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Abstract 

Recent studies brought to light that the semantic labels (e.g. 
Excellent, Good, Fair, Poor, and Bad) commonly associated with 
discrete scale ITU subjective quality evaluation induce a bias in 
MOS computation and that such a bias can be quantified by some 
reference coefficients which are independent with respect to the 
observers panel. The present paper reconsiders these results from a 
standard upgrading perspective. First, it theoretically investigates 
the way in which results obtained on semantically labeled scales 
can be “cleaned” from such an influence and derives the 
underlying computation formula for the mean opinion score. 
Secondly, it suggests a unitary evaluation procedure featuring both 
semantic free MOS computation and backward compatibility with 
respect to state-of-the-art solutions. The theoretical and 
methodological results are supported by subjective experiments 
corresponding to a total of 440 human observers, alternatively 
scoring 2D and stereoscopic video content. For each type of 
content, both high and low quality excerpts are alternatively 
considered. For each type of content and for each type of quality a 
5 level (Excellent, Good, Fair, Poor, and Bad) grading scales is 
considered. 

1 Introduction 
 For 100 years already, various research fields 
(psychology, psychophysics, sociology, marketing, 
medicine, ...) have considered the use of rating scales in 
subjective evaluations [1], [2]. Despite this long and fruitful 
history, no consensus is reached yet on a usage of a specific 
scale for a specific purpose, and several scale typologies 
still coexist and contradict each-other: graphic vs. numerical 
vs. semantic labeled scales or continuous vs. discrete scales. 
Moreover, the dynamics of numerical scales is varying with 
the experiment: for instance, continuous scales can range 
from 0 to 75, to 100, to 120 or even to 200 [3], [4], [5] while 
the discrete scales can feature between 2 and 11 evaluation 
classes [1].  
 For the visual content evaluation, the ITU 
Recommendations have proven their effectiveness and are 
already intensively used in several research studies aiming 
at a large variety of applications (device 
evaluation/calibration, compression, 3D image 
reconstruction, watermarking, etc.). Some studies report 
experiments had carried out on 5 quality levels while other 
on 11 quality levels. Yet, no answer on how to choose either 
this number or the quality levels themselves is provided.  

 The relationship between continuous and discrete scales 
is recurrently addressed in research studies. For instance, [6] 
shows that assessments on the discrete scale have the 
highest level of stability, at least for the experiment under 
consideration (a self-assessment of the previous knowledge 
in statistics). This study also raises a concern about the very 
meaning of the continuous and discrete terms during the 
subjective evaluations. 
 The impact of semantic labels is discussed and detailed 
in various research studies. On the one hand, some studies 
state that adjacent ITU labels are characterized by non-
uniform semantic distances [7], [8]; yet, such a behavior is 
not quantified. On the other hand, some studies [9] claim the 
contrary, i.e. that the semantic of adjacent ITU labels does 
not impact the results. While some results correspond to 
subjective studies carried out for different languages 
(Japanese, German, English, French and Italian), the ITU-T 
P.913 explicitly postulates that the MOS is invariant with 
respect to the semantic labels translation, but does not 
provide any ground for this. 
 Under this framework, [10], [11] establish a theoretical 
formula mapping the scores assigned by the observer on 
continuous scale to an arbitrarily, q levels discrete grading 
scale and carry out an experimental study evaluating the 
semantic impact of the ITU semantic labels in the MOS 
(mean opinion score) computation for experiments carried 
out on 5 levels (Excellent, Good, Fair, Poor, and Bad) 
semantic labeled scales.  
 The present paper goes one step further and 
theoretically investigates the possibility of compensating the 
semantic impact induced in the MOS computation by the 
ITU labels. The experiments consider 440 human observers, 
alternatively scoring 2D and stereoscopic video content, 
and, for each type of content, both high and low quality 
excerpts (as a priori evaluated by objective quality metrics). 
It is thus brought to light that the MOS can vary up to 18% 
from its theoretical value. The paper also includes a 
discussion about various possible usages of these results. 

