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Abstract
In this paper, a single image multi-scale super-resolution

technique is proposed. The concept under study is the learning
procedure between steps of amplification in order to predict the
next high scale of resolution. The method integrates two differ-
ent approaches for the prediction of a high resolution multi-scale
scheme, a pure interpolation and a gradient regularization. In the
first step a pure interpolation is carried out. It is used a predic-
tion scheme with algebraic reconstruction through different scales
to produce the high resolution output. In the last step, the resid-
ual blur is reduced by a gradient auto-regularization method. The
gradients are adapted by using a weight in a neighbour. Precision
of method can be controlled by the parameters of an algebraic
reconstruction technique (ART). The proposed model avoids the
fast decrease of the output resolution as the amplification factor
increases. The proposed system was tested with a dictionary. Re-
sults show that the output image quality is improved despite of the
increment of the scale factor.

Introduction
The procedures for single image’s super resolution (SR) can

be divided into: pure interpolation, employ of dictionaries and
reconstruction methods. The common goal of these techniques
is to yield an image as if it had been acquired with a high res-
olution physical device. The interpolation for amplification pur-
poses is based on physical principles, for example, optical models
can be modeled with amplification kernels, given by the Fourier
transform of a truncated sampling array [1]. Some methods of
pure interpolation, like the curvature interpolation method (CIM),
studies the edge composition of the low resolution image to inter-
polate the curvature to a high-resolution (Hr) domain. The CIM
constructs the high-resolution image by solving a linearized cur-
vature equation, incorporating the interpolated curvature as an ex-
plicit driving force [2]. Other regression-based image interpola-
tion algorithms, use an objective function optimized by ordinary
least squares (OLS). However, it has been shown that interpola-
tion with OLS may have some undesirable properties from a ro-
bustness point of view, for example, even small amounts of atyp-
ical values can dramatically affect the estimates results [3–6].

Interpolation-based methods [7–11] yield zoomed-in images
with visual artifacts such as ringing, aliasing, blocking and blur-
ring. The Fourier transform of the truncated sampling array is an
interpolation kernel and can be a filter with maximum response
of amplitude at high spatial frequencies. An optimal amplifica-
tion kernel can be reached by using the high frequency content at
high-resolution image domain as an explicit driving force for the
variation of the amplification kernel parameters.

In the learning-based SR methods [12,13,16] the correspon-
dences between low resolution Lr and high resolution Hr image
patches are first learned from a database. The the system is ap-
plied to a new Lr image to recover its Hr version. With these
methods, improved performances have been reported compared
to traditional SR methods [17, 18]. However, these methods rely
largely on the quality of the prior images, that is, in the similarity
between the training set and the test set. The dictionary methods
are expensive in terms of number of operations due to the large
training set used [19, 20]. Recently, residual learning techniques
exhibit improved performance, in [14] the performance is further
improved by expanding the model size while the training proce-
dure is stabilized, the authors can reconstruct high-resolution im-
ages of different up-scaling factors in a single model [15].

The reconstruction-based methods need a constraint [21,22],
which requires that the downscaled version of the target Hr image
be close to the Lr image. However, these methods yield recon-
structed edges that can be too sharp and look unnatural. The edge-
directed SR models [23–28] estimate the Hr image by enforcing
some edge knowledge, such as the smooth edge [24,25,27] or the
gradient profile prior (GPP) [23, 28]. The enforced edge knowl-
edge have some difficulties. The smooth edges for small scales
could not be recovered in Hr and the GPP is learned from an im-
age data set, therefore the similarity dependence is present.

In natural images, the local patterns repeat within and across
the scales [29]. The multi-scale self-similarities, sparse repre-
sentation and structural distribution have been exploited [30, 31].
For example, in the work proposed by Buckstein et al. [30], the
gradients of the image are not regularized and some restriction
can be required to increase the quality of the Hr image. Dong et
al [31], proposed a rigid regression technique, forcing a solution
over groups of similar patches exploiting the redundancies of the
image and introducing tree elements in the procedure. The first
element is the gradient of the Hr image, conserved by adapting
the gradient histogram of the image. The remaining elements are
the energy norm and coefficient similarity decomposition.

