K

Single IQA 0.6130 SMETRIC
Median(3) 0.6330 CDIIVINE, FISH, SMETRIC
Median(5) 0.6472 CDIIVINE,FISH, ILNIQE,

NJQA, SMETRIC
Alpha-trim(5) 0.6514 CDIIVINE,FISH, ILNIQE,

NJQA, SMETRIC
Multiplied(2) 0.6369 BIQI, FISH -0.3, -0.4
Multiplied(3) 0.6442 CDIIVINE, NIQE, SMETRIC -0.25, -0.25, -

0.50

At the same time, the above results do not allow to conclude
how effective is the use of elementary metrics and whether it is
possible to select a combination of them which will provide stable
results for different image databases. Table 3 presents some useful
statistics that show how many times each elementary metric hits in
the top 5 for different image sets. Among these metrics, it is worth
marking BIQI, CDIIVINE, and ILNIQE which are used the most
often. The remaining columns demonstrate how often these metrics
are used by each of the best combined ones.

Table 3 Statistics of the metrics use in the combined methods

Metric Single
(in TOP5
by each
database)

M
ed
ia
n

(3
)

M
ed
ia
n

(5
)

Al
ph
a-

tri
m
(5
)

M
ul
tip
lie
d

(2
)

M
ul
tip
lie
d

(3
)

BIQI 5 1 0 2 2 1
BLIINDS2 2 1 2 2 2 2
BRISQUE 3 2 3 3 1 1
CDIIVINE 5 3 4 5 2 4
DESIQUE 0 2 1 1 0 1
DIIVINE 3 2 3 0 1 0
FISH 2 1 2 3 1 0
ILNIQE 5 3 4 4 2 2
NIQE 3 1 2 3 0 3
NJQA 0 0 4 5 0 0
SMETRIC 2 2 5 2 1 4

Considering the obtained data, we analyze the possibility of
creating a universal combined metric. The disadvantage of the
Multiplied(2) and Multiplied(3) methods is the necessity to
optimize their parameters for each image database (this necessity is
not so actual for robust methods of metrics’ combining). Among
combined metrics, Alpha-trim(5) provides the highest correlation
rates, thus, this method can be used. The metrics CDIIVINE,
ILNIQE, and NJQA were used the most times in different image
sets. The first two separately provide the maximum result in out of
six databases. For this reason, it is worth including SMETRIC,
which provides maxima for NRTID and Koniq10k. Among metrics
BRISQUE, FISH and NIQE, which were used three times, the first
provides more stable results in Table 1, therefore, it will be
considered as well. The results of the method of combining Alpha-
trim(5) with the metrics of BRISQUE, CDIIVINE, ILNIQE, NJQA
and SMETRIC are summarized in Table 4. It also shows the
position of this metric compared to the elementary metrics in Table
1.

Table 4. Combined metric results for different image databases

TID
2013

NRTID LIVE LIVE
MD

MDID Koniq
10k

Max
single IQA

0.4921 0.7098 0.9582 0.8769 0.6942 0.6130

Alpha-trim 0.4688 0.6610 0.9286 0.7548 0.6584 0.6150
Position compared to the best particular metrics

#2 #2 #3 #3 #2 #1

As can be seen from Table 4, Alpha-trim(5) with BRISQUE,
CDIIVINE, ILNIQE, NJQA and SMETRIC metrics without
showing maximum results stably works for all image databases,
providing high reliability.
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Configuration and parameters of no-reference
combined neural network metric

Another way to combine elementary metrics is to use
learning-based methods: neural networks [33-34], support vector
machines [24], data clustering approaches [35], and others. Our
work below addresses a possibility of using neural networks for the
aforementioned purpose.

Neural networks can be an effective instrument to solve such
problems [6]. For this, it is necessary to satisfy a number of
requirements imposed on the network during its training. This
stage is crucial. The key factors include the quality of the training
set of test images, the training sample, the number of incoming
data, the network type, the number of layers and neurons in each of
them, activation functions, and other parameters. It should be also
taken into account that a trained neural network (NN) will not
work on data that sufficiently outgo from the training sample.

