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Abstract
A study of the impact of image noise on well-known range

image curvature determination methods is presented here. The
study considers 12 methods, and each is analyzed based on its
performance at varying levels of input noise. The performance
analyses consider quality factors of (1) absolute error, (2) corre-
lation with correct, expected curvature values, and (3) signal-to-
noise ratio (SNR). Curvature-based renderings are also presented
for some data to provide basic visualizations of the impact of noise
on one curvature-based task. The work can benefit tasks using
range data (e.g., from Kinect or commercial-grade sensors).

Introduction
Curvature is a commonly used surface shape measure. It

has previously been shown to be useful for segmentation [1], ob-
ject recognition [2], face analysis [3], surface description [4] and
reconstruction [5], and a multitude of other tasks. These tasks
often utilize sensed data (for example, data from consumer- or
commercial-grade range scanners) from which exact curvature
calculation is impossible due to the presence of noise and mea-
surement error. While exact computation is impossible in these
cases, there exist a number of strategies capable of determining,
with varying accuracy, curvature within such data [6].

The focus in this work is on the analysis of the impact of
varying noise levels on twelve such curvature determination meth-
ods for range data (range images). The analysis here considers
synthetic range images of two scenes, with each scene gener-
ated at varying levels of noise. At each noise level, the quality
of curvature values produced by each method is assessed using
average absolute error in determined curvatures and correlation
of determined curvatures with actual curvature. The relationship
to signal-to-noise ratio (SNR) is also considered. Prior studies
have not considered relative sensitivity to a range of noise levels
of a wide variety of curvature determination methods; this work
provides new insights into method quality.

This paper is organized as follows. The following section
provides a brief background on both surface curvature generally
as well as each curvature determination method considered here.
Some previous studies of curvature accuracy are considered there
as well. The subsequent sections describe the range images tested,
testing methodology, and results, including some curvature-based
renderings.

Background and Previous Work
In this section, we provide a short a background on surface

curvature and existing methods for determining surface curvature
in range images.

Surface Curvature
The principal curvatures are two common descriptors for ex-

pressing surface curvature in range images. They are denoted by
κ1 (for the larger of the two) and κ2 (for the smaller). At each
point on the surface, their magnitudes describe the “bending” of
the surface away from the surface tangent plane, and their signs
describe the direction of the bend relative to that plane. Mathe-
matically, calculation of surface curvature at a surface point re-
quires knowledge of the first and second derivatives of the surface
function at the point.

Two other common curvature measures, often defined as
functions of κ1 and κ2, are the mean curvature, H = 1

2 (κ1 +κ2),
and the Gaussian curvature, K = κ1× κ2. These curvatures can
be computed directly from the surface derivatives, or they can be
computed from κ1 and κ2.

Existing Accuracy Studies
Since, in practice, the derivatives necessary to exactly com-

pute curvature may be unknown, as in the case of acquired
data (e.g., from the Microsoft Kinect), a number of methods to
determine curvature from such data have been devised. And a
few studies of these methods in terms of accuracy and/or execu-
tion time have been reported previously (e.g., [7, 8, 6]). These
previous studies have focused on a limited number of noise levels
and/or determination methods. (E.g., in [6], for most methods we
considered only one noise level versus no noise.) Our work here
provides a study of method performance as noise level increases
for all methods.

Curvature Determination Methods
Here, we briefly describe each of the curvature determina-

tion methods considered. Broadly, there are three strategies used
by these methods. One is computing curvature by first fitting a
continuous surface to the range image, then computing deriva-
tives from this continuous representation, and finally using those
derivatives to estimate curvatures. The first four methods use
such a strategy. The second strategy, used by the next four meth-
ods, is to use convolution with derivative-estimating kernels and
compute curvatures using these estimated derivatives. The other
strategy is a hybrid strategy that combines elements of the first
and second strategies. The last four methods use such a strategy.
Some of the methods considered here were designed originally
to determine the principal curvatures. Others were designed to
determine H and K. Since H and K can be computed from the
principal curvature values, and vice-versa, here we take only κ1
and κ2 equivalences, allowing all 12 determination methods to be
compared on a common basis. As space here is limited, we refer
to our previous work [6] for further details (e.g., implementation
details and parameter selection motivation) on each method. Im-
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plementations and parameter choices here are identical to [6].
Flynn and Jain [7] described a B-Spline-based method that

determines curvatures by first fitting a B-Spline using linear re-
gression. This fitting produces a continuous representation of the
range image from which derivatives and ultimately curvatures are
computed at each point in the range image. We denote this method
BSF.

The second method [6] determines curvatures at each point
within a range image using B-Splines, but without the linear re-
gression fitting step required by the BSF approach; it directly uses
the range image data as the B-Spline coefficients, providing a con-
tinuous representation of the data from which curvatures are com-
puted. We denote this method SBS.