2 State of the art 
 To the best of our knowledge, for visual quality 
assessment applications, the problem of the semantic impact 
of the labels in the overall quality evaluation was first raised 
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by [7]. Two panels are considered for experiments: 49 
persons compose a panel of English speakers (native USA 
speakers) while 24 persons compose a panel of Italian 
speakers. The experiments are conducted in parallel for 
English and Italian, but they will be illustrated here only for 
English. During the experiments, a continuous scale 
featuring no intermediate labels but having its two 
extremities marked with Best imaginable and Worst 
imaginable is presented to the panel. The panel members are 
asked to place, on that continuous scale, according to their 
own understanding, 15 adjectives (labels): Superior, Ideal, 
Excellent, Good, Fine, OK, Fair, Passable, Marginal, Not 
Quite Passable, Poor, Inferior, Bad, Not Usable, Awful. For 
both languages, the results showed that the ITU labels were 
not evenly distributed along the graphic scale suggesting a 
non-uniform semantic distance between adjacent ITU labels. 
Specifically, a kind of compression at the end points of the 
scale was identified and explained as a reluctance of the 
observers in using the continuous scale extremities. The 
results also show a clustering tendency, with 9 classes (e.g. 
the adjectives Ideal, Excellent and Superior are very close 
each-other). These results were later corroborated for other 
languages, such as Swedish, Dutch and British English, but 
not for Japanese and German, which exhibited uniformly 
distributed labels along the scale [8], [12], [9]. 
 The semantic impact of the ITU Japanese descriptive 
terms for quality and impairment is investigated in [8]. The 
two experiments follow the principles in [7]. A panel of 40 
Japanese speakers is inquired. They are asked to 
alternatively position on a continuous scale with no 
intermediate but extremities labels either 13 quality terms or 
12 impairment terms. It is thus brought to light that the 
perceived quality intervals are non-uniform. Yet, in 
Japanese, they are distributed more evenly than in English, 
French or Italian, following a similar trend as in the German 
case. The impairment experiment shows the Japanese terms 
have lower semantic impact than the corresponding terms in 
other languages. Note that the underlying experiments for 
German are presented in [12].  
 The two ideas of semantic impact and language 
dependency related to the ITU labels are considered as a 
starting point for the research study presented in [13]. In 
order to refine the precision and the stability of the results, 
the subjective quality evaluation is considered to be a 
multidimensional process and some means for identifying 
the different dimensions and the appropriate vocabulary are 
advanced. In this respect, the use of unlabeled continuous 
rating scale is considered as a ground for investigation. A 
panel of 24 subjects is asked to score audio-visual content 
on a continuous scale whose extremities are labeled by + 
and – signs. The results show that such a quality rating 
procedure is “remarkably consistent”, thanks to the fact that 
the subjects set their own criteria. The results also show that 
using an unlabeled scale reduces the tendency of subjects to 
avoid the end points of the scale. 

 The SSCQE and DSIS methods are compared on the 
same test material in [14]. In order to avoid the semantic 
impact of the Excellent, Good, Fair, Poor and Bad labels, 
the SSCQE method is presented to the observer as a vertical 
slider with only the two labels Good and Bad at the top and 
bottom ends of the slider. On the contrarily, the DSIS scale 
follows the general ITU recommendations and is presented 
to the observer on a discrete, 5 levels scale ranging from 
Imperceptible to Very annoying. Results obtained from 20 
observers show that the two methods are highly correlated 
and produce comparable quality results. 
Three subjective audio quality evaluation tests are presented 
in [9]. Each of these three tests considers a different scale: 
the standard continuous scale with the 5 ITU labels, a 5-
point continuous impairment scale, and a label-free 
continuous scale. The results showed a high similarity 
between the scores obtained with the ITU labeled scale and 
the label-free quality scale, with an almost perfect linear 
regression between them. Hence, this study supports the 
idea that the ITU quality scale is indeed an equal-interval 
scale.  
 The study in [15] investigates the suitability of 
SAMVIQ assessment methodology; in this respect, two 
psychovisual experiments are carried out in two different 
laboratories. The subjective video quality evaluation follows 
the ITU-T P.910. The observers (whose number is not 
presented) assign their scores on a continuous 0-100 scale 
labeled by Excellent, Good, Fair, Poor and Bad. The 
experimental results indicate that the SAMVIQ 
methodology provides results comparable to other existing 
methods, such as the single stimulus ACR methodology. 
 The ACR and SAMVIQ subjective quality assessment 
methodologies are compared in [16]. The ACR is presented 
to the observers with a 5 levels discrete scale associated to 
the labels Excellent, Good, Fair, Poor and Bad while the 
SAMVIQ with a continuous scale ranging from 0 to 100, 
yet featuring the same labels. The viewing conditions are 
not précised; the number of observers participating in the 
test is 43. The results of this study show that the ACR uses 
96.3% of the available range while SAMVIQ uses only 
82%. It is thus demonstrated that the two assessment 
methodologies have different behaviors; it is also shown 
that the relation between their results depends on the 
evaluated content quality and it is subsequently stated that, 
for a given number of observers, SAMVIQ is more precise 
than ACR. 
 The variability of subjective ratings obtained with 
different scales (0-100 continuous scale and 5, 9, and 11 
discrete scales) is investigated in [17]. The study relays on 
simulated data instead of real experimental data, since it is 
considered that the differences among experiments available 
in the literature are too large for reliable direct comparison. 
It is concluded that although an increased discretization 
level of the scale leads in theory to an increase of the 
standard deviation of the scores (and therefore to a decrease 
of precision), practical proof of this effect remained 
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inconclusive. He also found that the number of subjects may 
not need to be as high as generally assumed; in fact, the 
minimum of 15 recommended by ITU appears to be a very 
reasonable suggestion. 
 The study [18] compares 4 different ITU grading scales 
with labels: two of them are discrete (with 5 and 9 levels) 
while the other two are continuous, yet with 11-point and 5-
point grades. A subjective assessment test following the 
ITU-R BT.500-11 is conducted. 92 observers assign their 
scores according to the ACR method using the 4 different 
scales. The total evaluated content is composed of 128 
sequences of 12s each. The results show that no significant 
statistical difference is found among subjective results 
obtained with the different four scales. 
 The studies in [10] and [11] establish a theoretical 
framework for investigating the semantic impact of the 
labels in the overall MOS computation. The experiments 
considers a SSCQE (Single Stimulus Continuous Quality 
Evaluation) method and both continuous and discrete, 
semantically labeled scales. It is thus brought to light that 
the semantic impact of the 5 ITU levels (Excellent, Good, 
Fair, Poor, and Bad) can be evaluated by a set of reference 
coefficients, which are independent with respect to the 
observers and solely depends on the type of content (3D or 
2D video, high or low quality). 
 The present paper extends these previous results [10], 
[11] by providing a methodological formula for a posterior 
canceling the semantic label impact. 

