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Abstract—Measuring Quality of Experience (QoE) and inte-
grating these measurements into video streaming algorithms is a
multi-faceted problem that fundamentally requires the design
of comprehensive subjective QoE databases and metrics. To
achieve this goal, we have recently designed the LIVE-NFLX-II
database, a highly-realistic database which contains subjective
QoE responses to various design dimensions, such as bitrate
adaptation algorithms, network conditions and video content.
Our database builds on recent advancements in content-adaptive
encoding and incorporates actual network traces to capture
realistic network variations on the client device. Using our
database, we study the effects of multiple streaming dimensions
on user experience and evaluate video quality and quality of
experience models. We believe that the tools introduced here will
help inspire further progress on the development of perceptually-
optimized client adaptation and video streaming strategies.

I. INTRODUCTION

HTTP-based adaptive video streaming (HAS) is commonly
deployed in modern video streaming services, such as Netflix
and YouTube. The main idea behind HAS is to encode multiple
video representations with various bitrate and quality levels,
and to allow client-driven stream adaptation. As a result, the
client device decides the bitrate/quality level of the video
chunk to be played next. The client’s stream adaptation is
usually based on network throughput measurements and the
device buffer status [1].

In adaptive video streaming, there are two main types of
video distortion: compression/scaling artifacts and rebuffering
[2]. When the available bandwidth drops, a client may use a
higher compression ratio and/or a lower encoding resolution to
reduce the video bitrate, leading to compression and/or scaling
artifacts [2], which do not interrupt video playback. In the
extreme case where the available throughput drops below a
certain value and the device buffer is emptied, the client device
must pause the video playback (video rebuffering) and wait
until the buffer is filled up with some video data before the
playback resumes.

In this work, we focus on how video quality changes and
rebuffering affect user Quality of Experience i.e., the overall
level of user satisfaction [3] while viewing streaming content.
By predicting QoE, we can design better algorithms to opti-
mize streaming QoE while effectively utilizing the available
bandwidth. We generate a diverse set of of video streams
using different video contents, encoded with different quality
levels and streamed using different client bitrate adaptation
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(ABR) algorithms under various network conditions. Then, we
conduct a comprehensive human study to better understand
subjective streaming QoE. The ultimate goal is to use the
collected data to predict QoE and use these predictions in
a feedback manner, to design better encoding and streaming
adaptation algorithms.

The unique characteristics of the new database are that we
reply on state-of-the-art development in large-scale video en-
coding and streaming. To create compressed videos, we use the
Dynamic Optimizer (DO) [4], an optimization framework that
determines the optimal (under certain assumptions) encoding
resolution and quantization parameter on a per-shot basis,
guided by a perceptual video quality assessment algorithm
(VMAF) [2], [4]. On the streaming end, we use actual network
measurements and a realistic buffer simulator. Given the diver-
sity of ABR algorithms and network traces, the collected data
in the database is able to capture multiple streaming adaptation
aspects, such as video quality fluctuations, rebuffering events
of varying durations, and content types. Notably, the database
is considerably larger than various other public-domain video
QoE databases [5]–[7].

Our findings can be summarized as follows. A better band-
width prediction model can improve most objective streaming
metrics, such as the playout bitrate and the number and
duration of rebuffers. Start-up is the most challenging part of
a session for all ABR algorithms, since ABR algorithms have
not built up the video buffer and hence network variations can
easily reduce QoE. While this is in line with previous studies
[1], we take a step further. Our continuous data analysis shows
that humans perceive these differences during start-up, even if
they are forgiving and/or forgetful when an overall QoE score
is recorded. These observations demonstrate the importance
of temporal studies of QoE, especially during start-up, on
practical video streaming applications.