The development of a combined metric based on an artificial
neural network assumes that the values of elementary metrics are
fed to the input, and the learning goal is the MOS values, the
maximum of which should be achieved by the network during the
learning process. The learning phase is a multi-parameter nonlinear
optimization resulted by matrices of weights for all incoming
metrics. A combined neural network metric (CNNM) will be an
aggregation of all these interconnected matrices for each metrics
and neuron layers.

As previously defined in [6], preparation of the neural
network training stage requires compliance with the following
requirements:

1) Input data must be independent, which is ensured by the
use of metrics with different mathematical core and properties;

2) Representative training set; in accordance with this
requirement, the training set should contain the results of metrics
for images with maximal possible number of distortion types with
the largest range of their variation.

3) Selection of the neural network configuration (network
type, number of layers and neurons, etc.).

In accordance with the specified requirements, let us analyze
the data used and the measures taken to prepare the training sets:

1) The metrics differ significantly, which is confirmed by the
results in Table 1. Even ILNIQE and NIQE metrics have sufficient
difference in their performance.

2) To ensure maximum representativeness of the data, each
set of test images was divided into two subsets (training and test).
Image indices were divided using a random distribution function
according to a uniform law. To improve the accuracy of training,
which directly depends on the amount of input data (some of
which will be used not for training, but for validation) for each
image database for the training set, 70% of images from and 30%
for testing are allocated. In order to minimize possible negative
factors of distribution unevenness, three such distributions were
formed for each image database.

3) Configuration of neural networks. To solve the third task,
we have to choose a good NN. There are no strict
recommendations on choosing the best ones. Thus, we have used
several types and configurations of NN as well as varied their
parameters. Based on this analysis, it has become possible to
choose the best configuration.

The neural networks of the following types have been used:
 Feed forward back propagation network, ‘feed’ (fig.1a);
 Cascade forward back propagation network, ‘cascade’ (fig.1b);
 Elman back propagation network, ‘elman’ (fig.1c);

 Generalized regression network, ‘genreg’ (fig.1d);
 Layer recurrent network (similarly to Elman network, fig.1c);

NARX (Nonlinear autoregressive neural network) on fig.1f.

(a)

(b)

(c)

(d)

(e)

Figure 1. Neural networks schemes.

For each of the considered types of networks, the following
ten configurations of layers and neurons were created:

- one hidden layer: [5], [20].
- two hidden layers: [5, 5], [20, 20], [5, 20], [20, 5],
- three hidden layers: [5,10,20], [5,5,5], [20,20,20], [20,10, 5].
Neural network training is the process of finding a global

minimum of the root-mean-square error with a random initial bias
in accordance with a given adaptation function of the training
function. Therefore, to eliminate the problem of non-correct
learning, when the function stops at the local minimum, training of
minimum 20 networks was started for each configuration. In total,
these are over 21,000 configurations of various trained networks.
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Neural networks optimization and analysis
Table 5 contains data only for two best NN-based metrics that

provide the best performance according to SROCC for test subsets
of each database. Column “#” shows the number of image
distribution for given database. After analysis of the obtained
neural networks we should note, that it is important factor for
networks learning and further works. For the best metrics by
different image subsets the deviations of the SROCC values
reached a range 0.05...0.06.

Table 5. The best CNNM by SROCC value of test image subsets
for all databases.

Metrics by
dataset (rank)

# Network
type

Layers
configuration

SROCC
(train)

SROCC
(test)

Single
IQA

Live (1) 1 elman [20 5] 0,9823 0,9822 0.9582
Live (2) 3 layrec [5 20] 0,9795 0,9824 0.9582
Livemd (1) 1 cascade [5 5 5] 0,8977 0,9083 0.8769
Livemd (2) 1 elman [20 20] 0,9107 0,9069 0.8769
Tid2013 (1) 3 cascade [20 20 20] 0,7763 0,7720 0.4921
Tid2013 (2) 3 elman [20 20 20] 0,7655 0,7616 0.4921
Nrtid (1) 1 elman [20 10 5] 0,7771 0,8040 0.7098
Nrtid (2) 1 layrec [20 20 20] 0,7696 0,7995 0.7098
Mdid (1) 2 layrec [5 5 5] 0,8551 0,8531 0.6942
Mdid (2) 2 cascade 20 0,8829 0,8504 0.6942
Koniq10k (1) 2 elman [20 5] 0.7030 0.6911 0.613
Koniq10k (2) 3 cascade [5 10 20] 0.7063 0.6910 0.613