The third method [6] determines curvatures by first fitting a
Catmull-Rom spline to the range image. From this continuous
representation of the data, derivatives (and thus curvatures) are
determined. We denote this method CRS.

The fourth method [7] is linear regression-based. It first
solves for quadratic surface coefficients using linear regression
within a neighborhood around each image point. Curvatures are
determined from this representation. We denote this method LR.

The fifth method, from Besl and Jain [9], uses convolution
with orthogonal polynomials to directly estimate derivatives from
the range image. Curvatures are then computed from these esti-
mated derivatives. We denote this method OP.

The sixth method, from Fan et. al [10, 11], is convolution-
based. It uses four directionally sensitive convolution kernels to
obtain four directional derivatives at each point in the range im-
age. Using these four directional derivatives, curvatures are com-
puted. We denote this method DE.

The seventh method [6] first performs convolution with ker-
nels based on the Taylor Expansion. Derivatives estimated from
that are used in curvature determination. We denote this method
TE.

The eighth method [6] uses convolution with 3D Deriche Fil-
ters to provide estimates of the first and second derivatives. From
those estimates, the principal curvatures are computed. We denote
this method DF.

The ninth method, from Hoffman and Jain [12], first esti-
mates normals at each image point. Then, changes in the normal
at each point are used to determine the curvatures. We denote this
method DN.

The tenth method, from Martin [13], considers triplets of
points formed within a neighborhood of each range image point.
A circle is fit to each triplet of points, providing an ensemble of
curvature estimates. The principal curvatures are then determined
at each point using its ensemble. We denote this method CF.

The eleventh method, from Yang and Qian [14], was de-
scribed for determining curvatures in point cloud data. It can also
be applied to range images. In the approach, each point is pro-
jected to a moving least squares (MLS) surface, and curvatures
are computed directly from this MLS surface. We denote this
method MLS.

The twelfth method, from Zhang et al. [15], was also de-
scribed for point cloud data. (It can also be applied to range im-
ages.) It first computes a number of normal curvatures at each
point. These normal curvatures are then used to find the curva-
tures at each point. We denote it CAN.

Experiments
As our goal with this work is to provide an analysis of de-

termined curvature quality at a variety of noise levels, our ex-
periments are limited to range images with exactly known curva-
tures, which allows comparison of each method’s results versus
the known curvatures. Specifically, we focus on two synthetic
range image datasets. One consists of a sinusoidally varying sur-
face. The other consists of a cylinder. Our experiments here focus
on error levels in the principal curvatures.

The sinusoidally varying surface range images are generated
using a function defined by Marschner and Lobb [16]. That func-
tion, which generates a volume rather than a range image, is:

g(u,v,w)=
(1− sin(πw/2)+β (1+ρs(

√
u2 + v2)))

2(1+β )
−0.5,(1)

where ρs is given by:

ρ(s) = cos(2π fMcos(
πs
2
)). (2)

We used β = 0.25 and fM = 6, following [16]. We generated a
256× 256 range image from this volume in which each image
point records its vertical distance to the level 0 isosurface (i.e.,
g(u,v,w) = 0 surface). We denote this dataset ML. In the table
below, we show some statistics about the resulting range image.
The exact curvatures of the ML dataset were determined based on
known derivatives (found using the Sage mathematics software
[17]) calculated at each point.

Table 1: ML Dataset Statistics

Max 0.16
Min -0.16

Mean 0.000079
Median 0.0016

Std. Dev. 0.11

The cylinder range image (henceforth denoted Cylinder) was
generated at a size of 128× 128. It consists of a single cylinder
of radius 170 oriented along the x-axis. The cylinder’s principal
curvatures are therefore (by definition):

κ1 =
1

170
; κ2 = 0. (3)

In the table below, we show some statistics about the Cylinder
dataset.

Table 2: Cylinder Dataset Statistics

Max 12.51
Min 0.000038

Mean 4.11
Median 3.04

Std. Dev. 3.71

To analyze the performance of each curvature method at a
variety of noise levels, we considered noise-free and noise-added
versions of each of these range images at a number of different
levels of Gaussian noise. The mean (µ) of the Gaussian noise
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was kept at zero, and the standard deviation (σ ) was varied. In
all cases, the image noise was added prior to curvature determina-
tion, and no pre-process smoothing or any other pre-process noise
mitigation efforts were attempted. Our error analysis focused on
the average absolute error exhibited by each method. We explored
the signal-to-noise ratio (SNR) exhibited by each dataset at each
noise level.

We also did a subjective analysis of curvature-based render-
ings of the ML datasets, which illustrate the impact of noise on a
common curvature-based task.