II. RELATED WORK

Many databases have been designed towards advancing
progress on the general problem of video quality, e.g., [8]–
[11] and streaming QoE [5], [6], [12]–[15]. The most im-
portant limitation of previous works is that they usually do
not always consider continuous-time QoE together with the
interplay between rebuffering events and time-varying video
quality. Meanwhile, a common approach that most previous
efforts have taken is to systematically control and simulate
network conditions, e.g., as suddenly decreasing or gradually
increasing bandwidth patterns. By varying the position and
the length of these events, it is indeed possible to recreate
intuitive network patterns. However, real network conditions
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are far more complex, and hence challenge ABR algorithms
to a greater extent. In this work, we have undertaken a more
realistic approach, where real network traces have been used
to drive the database generation.

Further, in previous studies, fixed bitrate ladders were
commonly used, without considering content-aware encoding
strategies which are gaining popularity. The main advantage of
a content-aware ladder is that not all video contents need the
same amount of bits to be encoded; some scenes are easier to
encode than others. Therefore, a content-aware ladder achieves
bitrate savings for streaming providers and better video quality
(or more video data) for consumers.

III. RECREATING A COMPREHENSIVE END-USER
EXPERIENCE

A. Overview of the Streaming System

We designed a new and unique QoE database, whereby per-
ceptual video quality principles are injected into various stages
of a modern streaming system: encoding, quality monitoring
and client adaptation. To overcome the limitations of previous
QoE studies, we built our database using a highly realistic
adaptive streaming pipeline model, which comprises four main
modules: an encoding module, a video quality module, a
network transmission module and a client-based video playout
module.

The encoding module constructs a content-driven bitrate
ladder which is then fed into the Dynamic Optimizer (DO)
[4]: a state-of-the-art encoding optimization approach, which
determines the encoding parameters (encoding resolution and
Quantization Parameter - QP) to produce compressed videos of
optimized quality. The video quality module performs VMAF
[2] quality measurements that drive the encoding and client
modules. We used the latest VMAF (version 0.6.1), which was
trained as described in [16]. The VMAF quality measurements
are stored in a chunk map and made available on the client side
for client bitrate adaptation. A chunk map contains information
(e.g. bitrate and quality in terms of VMAF) about every
encoded video segment. The network module incorporates the
selected network traces and is responsible for communication
between the encoding, video quality and client modules. The
client module is responsible for requesting the next chunk to
be played.

This streaming model allowed us to recreate a compre-
hensive end-user experience by focusing on three streaming
dimensions: encoding, network throughput and the choice
of ABR algorithm. To study each of these dimensions, we
incorporated 15 video contents, 7 actual network traces and
4 adaptation algorithms, yielding 420 video streams. Next,
we explore the diverse characteristics of each dimension with
the overarching goal of recreating a comprehensive end-user
experience.

B. Video Contents

To design a diverse encoding space, we considered multiple
video contents and encoded them at multiple bitrate values
(bitrate ladder). We collected 15 video contents, which span a
diverse set of content genres, including action, documentary,
sports, animation and video games. The video sequences also

contain computer-generated content, such as Blender [17]
animation and video games. The videos were shot/rendered
under different lighting conditions ranging from bright scenes
(Skateboarding) to darker ones (Chimera1102353). There were
different types of camera motion, including static (e.g. Asian
Fusion and Meridian Conversation) and complex scenes taken
with a moving camera, with panning and zooming (e.g. Soccer
and Skateboarding). Contents having source resolutions larger
than 1920x1080 and/or frame rates larger than 30 fps were
downsampled to 1920x1080 and/or 30 fps. We summarize
some of the content characteristics in Table I.

C. Video Encoding

A comprehensive encoding space design requires a wide
range of encoding bitrates and video quality levels. To this end,
we derived a target bitrate ladder, i.e., a set of possible bitrate
values, one for each content, using VMAF [2] to generate
equally spaced (in terms of VMAF) bitrate points, then fed
these bitrate points to DO [4]. The generated encoding bitrates
range from about 150 kbps up to almost 6 Mbps. The low
bitrate range, i.e., 150 kbps to 1 Mbps is sampled more heavily,
which aligns well with our raised interest for challenging
network conditions. It should be noted that the encoding bitrate
ladder design is orthogonal to the actual network conditions,
since the network conditions are not known a priori.