3 Method presentation 
 The methodological framework for handling the joint 
impact of discretization and semantic labeling the evaluation 
scales is defined based on our previous studies and is 
structured in three main steps which will be subsequently 
detailed:  

1. Continuous to discrete unlabeled scales mapping 
[10], 

2. Semantic label assessment [11], 
3. Semantic label compensation. 

 

3.1 Continuous to discrete unlabeled scales mapping 
 Be there a subjective quality evaluation experiment 
carried out on a continuous, unlabeled grading scale and be 
𝑋 the r.v. (random variable) theoretically modeling the 
observer’s inner appreciation about the content under 
evaluation.  
 Let assume that 𝑋 is continuously distributed in the 
interval [0;𝑀], according to a probability density function 
(pdf)  𝑝!(𝑥) and be MOS and 𝜎  the mean value and 
standard deviation, respectively. 
 Assume now the case in which an evaluation on a 
discrete scale with  𝑞 quality levels, evenly distributed 
would be required. The scores would be distributed 
according to a new r.v. 𝑌, whose values  𝑦 are obtained 
from the  𝑥 values according to a non-linear transformation 
 𝑓(𝑥): 

𝑦 = 𝑓 𝑥 =

=
0,                                             𝑥 ≤ 0   

𝑖,    (𝑖 − 1)𝑀/𝑞 < 𝑥 < 𝑖𝑀/𝑞, 𝑖Є{1,2,… , 𝑞}
0,                                              𝑥 > 𝑀

 (1) 

 Hence, the  𝑝!(𝑦) pdf can be computed as follows: 

𝑝! 𝑦 = 𝛿(𝑦 − 𝑖) 𝑝!(𝑥)

!"/!

(!!!)!/!

!

!!!

 (2) 

where 𝛿(. )  denotes the Dirac’s Delta distribution. 
 The mean value of 𝑌, denoted by 𝑀𝑂𝑆!, represents the 
mean opinion score corresponding to the evaluation on a 𝑞 
quality level grade scale (with uneven, unlabeled 
gradations): 

𝑀𝑂𝑆! = 𝑖
!

!!!
𝑝!(𝑥)𝑑𝑥

!!

!!!!
 (3) 

 The standard deviation of 𝑌, denoted by 𝜎!, is: 

𝜎! = 𝑖!
!

!!!
𝑝! 𝑥 𝑑𝑥 −𝑀𝑂𝑆!!

!!