In this work, a SR method that learns the next scale of ampli-
fication by preserving the relative position of the super imposed
patches in previous scales is proposed. The procedure uses a con-
vergent algebraic reconstruction technique (ART) in a cross inter-
scale representation. Also, the multi-scale similarity redundancy
is exploited in the image’s gradient auto-regularized domain. The
main contributions of our SR method are summarized next:

• A decreasing of the blur at the output step of a multi-scale
magnification using auto-regularized gradient domain.

• Adaptive convergence to the high resolution with ART in a
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transverse plane of the multi-scale magnification scheme.
• Detection of the gradients with maximal step ascend-

descend algorithm around the inflection points in all direc-
tions for the auto-regularized gradient procedure.

The remainder of this paper is organized as follows. Related
work are reviewed. The proposed auto-regularization procedure is
explained and the multi-scale scheme of interpolation explained,
detailed description of the proposed SR algorithm with ART con-
vergence in a multi-scale scheme is provided and finally the re-
sults are analyzed.

Related work
The classical model for the simulation of a degraded image

uses a degradation matrix H and additive noise v over a Hr image
x:

y = H · x+ v (1)

In SR via dictionaries, overlapped patches of size mxm are
extracted by using an extraction matrix R of dimension mxM.
The amount of pathes in an image of size MxM is equal to
(M−m/2+1)∗(M−m/2+1). When a dictionary φ is employed
and a transference function αy is found by some procedure like
K−SV D [32], the estimated image can be reconstructed as:

x̂ = φ ·αy =

(
l

∑
i=1

RT
i ·Ri

)−1 l

∑
i=1

(
RT

i ·φα
y
i

)
(2)

Equation (2) pretends to learn an universal over-complete
dictionary to represent image structures [33]. However, sparse
decomposition over a highly redundant dictionary is potentially
unstable, and is scale dependent. Also, the redundancy of the
patches is a probabilistic term that cannot be ignored. The re-
dundancy and probabilities of occurrence of similar patches are
other negative aspects in relation to deterministic procedures. The
question is how to contribute from two points of view: dictionary
learning and the optical principles of the amplification of the im-
age. A Hr image can be expressed by sub-scales using some trans-
fer function. This function needs to be found between patches of
different scales where a light beam is only in a pixel position. The
patch at position i, j belongs only to an image Xs at the scale n.

Proposed Model
For a Lr image an inter-scale lineal system is constructed,

since there are patches of the image where a light beam is passing
at different distances or scales. The input Lr image and its de-
graded versions can be used to construct the Lr to Hr multi-scale
scheme. Considering different sizes of the Lr and Hr images, the
Lr input y is enlarged to the same size of the Hr image x using
bicubic interpolation, it is also a blurred and downscaled version
of the Hr image x. Therefore,the correspondence between the Lr
and Hr images at the same scale is established as follows:

z = (y) ↑ s = ((x?G) ↓ s) ↑ s = Esx (3)

Where ? is the convolution operator, ↑ s is the upsampling
operator with the scaling factor s, ↓ s is the downsampling op-
erator with the scaling factor s, G is a blurring kernel (e.g., an
isotropic Gaussian kernel with the standard deviation σ ), Es is an
operator composed of blurring, downsampling and upsampling
with scaling factor s; y is the Lr image, x is the Hr image, and z
is the Lr image at the same size of x. Note that the Lr image is
more similar to its Hr image version when the scaling factor is
small, whereas the high-frequency details tend vanish when the
scaling factor is large. In our system, we adopt the multi-step
magnification scheme with ART for the estimation of the target
Hr image. For a Lr input image y with a total scaling factor d, the
number of magnification steps is determined as M = log(d)/log(s).
Specifically, the relationship between the Hr image (xsm at the m-
th scale) and the Hr image (xs,m+1 at the (m+ 1)th scale) can be
expressed as follows:

xs,m =
(
xs,m+1 ?G

)
↓ s (4)

Equation (4) in the multi-scale case can be written in the
form:

zs,m = ((xs,m ?G) ↓ s) ↑ s = Esxs,m. (5)

Where Lr, the input image (y), is regarded as the Hr image
xs0 at the scale m = 0. Specifically, the Hr image xs0 , from the in-
terpolation process, is blurred and down-sampled to generate the
images xsm at the scales m = 1,...,N. The Lr image zs0 is produced
by blurring and down-sampling the Hr image xs0 and then up-
sampled the down-sampled result by bicubic interpolation. The
procedure is shown in Figure 1.