TABLE I: Content characteristics of the video contents in
LIVE-NFLX-II.

Video Source ID Description Motion
AirShow AS blue sky, saliency medium

AsianFusion AF uniform background, zoom-in low
Chimera1102353 CD dark background, saliency medium
Chimera1102347 CF multiple faces, zoom-in low

CosmosLaundromat CL blender, saliency low
ElFuenteDance ED rich spatial activity, faces medium
ElFuenteMask EM medium spatial activity, saliency medium

GTA GTA gaming content high
MeridianConversation MC low-light, human face low

MeridianDriving MD zoom-in, face close-up low
SkateBoarding SB complex camera, saliency high

Soccer SO rich spatial activity high
Sparks SP face, fire sparks, water low

TearsOfSteelRobot TR multiple objects high
TearsOfSteelStatic TS human close up low

As already mentioned, the DO framework selects the en-
coding resolution and QP for each shot, such that the overall
quality (as measured by VMAF) is maximized for a given
target bitrate. In our implementation of the DO, we used 6
encoding resolutions: 384x216, 480x270, 640x360, 960x540,
1280x720, 1920x1080 and 10 QP values: starting from 43
(worst quality) to 16 (best quality), in steps of 3. However,
for display purposes, all compressed videos were upsampled
to 1920x1080 to match the display device resolution.

D. Network Simulation

Up to this point, we have only considered the first dimension
in the video streaming design space - encoding. Importantly,
the number of available bits is not constant in a video stream-
ing session and network resources can vary significantly. To
capture the effects of network variability, we manually selected
7 network traces from the HSDPA dataset [18], [19], which
contains actual 3G traces collected from multiple travel routes
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Fig. 1: Network traces used in our streaming pipeline model.

in Norway, using various means of transportation, including
car, tram and train, together with different network conditions.
This dataset has been widely used to compare adaptation
algorithms [20] and is suitable for modeling challenging, low-
bandwidth network conditions.

As shown in Fig. 1, the selected traces are approximately
40 seconds long and have varying network behaviors. For
example, the TLJ trace has the lowest average bandwidth but
does not vary much over time, while the MKJ trace has a
much more volatile behavior than TLJ. The network traces
densely cover download speeds up to 1Mbps, and there are
also samples falling within the 1Mbps-3Mbps range.

E. Client ABR Algorithm

In client-based video streaming, the client is responsible
for requesting the next chunk to be played. To decide the
appropriate quality representation, the client module is aware
of its buffer status, and may estimate future bandwidth (based
on past client measurements). The client may also have
information regarding the bitrate/quality levels for each video
segment. In practice, this can be implemented as part of the
manifest exchange between server and client.

The design space of adaptation algorithms is very large [1],
[20]–[25], and hence we selected four representative adapta-
tion algorithms. Each focuses on different design aspects, such
as preserving buffer status, maximizing download bitrate, or
mediating between chunk quality and buffer level.

We implemented the buffer-based (BB) approach from [1],
which decides the rate of the next chunk to be played, as
a function of the current buffer occupancy. We included this
algorithm because it is simple to implement and is commonly
evaluated or cited in the ABR literature. A reservoir of r = 5
sec. and a cushion of c = 4.5 sec. was used. We manually
selected these parameters to achieve satisfying performance
on a set of tests that we carried out offline. The advantage of
the BB approach is that it can reduce the amount of rebuffering
by only accessing buffer occupancy.