!!!!
 (4) 

 
3.2 Semantic label assessment 
 Be there a subjective quality evaluation experiment 
carried out on a 𝑞 level, semantically labeled grading scale; 
for instance, for 𝑞 = 5, the labels can be Excellent, Good, 
Fair, Poor, and Bad.  
 Assume 𝑛!, 𝑛!,… , 𝑛!  the number of times each of the 
classes was scored. The r.v. modeling the scores assigned by 
the observers is denoted by 𝑍 and its pdf by 𝑝!(𝑧). 
 𝑝!(𝑧) can be estimated from the scores by any discrete 
pdf estimation method; for instance, in the present study, a 
frequency based estimation is considered: 

𝑝! 𝑧 = 𝑝! 𝑖
!

!!!

𝛿(𝑧 − 𝑖) (5) 

where 𝑝!(𝑖) is the relative frequency of the scores assigned 
to ith quality class: 

𝑝! 𝑖 =
𝑛!
𝑛!

!
!!!

 (6) 

 The mean opinion score corresponding to this 
experiment is: 

𝑀𝑂𝑆! =
𝑖 ∙ 𝑛!

!
!!!

𝑛!
!
!!!

 (7) 

 
 Assuming the semantic labels have no impact, the 𝑌 
and 𝑍 r.v. would be identical: that is, the evaluations on 
discrete, unlabeled and labeled scales would yield the same 
results. Conversely, differences in the pdf describing the 𝑌 
and 𝑍 r.v. bring to light a semantic influence of the labels. 
 Consequently, in order to evaluate the semantic impact 
of the labels, the 0 = 𝑦!, 𝑦!,… , 𝑦! = 𝑀  partition ensuring 
identity between the 𝑌 and 𝑍 random variables is searched 
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for. In this respect, the 𝑝!(𝑦) and 𝑝!(𝑧) are compared 
through a binomial test.  
 The semantic impact is assessed by relative variation of 
the partition intervals with respect to the uniform partition. 
The set of coefficients 𝜌!!! , 𝑖 = 0,1,… 𝑞 − 1 are computed 
in this respect: 

𝜌!!! =
𝑦!!! − 𝑦!!!!!

𝑀/𝑞
 (8) 

 A unitary value for such a coefficient demonstrates that 
the related semantic label does not modify the evaluation - 
that is, an even partition 0 = 𝑦!, 𝑦!,… , 𝑦! = 𝑀  ensures the 
identity between Y and Z. A value larger than 1 indicates 
that the related semantic label makes the observer more 
likely to score that way while, conversely, a value lower 
than 1 shows that the related label makes the observers more 
reluctant in assigning that label when scoring. 
 
3.3 Semantic label compensation 
 The presence of a semantic impact associated to the 
label can be translated into some “errors” occurred in the 
scores assigned by the observers: the semantic impact of the 
labels makes the observer score by influences by factors 
externals to the evaluated content itself. 
 Assume now the case in which an experiment of the 
type described in Section 3.2 is performed and an 
experimenter, knowing the set of 𝜌 coefficients would like 
to post-process the 𝑛!, 𝑛!,… , 𝑛!  scores for canceling the 
semantic impact. The principle is to adjust the scores 
according to a set of 𝛾 coefficients related to the probability 
that a score would be assigned in a class because of the 
semantic impact and not because of the content quality, as 
detailed below and illustrated in Fig. 1 for the case of 𝑞 = 5.  
 Be 𝑈 the r.v. obtained from 𝑋 by a scaling of the 
variable 𝑥 to 𝑢 = 𝑞𝑥/𝑀. Hence, the subjective quality 
evaluation process can be now evaluated based on three 
related r.v.: 

• the 𝑈 r.v., continuously taking values between 
0, 𝑞 ; 

• the 𝑌 r.v. taking the values 1,2,… 𝑞  in the lack of 
semantic impact 

• the 𝑌!"# r.v. taking the values 
𝑦!"#,!, 𝑦!"#,!,… 𝑦!"#$,  where: 

𝑦!"#,! = 𝑞 − 𝜌!
!
!!!!! , (9) 

      where 𝑖Є{1,2,… , 𝑞 − 1} and 𝑦!"#,! = 𝑞. 
 The weighting coefficients 𝛾!, 𝑖Є{2,… , 𝑞} are defined 
as follows: 

𝛾! =
𝑝!(𝑢)

!
!!!

𝑝!(𝑢)
!!"#,!
!!"#,!!!