Results
In this section we present the results of those experiments.

ML
Fig. 1 shows the average absolute error of each curvature de-

termination method when operating on the ML dataset at a variety
of noise levels, with each solid line representing a curvature deter-
mination method and the left y-axis showing the average absolute
error level. Also shown is the SNR at each noise level, represented
by the dotted blue line corresponding with the right y-axis. The
leftmost data points represent the noise-free version of the dataset
(shown here as σ = 0), and thus exhibit relatively low errors and
an infinite SNR. The rightmost datapoint represents a noise-added
version of the dataset with σ = 1.0 and an SNR of about −18.9.
The errors shown here are just for κ1 values; the κ2 chart looks
very similar.

As noise increases, every method exhibits an approximately
linear increase in average absolute error in curvature up to around
σ = 0.25 (SNR = −6.86). However, the slope of the linear re-
lationship differs for each method. CRS scales worst with noise,
exhibiting a slope of 5.15. In contrast, CAN, one of the methods
which scales best with noise, exhibits a slope of just 0.01. As
a result, the error performance of the methods diverges as error
increases. (MLS, DF, and OP also exhibit low slopes.)

It is worth noting that the linear increase in error in curvature
continues even past the point of SNR becoming negative (which
happens at around σ = 0.15). In fact, as shown in Fig. 2, a sim-
ple curvature-based rendering (where the mean curvature at each
point is mapped according to a colormap) of a selection of the
best performing methods clearly shows that a substantial amount
of curvature detail is preserved even at this noise level. This show-
ing is surprising (1) due to negative SNR and (2) because for even
the most accurate of these methods, the median relative error in
curvature is 1.5, which implies that relative error is likely not par-
ticularly indicative of the utility of a curvature measure.

Fig. 3 shows each method’s correlation with the expected
curvatures for the same set of noise levels as presented in Fig. 1.
CAN, DF, OP, and MLS, which exhibit among the lowest errors
across the range of noise levels, also exhibit the strongest correla-
tions with the correct curvatures.

Cylinder
Fig. 4 shows the average absolute error of each curvature

determination method when operating on the Cylinder dataset at a
variety of noise levels. The chart style is identical to the ML case,
with solid lines representing the average absolute error for each
method, and a single dashed line representing SNR. Again, this
chart shows only κ1 errors, but the κ2 chart is essentially identical.

Here, methods again exhibit linearly increasing errors as σ

increases, although the error increases more slowly for σ above
0.5. This error behavior may be due to a wider range of values
exhibited by the Cylinder function (compared to ML). While ML
exhibits a standard deviation of 0.11, the standard deviation here
is 3.71. As a result, even though the overall signal strength is
still stronger than the noise (i.e., the SNR is positive) at σ = 0.5,
this wider range of values implies that some of the smaller values
within the Cylinder range image will have large relative noise lev-
els. As a result, there is less uniformity in the relative noise levels
across the image, and, consequently, even when the SNR is still
relatively high, some data values exhibit extremely high relative
noise. The result is that curvatures are gradually dominated by
noise (as more and more points in the range image are gradually
dominated by noise), and the error in curvature flattens out with
increasing σ .

Conclusion
While curvature is a useful quantity for a number of tasks, its

estimation is often complicated by various levels of noise present
in the range images considered. Here, we have applied a large
number of existing curvature determination methods to two range
images at a variety of noise levels. We observed that average ab-
solute error in determined curvatures tends to vary linearly with
input noise, up to a point. The primary difference in the behaviors
of methods is the slope of the linear relationship with noise. From
tests here, it appears the CRS approach tends to degrade more
rapidly with noise than do other methods. The CAN, MLS, DF,
and OP methods appear to degrade the most gracefully.

Neither SNR nor relative error seem to be useful measures
for assessing the usability of curvature results. In the ML ex-
periment, for example, some methods are able to produce mostly
usable renderings even at data levels that result in a negative SNR
and very high median relative error.
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Figure 1: Average absolute error of each method at each noise level on the ML dataset. SNR is also shown as a dotted blue line. The
increase in error with noise is approximately linear for each method up to about σ = 0.25, despite the SNR being negative already by
σ = 0.15.

(a) Exact (b) OP (c) DF (d) CAN
Figure 2: Curvature-based renderings of the ML dataset. (a) “correct” rendering achieved when using exact curvatures. (b,c,d) renderings
achieved using curvatures from OP, DF, and CAN when σ = 0.25. Despite the extremely high level of noise and the high relative errors,
these renderings still resemble the correct one.
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Figure 4: Average absolute error of each method at each noise level on the Cylinder dataset. SNR is also shown as a dotted blue line.
Here, each method is linear only up to about σ = 0.5.
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