According to the results in Table 5, we would like to note
several aspects. The combined NN-based metrics on the test set
provide sufficiently better performance compared to simple
combination methods considered in the previous Sections. For
example, for TID2013, the multiplied metric has shown maximum
SROCC=0.5260, at that time several neural networks have
SROCC>0.76. It is also worth stressing that the results for training
and test sets are very close.

Table 6 Results of combined metrics’ verification for each
image database

Metrics by
dataset (rank)

LIVE LIVE
MD

TID
2013

NRTID MDID KonIQ
10K

Live (1) 0.982 0.486 0.193 0.663 0.417 0.277
Live (2) 0.982 0.557 0.249 0.728 0.061 0.379
Livemd (1) 0.800 0.908 0.361 0.120 0.411 0.347
Livemd (2) 0.090 0.907 0.097 0.546 0.280 0.576
Tid2013 (1) 0.706 0.116 0.772 0.570 0.153 0.160
Tid2013 (2) 0.365 0.796 0.762 0.224 0.539 0.403
Nrtid (1) 0.215 0.688 0.401 0.804 0.399 0.350
Nrtid (2) 0.053 0.530 0.381 0.800 0.613 0.064
Mdid (1) 0.060 0.127 0.377 0.399 0.853 0.512
Mdid (2) 0.810 0.693 0.252 0.457 0.850 0.079
Koniq10k(1) 0.481 0.019 0.063 0.440 0.258 0.691
Koniq10k(2) 0.924 0.777 0.470 0.604 0.713 0.691
Single IQA 0.958 0.877 0.492 0.710 0.694 0.613
Alpha-trim 0.929 0.755 0.469 0.661 0.658 0.615
Cascade
(20,5), 1set 0,882 0,833 0,676 0,722 0,702 0,628

NARX (5), 3
set 0,940 0,870 0,463 0,719 0,717 0,624

Comparing the networks’ types, the best performance was
often provided by neural networks with feedback (‘elman’ and
‘layrec’). Mostly they use maximum possible number of layers and
neurons. They demonstrate the most accurate adaptation to the
image test set. However, at the same time, such NN-based metrics
occur to be adapted to a particular image database and they can
perform differently for others. This fact is shown by the results
presented in Table 6. In the leftmost column, two best NN-based
metrics from Table 5, are presented. In other columns, SROCC
values are presented for each metric under condition that the metric
is applied to the database it was trained (diagonal marked by Bold)
and other databases.

One can see that, trained on images of a particular database,
the NN-based metrics occur less suitable for others. Some of them
show acceptable results for 2 or 3 databases, but their overall
effectiveness is low. The only exception was the trained metric
denoted as Koniq10k(2). Although it does not demonstrate too high
performance for the databases LIVEMD and NRTID, the metric
Koniq10k(2) has no obvious failures. It outperforms robust metrics
(the results for one of them is given in Table 6) and is often better
than the best elementary metrics individual for each database.

Universality of other NN-based metrics not mentioned in
Table 5 has been analyzed. Two good ones (according to average
SROCC values) are presented in Table 6 in the lowest rows. Their
performance is comparable to Koniq10k(2).

Although a question of training is not fully resolved yet, we
can state that the NN-based metrics provide better results than
other versions of the combined metrics. However, the problem of
metric’s universality still remains.

Conclusions
This paper deals with the problem of low accuracy of no-

reference image visual quality metrics and their poor operation on
certain sets of test images. Creation of simple combined metrics
based on robust estimates is considered. Fitting and linearization
aspects also have been discussed.

In order to further improve the performance of no-reference
assessment of visual quality, a combination method based on
neural networks was considered. Several types of such networks
with different configurations and the influence of various factors
on the final accuracy of such metrics have been studied. Several
good metrics that outperform elementary ones and work well for
different databases, have been designed.
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