Algebraic Reconstruction Technique
A multi-scale model as [37] uses the similarity of patches

[36] in previous scales of the image to estimate an amplified im-
age using a rigid regression. The transfer function found is passed
to the input image together with its previous scales. The use of
similarities incorporates a probability factor [36]. The proposed
method maintains the localization by which the light beam were
passing in the acquisition process and the ART minimization tech-
nique is used as a solution. For that, the image is crossed between
scales and only the pixel values in the same position and at dif-
ferent scales are used to estimate the coefficient of lineal depen-
dency for the reconstruction of the Hr image. A direct transition
to a high scale can yield inaccurate results due the large transition
in the gradients for very high scales of amplification. The pure in-
terpolation (PI) process yields different dimensions at which the
variations of the image are maximized. We call these scales the
intermediate scales and consider this procedure are a step in a
multi-scale prediction system. The goal is to incorporate a con-
vergence method learning inter scales. Figure 2 shows the process
by which a bi-cubic interpolation is used from the scales 1....n to
obtain the scale n+ 1. The system is built in a patch by patch
mode and solved by the ART model as the 2 shows . In our case,
M rays pass through the correspondent patches p of dimensions
m×m at location (i, j). The rays are perpendicular to the sequence
of images in an incremental order of resolution. The interjection
of the ray M(m1,m2) with each correspondent pixel (m1,m2) of
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Figure 1. Proposed SR model

the patch i, j at scale n are integrated and a solution for a lineal
dependence is found at the next scale using the ART model. In
this paper, each scale of the image is considered as a dimension
in the space and a number M of light beam are passing through
the images at different scales. The relationship between the scale
functions f defined by the values of the image at the scale j, the
values of the pixel of the patches at different scales and the high
resolution image is of the form.

N

∑
j=1

wi, j f j = pi (6)

The weight factor wi, j is equal to the fractional area of a pixel
at the jth scale of the image intercepted by the ith ray as shown
for one of the patches in the figure 2. Then the pi term is the
desired pixel value at the Hr image. A grid representation with
a number of N cells gives an N degrees of freedom in an image.
Therefore, a patch of the images Zs of the Figure 1, represented by
lineal combination of the previous scales ( f1, f2,......, fN ), may be
considered a single point in an N scale. Selecting super imposed
patches of four pixels in the image, M = N = 4, and the system
can be spanned as:


w′1,1 f1 w′1,2 f2 w′1,3 f3 w′1,4 f4
w′2,1 f1 w′2,2 f2 w′2,3 f3 w′2,4 f4
w′3,1 f1 w′3,2 f2 w′3,3 f3 w′3,4 f4
w′4,1 f1 w′4,2 f2 w′4,3 f3 w′4,4 f4

 ·


c1
c2
c3
c4

=


p1
p2
p3
p4

 (7)

wi, j = w′i, j · c j (8)

The solution is carried out by the method of projections
shown in Figure 2. When a solution is attained, the transfer func-
tion is used to solve a lineal system using the input image patches
extracted from the images Xs of the figure1, the lineal combination

of the sub-scales using Equation 6 and the coefficients c j produce
the Hr patches of the output image.

The model of ART uses the following equations in a cross-
scale model.

−→
f i =

−→
f i−1−

fi−1 ∗wi− pi
−→w i ∗−→w i

∗−→w i (9)

ε ≤| −→f i−
−→
f i−1 | (10)

Where pi is the desired intensity of the image in the higher
scale of the up sampled band and fi−1 the previous image ob-
tained in the iterative process, wi are the pixels areas by where the
light beam is passing as showed in figure 2 into a patch of mxm at
the scale i.

Auto-Regularized Gradients
For large scales of amplification the blur effects of PI are

more evident. In our work an auto-regularization gradient (ARG)
method is used to improve the edges of the Hr output image after
the inter-scale ART reconstruction. The edges of the Hr image are
found by using the first derivative in the x and y directions. After-
wards, the second derivative is calculated and the inflection points
around the edges are found. The amount of pixels between the in-
flection points is considered as the width of the edge. The edges
are then interpolated using the magnitude of the second deriva-
tive and an average of the curves width in a neighbourhood [35].
Figure 3 shows how the edge is restored by sharpening it. A dis-
placement (green arrows) in the position of the values of the first
derivative is guided by zero-crossing of the second derivative. For
the width of the edge the maximal ascent or descent gradient di-
rection is found from the zero crossing to the first local maximum
and the first local minimum of the second derivative with those
data a curve factor (k) is calculated. The curve scale factor is
adaptive and depends on the average of the curve width around an
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Figure 2. Geometric interpretation of the ART procedure for convergence to the next Hr image and example of patches at different scales that converge to a

Hr image, the black arrow represents the transverse light beam .

edge. The inflection points and the mean width of the edge are
used to calculate k to relate the gradient of the contour and the
displacement.