Viewing adaptation from a different perspective, we also
implemented a rate-based (RB) approach which selects the
maximum possible bitrate such that, based on the estimated
throughput, the downloaded chunk will not deplete the buffer.
To estimate future throughput, an average of w = 5 past
chunks is computed. Selecting w can affect adaptation perfor-
mance, if the network varies significantly. A low value of w
could be insufficient to produce a reliable bandwidth estimate,

while a large w might include redundant past samples and have
diminishing impact. Another downside of the RB approach
is that, when channel bandwidth varies significantly, it may
lead to excessive rebuffering and aggressive bitrate/quality
switching.

Using video bitrate as a proxy for quality may yield sub-
optimal results; a complex shot (rich in spatial textures or
motion) requires more bits to be encoded at the same quality
compared to a static shot having a uniform background and
low motion. Therefore, it is interesting to explore how well a
quality-based (QB) adaptation algorithm will correlate against
subjective scores. We relied on the dynamic programming
consistent-quality adaptation algorithm presented in [26]. We
use VMAF measurements (using the video quality module) as
a utility function to be maximized within a finite horizon h (in
sec.). This was formulated as a dynamic programming (DP)
problem solved at each step, which determines the chunk to
be played next.

In our QB implementation, the network conditions are
estimated similar to our RB implementation. We assume that
future throughput (within the horizon h) will be equal to the
average throughput over the past w = 5 chunks. However,
different from RB, QB maximizes visual quality in terms
of VMAF, instead of video bitrate. For the QB client, two
practical limitations on the buffer size are imposed. To reduce
the risk of rebuffering, the QB solution requires that the buffer
is never drained below a lower bound Bl (in sec.). Also, due to
physical memory limitations, QB never fills the buffer above
a threshold Bh. To ensure that the Bl and Bh constraints are
satisfied, the QB solution is set to converge to a target buffer
Bt ∈ (Bl, Bh) by imposing in its DP formulation that the
buffer at the end of the time horizon has to be equal to Bt.
Notably, if the dynamic programming solution fails (when Bl

cannot be achieved or Bh is surpassed), the QB algorithm
uses a “fallback” mode: if Bl cannot be achieved, then QB
selects the lowest quality stream, while if Bh is surpassed,
then QB pauses downloading until the buffer frees up and
then downloads the highest available stream.

It is impossible for any adaptation strategy to have perfect
knowledge of future network conditions. In practice, proba-
bilistic network modeling, or other much simpler estimation
techniques can be exploited. For the latter, many adaptation
algorithms assume that network conditions are constant over
short time scales, and apply filtering using previous network
measurements, as in QB. Since accurate knowledge of future
bandwidth places an upper bound on the performance of an
algorithm, we also included a version of QB which uses the
actual network traces, instead of throughput estimates, thereby
acting as an “oracle” (OQB).

To demonstrate the diversity of ABR algorithms, Fig. 2
shows the average bitrate (in kbps) and rebuffering time for
the 4 adaptation algorithms. We observed bitrate values in the
range of 535 to 660 kbps and average rebuffering times from
0.8 to 1.35 seconds. Notably, and since in the start-up phase
(first 5-10 seconds) of every stream the video buffer is not
filled up yet, we found that most rebuffering events occurred
within the first 5-10 seconds of the video stream.

Given the comprehensive nature of the encoding, network
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Fig. 2: Average bitrate (in kbps) and rebuffering time (in s.)
for the 4 adaptation algorithms in LIVE-NFLX-II.

conditions and ABR designs, we are able to create a rich
streaming QoE database by conducting a large subjective test
on human perception. In the next Section, we describe the
specifics of this test, which led to the creation of the LIVE-
NFLX-II database.

IV. SUBJECTIVE TEST ON THE RECREATED EXPERIENCE

We conducted a single-stimulus continuous quality evalua-
tion study [27] over a period of four weeks at The University
of Texas at Austin’s LIVE subjective testing lab. We collected
overall and continuous-time QoE scores on a 1080p computer
monitor from a total of 65 subjects (50 male and 15 female,
ages 18-30). Overall QoE scores reflect the final QoE after
viewing each video sequence in its entirety, while continuous
scores capture the time-varying nature of QoE due to quality
changes and rebuffering. To avoid user fatigue, the study was
divided into three separate 30-minute viewing sessions of 50
videos each (150 videos per subject). To design the experimen-
tal interface, we relied on Psychopy [28] and collected opinion
scores (overall and continuous) in the range of [1, 100].