 (10) 

 The scores 𝑛!, 𝑛!,… , 𝑛!  can now be post-processed 
so as to cancel the semantic impact and obtain the new set 
𝑠!, 𝑠!,… , 𝑠! , where: 

𝑠! = 𝑛! + 𝛾!𝑛!!!,  (11) 

where 𝑖Є{2,… , 𝑞}. 
 Finally, the semantic compensated mean opinion score 
can be obtained as follows: 

𝑀𝑂𝑆!"#$ =
𝑖 ∙ 𝑠!

!
!!!

𝑠!
!
!!!

 (12) 

 
Figure 1 – Principle of the semantic impact cancelation 

 

4 Experimental setup 
 

The evaluation has been conducted at the Advanced 
Research &Techniques for Multimedia Imaging Systems 
(ARTEMIS) Department at Telecom SudParis engineering 
school in France. 

The viewing conditions are set in concordance with 
ITU-R BT.1788, ITU-R BT.500-11, ITU-R BT.500-13, 
ITU-T P.913. 

A 47” LG LCD, full HD 3D monitor (1920 x 1080 
pixels) and a 400cd/m² maximum brightness are used in the 
experiments.  

The experiments involve maximum 2 subjects per 
session who are presented a SSCQE (Single Stimulus 
Continuous Quality Evaluation) scale. The continuous scale 
features numerical labels, between the minimal and 
maximal values (0 and M = 100, respectively), with a 
precision of 10. The discrete, semantically labeled scale 
alternatively considers 5 levels (labeled Excellent, Good, 
Fair, Poor and Bad) and 3 levels (labeled Good, Fair and 
Bad). Two training sessions are considered for each viewing 
session. 

The stereoscopic video content processed in the present 
study is produced under the framework of the 3DLive 
French national project. The 3DLive corpus sums-up 2 
hours, 11 minutes and 24 seconds of stereoscopic video 
sequences (197000 stereoscopic pairs encoded at 25 frames 
per second), representing 10 minutes of a rugby match, 10 
minutes of a dancing performance, 1 minute of a private gig 
of rock band “Skip the Use”, one hour and 45 minute and 24 
seconds of a volley-ball match and 5 minutes of a theater 
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play “Les Fourberies de Scapin” by Molière. These 
sequences are full HD encoded (1920×1080 pixels). This 
corpus is subsequently watermarked by 4 different methods, 
with 4 different configurations. Despite their peculiarities 
(which are irrelevant for the present paper) all these 
watermarked sequences features a high a priori quality 
expressed by values 35dB < PSNR < 40dB, by SSIM 
(Structural SIMilarity) values larger than 0.98 and by NCC 
(Normalized Cross Correlation) values larger than 0.98. 
From the 3DLive corpus, 16 sequences with individual 
durations between 40 sec and 80 sec, summing up about 20 
minutes are randomly sampled, thus obtaining the high 
quality stereoscopic video corpus. 

In order to obtain the low-quality stereoscopic video 
content, the high quality stereoscopic video corpus is 
compressed (while keeping the frame resolution and rate 
constant) so as to obtain 25dB<PSNR<30dB. It should be 
noticed that the low-quality corpus is downgraded 25db – 
30dB with respect to the high quality corpus which is, in its 
turn, downgraded 35db - 40db with respect to the original 
content. It is also a posteriori verified that the values 
corresponding to the SSIM and NCC (with respect to the 
high quality corpus) range between 0.97 – 0.98 and 0.95-
0.97, respectively. 

The high quality 2D video corpus corresponds to the 
left view from the high quality stereoscopic video corpus. 

The low-quality 2D video corpus is organized under the 
framework of the MEDIVALS (waterMarking et 
Embrouillage pour la DIffusion et les Echanges Vidéos et 
Audios Legalisés) French national project. The video 
content is encoded at 640x480 pixels, 25 fps. An MPEG-4 
AVC encoder is considered, with the baseline profile and a 
512 kbps rate. The corpus has a total duration of 1h30 
minutes and is composed of 4 types of professional TV 
content: news, documentary, movies and talk-shows.  

In order to obtain the excerpts to be presented to the 
observers, from each type of content, a sequence with a 
duration between 50 and 60 sec is randomly extracted. 
Then, each of this sequence is downgraded with 7 distortion 
configurations. These 28 sequences, summing up to 20 
minutes, are then shuffled prior to their presentation to the 
observer. 

A total of 440 non-expert viewers (160 viewers for each 
of the 4 types of content) are involved in the experiments. 
The age distribution ranged from 20 to 37 with an average 
of 23. All the subjects were screened for visual acuity using 
Snellen chart and color vision using the Ishihara test. 