The super-resolved image is obtained by minimizing a mul-
tivariate restricted function in the negative gradient direction
[35, 36]. Two restrictions are considered [35], the differential of
the gradient and the difference of the image with the previous
scale. The scale factor of the curve k and the iteration in equation
(11) are selected by closing the distance between gradients of the
Hr output image of the multi-scale SR system and the previous
scale Xsm−1 in the proposed model of the Figure 1.

It+nτ

h,k = It+(n−1)τ
h,k −τ ·

([[Ih,k⊗g
]
↓ (β )− Il

]
↑
(β )

)
⊗g

−α(div(∇Ih)−div(∇Îh,k))


(11)

ε ≤|| It+nτ

h,k − It+(n−1)τ
h,k ||2 . (12)

Where n is the iteration number and ⊗ the convolution op-
erator. Îh,k is the result of the interpolation method, Il is the low
resolution image, g is a low pass filter before decimation factor β .
After exhaustive tests α and τ are selected to be 0.129.

Results
The following experiments were carried out with the pro-

posed system. First, a longitudinal study of the brain with mag-
netic resonance imaging (MRI) at the acquisition time T2 was
used. The volume size was 180× 217× 180 voxels. The slices
were filtered using a Butterworth filter with a cutoff frequency of
π/q and were sampled down by a factor of q to obtain a slice size
of 90×109, then, this low resolution image was amplified. In an-
other case, the BSDS500 database was used for comparison pur-
poses and a dictionary technique [34] to improve the final results.
In addition, the BSD100 database also was used for comparative
purposes. The results of the multiscale ART scheme plus self-
regulated gradients are compared with some pure interpolation

methods. The ART-AG model provides a good response for high
amplification scales and improves the results of the dictionary-
based SR method.

Multiscale Scheme with Auto-Regularized Gradi-
ents

The ARG method is applied to the output of the ART multi-
scale scheme. In parameters selection k is adapted to the ampli-
fication scale as in [35]. The blue curve of the figure 3, is the
gradient of high resolution. A sharper and amplified slice is ob-
tained with the curve factor k and n iteration, it is shown in the
right side of the figure 3 with a k swept from 1.7 to 2.3 with in-
crements of 0.1 and reconstruction iterations from 1 to 5. The
increment of SSIM respect to an original Hr image is important
for MRI studies because the resolution is highly dependent of the
magnetic field applied.

Algorithm
• Design the ART model with the necessary sub-scales and

determine the transfer function of the system in the up sam-
pling stair. Use the equation 3.

• Select the patches for ART processing from the image of
major scale using the equation 2

• Select the number of iteration of the process for the ART
precision shown in the equation 10.

• Solve the ART model and apply the solution of the system
for a lineal dependence of the input image and the down
sampled versions. Use the equations 9 and 10.

• Make an up sampled version of the input image of the mid-
dle off the output dimensions of the ART transfer system
using the equation 6.

• Optimize the ARG model using the parameters: iteration,
zero crossing, neighbourhood and curve factor. Use the
equations 11 and 12.
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Figure 3. Example of edge sharpening with auto regularized gradient. The red curve is the original gradient magnitude (first derivative), the pink curve is the

second derivative and the blue curve is the resulting sharpened edge. Right side, graphic of iteration of reconstruction vs SSIM.

SSIM results for different iterations (it) and k parameter
k

It 1.7 1.8 1.9 2 2.1 2.2 2.3
1 0.7928 0.7998 0.8016 0.7979 0.7888 0.7748 0.7564
2 0.7935 0.8002 0.8016 0.7977 0.7883 0.7741 0.7555
3 0.7943 0.8007 0.8018 0.7976 0.7880 0.7735 0.7547
4 0.7947 0.8008 0.8018 0.7973 0.7875 0.7728 0.7539
5 0.7953 0.8011 0.8017 0.7969 0.7869 0.7720 0.7529

Note: Bold values indicate the best result

Figure 4. Details of the slice four, (a) and (d) low resolution slice. (b)

and (e) Proposed ART multiscale scheme, (c);ART+ARG with k = 1.2 and (f)

ART+ARG with k = 3, it =5.