The final database consists of 420 distorted videos with
an average of 23.2 scores (overall and continuous) for every
distorted video. No video was viewed by less than 22 subjects,
ensuring a sufficient number of scores per video. Overall, we
gathered 65*150 = 9750 overall scores and 9750 continuous-
time waveforms to study subjective QoE. We applied z-score
normalization on the overall and continuous-time QoE scores
to account for subjective differences when using the rating
scale. No subjects had to be rejected for either the final or
continuous scores.

V. SUBJECTIVE ANALYSIS

In streaming applications, human opinion scores serve as the
ground truth when analyzing streaming video impairments and
when evaluating objective models of video quality and QoE
prediction. Here we analyze the video database by means of
the collected overall and continuous-time subjective scores.

A. Analysis Using Overall Scores

To identify the main QoE factors, Fig. 3 highlights the re-
lationships between overall scores and average VMAF values
(calculated on non-rebuffered frames), and the number and
duration of rebuffering events respectively. Unsurprisingly, the
presence of rebuffering (red points) negatively impacts the

(a) VMAF and MOS

(b) # rebuffers and MOS (95% conf. intervals)

(c) Rebuffer duration (in s.) and MOS

Fig. 3: VMAF measurements, number and duration of rebuffer
events against overall QoE scores in LIVE-NFLX-II. Around
40% of the video sequences have at least one rebuffering event.

overall correlation of VMAF with subjective opinion scores,
since VMAF does not account for the effects of rebuffering
on user experience. Naturally, a larger number of rebuffering
events tends to decrease user experience.

As an exception, the points with 3, 4 and 5 rebuffering
events are not in decreasing MOS order. We found that the
corresponding average rebuffering durations were 4.33, 3.49
and 2.93 sec. respectively, meaning that larger rebuffering oc-
currence did not necessarily imply larger rebuffering duration.
Therefore, Fig. 3b demonstrates that subjects are sensitive to
a combined effect of rebuffering occurrence and duration.

In Fig. 3c, we observe that a longer rebuffering time also
lowers QoE, but when the rebuffering time is more than 4
seconds, duration neglect effects [29] may reduce this effect.
According to the duration neglect phenomenon, subjects may
recall the duration of an impairment, but they tend to be
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insensitive to its duration (after a certain cutoff) when making
overall QoE evaluations.

We compared the overall QoE scores among different adap-
tors (Fig. 4). We observed that the opinion scores are not very
different across adaptors. This may be due to the fact that most
of the rebuffering events occurred early in the video playout,
and because, just before the video finishes playing (and the
overall score is recorded), the adaptation algorithms have built-
up enough buffer to better handle bitrate/quality variations,
even if the network is varying significantly. Therefore, it is
likely that recency effects [14], [29] led to biases in the overall
QoE evaluations, i.e., subjects are forgiving/forgetful when
recording overall QoE.

Fig. 4: Overall QoE score distribution for different adaptation
algorithms (averaged across traces and contents). The error
bars indicate the 95% confidence interval.

To validate this recency phenomenon, we averaged the
continuous subjective scores over one second windows and
calculated the correlation scores with the final subjective
scores, as in [14]. For example, we found that the average
continuous scores calculated over the [4, 5] second window
correlated weakly with the overall QoE scores (correlation
of 0.58). However, by averaging the continuous scores over
the [24, 25] second window (20 seconds later), the correlation
increased to 0.94. Notably the overall scores were similar
across adaptors.

