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Abstract
Interferometric tomography can reconstruct 3D refractive

index distributions through phase-shift measurements for different
beam angles. To reconstruct a complex refractive index distribu-
tion, many projections along different directions are required. For
the purpose of increasing the number of the projections, we ear-
lier proposed a beam-angle-controllable interferometer with me-
chanical stages; however, the quality of some of extracted phase
images from interferograms included large errors, because the
background fringes cannot be precisely controlled. In this study
we propose to apply machine learning to phase extraction, which
has been generally performed by a sequence of several rule-based
algorithms. In order to estimate a phase-shift image, we employ
supervised learning in which input is an interferogram and out-
put is the phase-shift image, and both are simulation data. As a
result, the network after training can estimate phase-shift images
almost correctly from interferograms, in which was difficult for
the rule-based algorithms.

Background
Since the refractive index of an object or medium depends

on its molecular density and number of electrons in a molecule,
3D distribution of gas temperature, electron density of the plasma,
or concentration of a solute can be measured through a 3D mea-
surement of refractive index of the medium. Computed tomog-
raphy is well-known to reconstruct 3D internal distribution from
line-integrated images with different integration paths. The line-
integrated images of 3D refractive index distribution, which are
2D phase-shift images, are observed by using an interferometer.
Therefore, the coupling of an interferometer and a technique of
the computed tomography can realize a determination of the non-
destructive 3D distribution of above-mentioned quantities such as
gas temperature.

System
We have developed a 3D refractive index measurement sys-

tem which consists of an incident-angle-controlable interferome-
ter and data processing codes[1]. The figure 1 shows an experi-
mental setup, which consists of two Mach-Zehnder interferome-
ters. One of them has rotatable mirrors on movable stages, which
are controllable and moving during acquisitions of interferograms
for all angles.

A phase-shift image ϕ(rrr) is expressed as line integral of re-
fractive index

ϕ(rrr) =
∫

l
(N(rrr′)−1)k0dl(rrr′), (1)

and it is included in a observed interferogram i(rrr) as

i(rrr) = i0(rrr)(1+ cos(ϕ(rrr)+δkkk · rrr)), (2)

where rrr denotes the observation point on screen, l denotes the
optical path, rrr′ denotes the field point in medium, N(rrr′) denotes
the refractive index distribution of the measurement medium, k0
denotes the frequency of free space, i0(rrr) denotes the spatial mode
of the light source, and δkkk denotes the spatial carrier frequency of
the background fringe.

In general, to obtain the phase-shift images, we apply sev-
eral processes to the acquired interferograms; an estimation of
the spatial carrier frequency of the background fringe, a filtering
in a spectral domain, a carrier frequency shifting, and a phase-
unwrapping, which are rule-based algorithms. Figure 2 shows an
example of phase extraction. The 3D refractive index distribution
can be finally obtained by using computed tomography for the
extracted phase-shift images.
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Figure 1. Incident-angle-controlable interferometer. The FMn and the HMn

mean full- and half- mirrors, respectively. The beam is expanded to 50 mm

diameter by two lenses of L1 and the L2. The OBJ means the object. The

HM1, FM1, FM2, and HM2 are rotatable, and on the movable stages, X1 and

X2.

Figure 2. An example of interferograms measured by an actual experiment

and the extracted phase-shift images from the interferograms. This extraction

is performed by rule-based algorithms.

Problem
This measurement system has two drawbacks. The first

problem is limitation of exposure time. In this system, interfer-
ograms are acquired while the mirrors are moving. Therefore
if the exposure time of the camera sets long, the interferograms
are blurry by the mechanical vibration of the optical components.
To reduce blurring of the interferograms the exposure time of the
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camera to obtain the interferograms should be shortened, and the
gain of the camera should be increased. As the result, the signal-
noise ratios of the aqcuired interferograms become smaller. The
second problem is uncontrollable background fringe patterns. In
usual interferometric measurements, first, the interferogram both
with and without the object are acquired. Next, the background
fringe is removed from the former based on their difference. How-
ever, since the precision of the mechanical stage is several 10 mi-
crons whereas the wavelength of laser is about 0.6 microns, the
background fringe patterns defined by a spatial carrier frequency
vectors, which are different for the interferogram images of each
incident beam direction, are not controllable and not repeatable.

To extract phase-shift image from interferogram success-
fully, an interval of background fringe must be in a certain range,
and less noise of interferogram is preferred. However, from
the above-mentioned restriction of the developed interferometer,
these conditions are not always satisfied at any time. If these are
not satisfied, the errors of the extracted phase-shift image are ac-
cumulated at each image process, or the phase extraction is failed.
It causes the decrease of the number of available phase-shift im-
ages for reconstruction and affects the quality of the final 3D re-
constructed distribution of the refractive index. To reduce the final
error, we need to develop more accurate phase extraction algo-
rithms for interferograms with many noises or under the unfavor-
able conditions.

phase unwrapping

Good

NG

Fourier transform method

Figure 3. Examples of phase extraction using the rule-based algorithms.

From left to right, the first arrows denote discrete Fourier transform, the sec-

ond arrows denote removal of spatial mode of light source and complex con-

jugate component in Fourier space, the third arrows denote inverse discrete

Fourier transform and carrier shift, and the last arrows denote phase unwrap-

ping. These interferograms are simulated data. The top line and the bottom

line show an example of successful and failed extraction, respectively.

Proposed method
In the last decade, machine learning has been applied in

many fields including image processing. However, there are no
studies for applications of phase extraction. In this study, we
proposed a method which could directly extract phase-shift im-
age from interferogram using machine learning, in which the pro-
cesses such as phase-unwrapping were not required.