ART convergence results

The multiescale model is build by using down sampled
scales and one up sampled scale. The up sampled process is made
using bicubic interpolation. Figure 5 shows the sub-scales and up-
scales in a multi-estep procedure in which the transfer inter-scale
function is determined by algebraic reconstruction. For compari-
son purposes a low pass filter is used as blurring matrix in coor-
dination with the down-sampling scale. For example a blurring
low pass filter for a down-sampling factor q ↓ is a Butterworth
filter with cut off π/q. A high order filter is used simulating a
ideal filter appropriate for the down sampling factor. In other ex-
periment the Hr image is first blurred with a Gaussian kernel of
7×7 with standard deviation 1.6, and then down-sampled by a to-
tal scaling factor q in both horizontal and vertical directions.This
blurring kernel has been used for comparison purposes. Tables
2, 3 and 4 show the enhanced result of the procedure when the
downsampled factor q grow. The result of the ART convergence
and gradient regularization improves the bicubic interpolation by
0.1 of SSIM and 2 dB of PSNR respectivelly. This characteristic
is used as compensation of the decreasement of SSIM in dictio-
nary SR procedures when the factor q increases. Table 5 shows
that the proposed model ART-ARG improves the results of dic-
tionary based SR methods when is used as input. Our model in-
corporates finally a procedures similar to the exposed in [34], the
similar patches in the image are grouped, then, the values of the
SR image are estimated. This procedure is applied after the multi
scale scheme with ART reconstruction and the gradient manage-
ment procedure ARG. The figure 6 shows visual results of the
proposed algorithm, cuantitative results are in the table 5.
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Figure 5. The right column is the multi-scale image to determine the transfer function, in the left are the images in which the transfer function is applied

Comparisons
When a transfer function is attained by using the ART pro-

cedure, the solution of the system is passed to the original input
image and the blurring and down-sampled versions. A new im-
age is obtained as a lineal combination of the multi-scale scheme
with patches p of 2× 2 pixels. Each blurred and down-sampled
version of the original image is up-sampled up to the size of the
input image for convenience for the solution of the linear depen-
dence of the system. The model is determined for a number of
images at different scales fn where fn=0 is the image of major
dimension. The input image is decomposed in patches expressed
in vector form, each vector has the intensity of the image in some
scale. The number of dimensions of the space in which the system
converge is the same as the number of scales. The solution with
ART of the system with four scales of patches in the multi-scale
scheme is transferred to a stair in which the input image is part
of the linear system. The resulting image is restricted by gradient
management ARG usig the input image in with the middle of the
dimensions of the output scale.

Recently some models in [14] and [15] employ neural net-
works in SR for wise selection of high frequency residuals. In
[14], the residuals are added to the Lr input image in order to
obtain the Hr. The model in [14], as a variation of a SRResNet
model, is trained with large databases of patches expanded with
rotations and scale changes. In other case as [15] the residual
is obtained by a discrimination between the generated Hr images
and natural Hr images. Nevertheless the procedures are learn-
ing based with high dependence respect to the training database.
Our proposed model learn transitions between images at differ-
ent scales in the first step. The second step sharp the edges and
finally the non local redundancies of the image are exploited in
a procedure similar to [34]. The first and second steps in our