B. Analysis Using Continuous Scores

Figure 5 depicts the continuous-time user experience across
adaptation algorithms. We found that, within the first few
seconds, the RB aggressive rate strategy initially leads to better
QoE, unlike BB, QB and OQB, which opt for buffer build-
up. This also means that subjects preferred increased early
rebuffering, if it meant better start-up quality, as in the case
of RB. Within the first 12 seconds, BB is overly conservative
and delivers the lowest QoE among all adaptors, while QB
and OQB perform between RB and BB. Nevertheless, after
12 seconds, QB and OQB improve considerably, with OQB
tending to produce higher scores for the rest of the session.
BB is relatively lower than RB and QB, both of which are
statistically close. As before, we note that, after 25 seconds,
QoE measurements are decreasing and have larger confidence
intervals, since they correspond to videos that rebuffered, and
their count decreases over time.

Notably, as in Fig. 4, we found that OQB is not statistically
better than QB, even though it has perfect knowledge of
the future bandwidth and performs the best in terms of
objective metrics. As already explained, for the majority of
distorted videos, rebuffering and quality degradations occurred
earlier during video playout and this led to smaller differences
in the subjective opinions per adaptor and over time. This
experimental result does not suggest that better bandwidth
prediction is not an important goal, but it does show that better
bandwidth prediction does not significantly influence overall
QoE scores. Meanwhile, the significant differences in QoE
between adaptation strategies in the start-up phase underlines
that temporal studies of QoE are highly relevant for adaptive
video streaming, given that ABR algorithms are especially
challenged during start-up.

Fig. 5: Continuous-time scores for different adaptation al-
gorithms (averaged across traces and contents). Error bars
indicate 95% confidence intervals.

Viewed from the network condition perspective, we found
that continuous-time subjective scores are affected by dynamic
video quality changes and rebuffering. Figure 6 shows that,
for all traces, a few seconds are needed to build up video
buffer and hence continuous scores are relatively low. Under
better network conditions (e.g. FNO), user experience steadily
improves after some time, due to the adaptors switching to
higher resolution and lower compression ratio. By contrast,
challenging cases such as BLO and TLJ recover slowly or do
not recover at all, while very volatile conditions, as in MKJ,
may also lead to noticeable drops in QoE much later during
video playout.

C. Adaptation Algorithm Performance Discussion

Following our earlier between-adaptor analysis, it is natural
to ask which adaptation algorithm performs the best. In terms
of overall scores, we were not able to make statistically
significant comparisons, in part due to the effects of recency.
On a similar note, using continuous-time scores, we found that
OQB performed marginally better for a period of time, but the
differences were not statistically significant even though OQB
has perfect knowledge of the future bandwidth. By contrast,
BB was overly conservative during startup and did not select
high quality streams.

Comparing RB and QB, we found that they delivered similar
QoE over time, except during the start-up phase, where RB
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Fig. 6: Continuous-time scores for different network condi-
tions. Error bars indicate 95% confidence intervals.

picked higher quality levels. The similar behavior between QB
and RB can be attributed to their inherent properties: RB leads
to excessive rebuffering, while QB reduces rebuffering (by
taking into account the buffer level in its optimization scheme),
but leads to many quality switches. In fact, an important
consideration when designing QB is selection of the minimum
buffer Bl and target buffer Bt values. When the network
changes rapidly, the adaptor may not satisfy these and use
its fallback mode, which leads to such large quality switches.

VI. CONCLUSIONS

We presented the design of a large, comprehensive sub-
jective video database, which relied on a highly realistic
streaming system. The collected data allowed us to analyze
overall and continuous-time user experiences under different
network conditions, using different adaptation algorithms, and
on diverse video contents. We found that start-up is a chal-
lenging phase for ABR algorithms, since the video buffer is
not sufficient to withstand large network variations. However,
human responses were forgetful of negative QoE events during
start-up, which underlines the need to better understand con-
tinuous streaming QoE. In the future, the collected data can be
used to develop better continuous-time QoE predictors that can
be injected into the client-adaptation strategy to perceptually
optimize video streaming.
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