To estimate phase-shift image, we employed supervised
learning in which input was interferogram and output was the cor-
responding phase-shift image. Since the phenomenon of interfer-
ence is modeled as equation(2), we can readily generate interfer-
ogram through simulation under various given conditions such as
phase-shift image, background fringe pattern and noise property.

We assumed phase-shift image using the following equation;

ϕ(rrr) =
4

∑
j=1

ϕ jG(rrr;rrrϕ j ,θϕ j ,aϕ j ,bϕ j ), (3)

and the corresponding interferogram is expressed as this equation;

i(rrr) = i0(rrr)(1+ cos(ϕ(rrr)+δkkk · rrr))+ inoise(rrr), (4)

where

i0(rrr) = G(rrr;rrri0 ,0,ai0 ,bi0),

G(rrr;rrr′,θ ,a,b) = e−(rrr−rrr′)·R(θ)·W(a,b)·(rrr−rrr′),

R(θ) =
(

cosθ −sinθ
sinθ cosθ

)
,

W(a,b) =
(

a 0
0 b

)
,

inoise(rrr)∼ N[0,σn](White,Normal).

We provided ϕ j, rrrϕ j , θϕ j , aϕ j , bϕ j , δkkk, rrri0 , ai0 , bi0 , and σn
as random parameters. Ground truth is phase-shift image itself
which is used when input data is generated. Totally 90,000 pairs
of data were used; 80,000 pairs for training, and 10,000 pairs for
test.

We use U-net[2] as the network architecture. The U-net has
especially shown successful results in various image processing
fields, and both input and output are images, therefore it is suit-
able for our study. To train the network, we employed Adam[3]
implementation in Chainer[4], which is one of the frameworks for
deep learning, as optimizer. The loss function during the training
step was defined by the average of root mean squared error of the
estimated output image from the ground truth

E1 =

⟨√⟨
(ϕm(rrr)−ϕ(rrr))2

⟩
pix

⟩
image

, (5)

whereas the network during and after training was evaluated by
the average of relative root mean squared error

E2 =

⟨√⟨
(ϕm(rrr)−ϕ(rrr))2

⟩
pix

/⟨
(ϕ(rrr))2

⟩
pix

⟩
image

, (6)

where ϕm(rrr) denotes output phase-shift image from the network,
and ϕ(rrr) denotes ground truth of phase-shift image. The training
means iteration of updating the network parameters so that the
value of the loss function E1 becomes smaller.

Results
The figure 4 shows the evolution of the evaluation function.

The vertical axis shows the evaluation function E2 and the hori-
zontal axis shows the epoch number. One epoch means that all
training data was used once for training. The broken line shows
the training data, and the solid line shows the test data. This
graph shows that the training was successful, because the eval-
uation function for both the training data and the test data had
been decreasing while the training.
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Results for simulation data
The figure 5 shows examples of the results of the phase ex-

traction from the simulated interferograms. From left to right,
each image shows examples of the simulated interferograms as
the test data, the ground truths of phase-shift images, the results
of the phase extraction using the trained network, and the results
of the phase extraction using the rule-based algorithms.

The figure 6 shows the histogram that the horizontal axis
shows the value of evaluation function and the vertical axis shows
the frequency of the data with the values on the horizontal axis.
The 1754 of the extracted phases using the rule-based argorithms
had the relative route mean squared error of more than 1.0, there-
fore they were excluded from the histogram and the average cal-
culation.

The average of the relative root mean squared error of the test
data between the ground truths and the extracted phases using the
trained network is 0.025, meanwhile between the ground truths
and the extracted phases using the rule-based algorithms is 0.461.

These results show that the phase extraction from the simu-
lated interferograms using machine learning was successful and
better than the rule-based algorithms.

Figure 4. Evolution of the evaluation function E2. As the training progresses,

E2 of both the training data and the test data is decreasing. This training is

successful.

Ground truth

Phase-shift image
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Figure 5. Examples of extraction results for the simulation data. The inten-

sity ranges of each image are different, and the images are displayed so that

the maximum value is white and the minimum value is black.

Results for experimental data

The figure 7 shows examples of the results of the phase ex-
traction from the interferograms measured by actual experiment.
From left to right, each image shows examples of the interfero-
grams measured by actual experiment, the ground truths of phase-
shift images (unknown), the results of the phase extraction using
the trained network, and the results of the phase extraction using
the rule-based algorithms.

The phase extraction from the interferograms measured by
actual experiment using machine learning looks successful, and
at least it looks better than using the rule-based algorithms. It
means there is high possibility that the network trained by us-
ing the simulated interferograms and corresponding phase-shift
images is available for the phase extraction from interferograms
measured by actual experiment. However, we cannot determine
the evaluation function because we don’t know the ground truth
of the phase-shift images in case of the interferogram measured
by actual experiment.

The evaluation of validity of the extraction from interfero-
grams measured by actual experiment is a future task.

Figure 6. Histogram of E2 by machine learning and rule-based algorithms

for 10,000 test data. The data which have the relaive root mean squared

error of more than 1.0 are excluded.

?

?

Ground truth

Phase-shift image

Rule-basedMachine learning

Interferogram

Figure 7. Examples of extraction results for the experimental data. The

intensity ranges of each image are different, and the images are displayed

so that the maximum value is white and the minimum value is black.
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Conclusion
In this study, we focused on the ease of creating simulation

data of interferograms and corresponding phase-shift images, and
succeeded a new approach of phase extraction by machine learn-
ing using a large number of different patterns of simulation data.
As the result, we realized drastic improvement in accuracy of
phase-shift extraction and simplification of the process, which can
contribute to the realization of three-dimensional refractive index
distribution measurement of the object.
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