procedure in general bring an improved start point to the search
of the Hr target image. The method ART-AG-Dic in the table 5
shows results exploiting non local redundancies in a self-learning
model over the ART-AG input. For comparison purposes some
pictures of the BSD100 database where used. The input Lr im-
ages in the figure 7 where blurred with a 7 × 7 Gaussian kernel
of standard deviation 1.6 and downsampled with the scale factor
q=4 , the comparative results are exposed in the table 6. The ta-
bles show the gain of PSNR and SSIM of each method over the
bicubic interpolation. The factors of the SSIM function are set
to K = [0.08,0.075], L=255 and as window a gausian function of
size 11×11 with standard deviation 1.5. [15].
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SSIM and PSNR Comparison between ART in multiscale scheme and Bicubic using ideal and Gaussian filter q = 4˙
Image ART-AG-Gaussian ART-AG-Ideal ART-AG Bicubic-Ideal Bicubic-gausian
MRI 0.5159/20.1542 0.5442/20.7134 0.5375/19.8770 0.4704/19.3473 0.4653/19.1646
Parrot 0.7532/21.9303 0.7724/22.6622 0.7831/23.1668 0.7268/21.6142 0.7218/21.2390
Butterfly 0.6994/18.7745 0.7061/19.0437 0.7168/18.5980 0.6400/17.3273 0.6468/17.2759
Bike 0.5585/19.1223 0.5930/19.4463 0.5726/19.1671 0.5454/18.8259 0.5193/18.4691
Flower 0.6249/21.7186 0.6478/21.8859 0.6407/20.7525 0.5888/20.9486 0.5706/21.2659
Hat 0.6873/21.8936 0.6939/22.1162 0.7024/22.6052 0.6588/21.3713 0.6651/21.4860
Leaves 0.6653/17.2703 0.6779/16.6972 0.7047/17.2172 0.5897/14.8963 0.6064/15.9750
Parthenon 0.6094/19.2974 0.6199/20.0517 0.6155/19.0261 0.5669/19.4270 0.5746/18.7921
Raccon 0.6142/23.1942 0.6365/24.6002 0.6110/23.3934 0.5988/23.7784 0.5811/22.3983
Plants 0.6908/23.7673 0.7206/24.7448 0.7248/24.3239 0.6712/23.4711 0.6583/23.0557

Note: Bold values indicate the best result

SSIM and PSNR Comparison between ART and ART-AG in multiscale scheme with Bicubic and Bicubic AG using ideal filter q = 3˙
IMAGE Bicubic ART-AG ART Bicubic-AG
MRI 0.5625/20.0699 0.6662/21.9490 0.5474/20.0000 0.6577/21.6009
Parrot 0.8209/23.3733 0.8163/22.1230 0.8211/23.8170 0.8149/22.2983
Butterfly 0.7385/19.1058 0.7286/17.4485 0.7453/19.4559 0.7328/17.3198
Bike 0.6752/20.1229 0.6640/19.5992 0.6633/19.9633 0.6650/20.0680
Flower 0.7210/21.9816 0.7365/23.5687 0.7082/23.0862 0.7246/23.6506
Hat 0.7354/23.2050 0.7539/24.9170 0.7345/23.4018 0.7509/24.2403
Leaves 0.7604/17.6857 0.7625/18.1403 0.7619/18.4069 0.7406/17.3743
Parthenon 0.6737/20.9178 0.6809/21.5093 0.6762/20.3886 0.6710/21.5197
Raccon 0.6974/24.8972 0.6983/25.5202 0.6912/25.2470 0.6846/24.9388
Plants 0.7939/25.8034 0.7933/25.2914 0.7847/25.3768 0.7926/25.2600

Note: Bold values indicate the best result

SSIM and PSNR Comparison between ART and ART-AG in multiscale scheme with Bicubic and Bicubic AG using ideal filter q = 2˙
IMAGE ART-AG ART Bicubic-AG
MRI 0.6339/20.3673 0.7689/24.0406 0.7961/24.9940
Parrot 0.8517/22.8112 0.8925/26.6157 0.9027/26.9642
Butterfly 0.8010/19.1013 0.8504/22.2310 0.8709/22.4231
Bike 0.7366/19.9941 0.7875/21.5722 0.8134/21.0549
Flower 0.7842/21.9724 0.8328/24.8604 0.8535/25.4536
Hat 0.8007/23.7145 0.8265/26.8091 0.8467/27.0477
Leaves 0.7147/15.2721 0.8864/22.1044 0.8955/20.7986
Parthenon 0.6627/19.3558 0.7905/21.7771 0.8022/23.6815
Raccon 0.7812/23.2568 0.7997/27.2481 0.8288/27.3592
Plants 0.7538/18.6833 0.8823/28.2905 0.9032/29.1216

Note: Bold values indicate the best result

SSIM and PSNR Comparison between Dictionary learning methods and learning over ART-ARG q = 4˙
Image ART-AG-Dic NCSR [34] ASDS-AR-NL [31] ASDS [31] ASDS-AR [31]
MRI 19.6817/0.5601 19.2359/0.5543 19.4252/0.5434 19.8012/0.5459 19.7430/0.5460
Parrot 23.3360/0.8343 23.0441/0.8309 19.4706/0.7443 19.9855/0.7498 19.8345/0.7474
Butterfly 20.0018/0.8068 20.0826/0.8096 17.5604/0.7186 17.0569/0.7096 16.9183/0.7100
Bike 20.4400/0.6838 20.2663/0.6774 20.2748/0.5929 19.4270/0.5838 19.7818/0.5876
Flower 22.3529/0.7360 21.6910/0.7310 22.6148/0.6369 21.7744/0.6285 22.1029/0.6296
Hat 26.5762/0.8013 26.2645/0.7992 24.1121/0.7473 24.9591/0.7497 24.8346/0.7484
Leaves 20.7147/0.8242 20.6845/0.8238 15.9664/0.6762 16.2065/0.6608 16.1773/0.6620
Parthenon 19.2777/0.6320 19.3093/0.6331 18.6136/0.6133 19.4370/0.6155 19.3224/0.6131
Raccon 24.0135/0.6215 23.3931/0.6129 24.2312/0.6156 24.1558/0.6134 24.1418/0.6125
Plants 22.1135/0.7003 22.0201/0.6977 23.0643/0.6975 21.8284/0.6776 22.1254/0.6810

Note: Bold values indicate the best result
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Figure 6. In the figure the imput image, the ART-ARG and the ART-ARG-Dictionary results are showed consecutively with scale factor q=4

Figure 7. In the figure, left to right, the imput image, the ART-ARG and the ART-ARG-Dictionary over figures 1)idols, 42)Boys 56)Firefighter and 75)Farm of

BSD100 database using factor q=4. The Hr image is first blurred with a 7 × 7 Gaussian kernel with standard deviation 1.6, and then down-sampled by a total

scaling factor q in both horizontal and vertical directions. The PSNR/SSIM gains of our proposed method ART-AG-Dic over bicubic interpolation in each case

are 1) 0.6dB/0.07 2) 1.8dB/0.06 3) -0.16dB/0.03 4) 1.5dB/0.07.

Conclusions

In this paper, a new SR method was presented. The model
ART is used to determine the transfer function between scales in
a multi scale scheme of amplification. The output image of the
multi-scale scheme is improved by using a new auto regularized
gradient model in which a restriction of the gradient sharpness of
the output image is made respect to the sharpness in a previous

scale. The model shows a stability in the SSIM and PSNR ra-
tios respect to an ideal Hr image for large sacales of amplification
with q = 4. The method compensates and enhance the response of
dictionary-based SR methods for high amplification factors. The
ART model applied could be controlled by iteration in the process
of the transfer function determination. The procedure is indepen-
dent of external databases. The gradients auto regularization in
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Gain of PSNR and SSIM over bicubic interpolation for differents methods using the database BSD100 [43] and [44] with factor q = 4
Method Set 5 [43] Set 14 [44] BSD100
SRCNN [39] 1.64/0.04 1.19/0.03 0.74/0.035
SelfEx [40] 1.9/0.05 1.46/0.04 0.89/0.04
DRCN [41] 3.09/0.07 2.03/0.05 1.37/0.05
ESPCN [42] 2.33/0.05 1.66/0.05 1.02/0.05
SRResNet 3.62/0.08 2.4/0.069 1.5/0.065
SRGAN [15] 0.97/0.02 0.03/-0.008 -0.8/-0.025
ART-AG-Dic 2.01/0.08 1.5/0.072 0.6/0.07

Note: Bold values indicate the best result

the output image of the ART procedure makes sharpen edges.The
dictionary method like [34] then carry out a best estimation of
the Hr image using the ART-AG model as input and increases
the SSIM and PSNR ratios over some powerful procedures re-
ported in the state of the art. The proposed model can be useful
for segmentation and 3D representation. In future work, we aim to
test the proposed SR system using different transformation such
as contourlets, bandelets, wavelets, dual tree and double density
wavelets transform. Our system can help in the prediction of high
frequency bands, also other transference configurations for multi-
scale amplification schemes can be investigated.
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and research interests include image superresolution, image and
video coding, statistical shape analysis, and pattern recognition.

IS&T International Symposium on Electronic Imaging 2019
Image Processing: Algorithms and Systems XVII 255-11



• SHORT COURSES • EXHIBITS • DEMONSTRATION SESSION • PLENARY TALKS •
• INTERACTIVE PAPER SESSION • SPECIAL EVENTS • TECHNICAL SESSIONS •

Electronic Imaging 
IS&T International Symposium on

SCIENCE AND TECHNOLOGY

Imaging across applications . . .  Where industry and academia meet!

JOIN US AT THE NEXT EI!

www.electronicimaging.org
imaging.org