For each type of content, the 160 viewers are grouped 
in three types of panels. First, the reference panel is 
composed of 60 observers scoring on a continuous scale and 
allows the reference (theoretical) model for X  and Y  r.v. 
to be computed. Secondly, the cross-checking panel was 
composed of 25 observers scoring on 𝑞 = 5 quality level 

semantic labels, namely Excellent, Good, Fair, Poor, and 
Bad. Finally, the so-called a posteriori validation panel is 
also composed of 25 observers scoring on 𝑞 = 5 quality 
level scales, and is considered in order to validate the 
generality of the results. The outliers are detected and 
eliminated according to a kurtosis coefficient criterion, 
according to the ITU BT.500-11/13. 

5 Experimental results 
5.1 Evaluating the semantic impact of the labels 
 The first experiment brings to light the semantic impact 
of the ITU labels by computing the set of 𝜌 coefficients 
defined by (7) under the experimental framework presented 
in Section 4. The quantitative results are presented in Tables 
1-4 below.  
 

	

Semantic-impacted	
label	limit	 ρ	

Bad																										0	-	20	 0	-	20	 1	

Poor																						21	-	40	 21	–	40	 1	

Fair																								41	-	60	 41	–	60	 1	

Good																					61	-	80	 61	–	87	 1.35	

	
61	–	88	 1.4	

Excellent													81	-	100	 88	–	100	 0.65	

	
89	–	100	 0.6	

TABLE 1 SEMANTIC IMAPCT WHEN EVALUATING HIGH-QUALITY 3D 
VIDEO CONTENT 

 

	

Semantic-impacted	
label	limit	 ρ	

Bad																										0	-	20	 0	-	20	 1	

Poor																						21	-	40	 21	–	29	 0.45	

	
21	–	30	 0.5	

Fair																								41	-	60	 30	–	60	 1.55	

	
31-	60	 1.5	

Good																					61	-	80	 61	–	80	 1	

Excellent													81	-	100	 81	–	100	 1	
TABLE 2 SEMANTIC IMAPCT WHEN EVALUATING LOW-QUALITY 3D 

VIDEO CONTENT 
 

	

Semantic-impacted	
label	limit	 ρ	

Bad																										0	-	20	 0	–	20	 1	

Poor																						21	-	40	 21	–	38		 0.9	

Fair																								41	-	60	 39	–	60	 1.1	

Good																					61	-	80	 61	–	87	 1.35	

	
61	–	88	 1.4	

Excellent													81	-	100	 88	–	100	 0.65	

	
89	–	100	 0.6	

TABLE 3 SEMANTIC IMAPCT WHEN EVALUATING HIGH-QUALITY 2D 
VIDEO CONTENT 
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Semantic-impacted	
label	limit	 ρ	

Bad																										0	-	20	 0	-	20	 1	

Poor																						21	-	40	 21	–	31	 0.55	

Fair																								41	-	60	 32	–	60	 1.45	

Good																					61	-	80	 61	–	83	 1.15	

Excellent													81	-	100	 84	–	100	 0.85	
TABLE 4 SEMANTIC IMAPCT WHEN EVALUATING LOW-QUALITY 2D 

VIDEO CONTENT 
 

 As a general trend, it can be noticed that for high 
quality content (both 3D and 2D video), the Excellent label 
has a reluctance impact. Conversely, for low quality content 
(both 3D and 2D), the Poor label has a reluctance impact, 
the observers being prone to rather assign Fair.  
 It can also be noticed that the semantic impact is quite 
large: the grading scale is characterized by non-uniform 
grading distances which vary, in some cases, up to 55% 
from their reference value.   
 

5.2 Estimating the cancelation effect 
 As the semantic impact assessed in the first experiment 
is large, the second experiment evaluates the possibility of 
canceling it by using the method advanced in Section 3.3. 
 In this respect, the relative error between the semantic 
impacted mean opinion score and the semantic compensated 
mean opinion score are computed. That is, we compute the 
𝜀!,!"#$ between the values of 𝑀𝑂𝑆! computed by (7) and of 
𝑀𝑂𝑆!"#$ computed by (12), as follows: 

𝜀!,!"#$ =
𝑀𝑂𝑆!"#$ −𝑀𝑂𝑆!

𝑀𝑂𝑆!
 (13) 

 Note that a positive value for 𝜀!,!"#$ indicates an 
overall reluctance effect: the mean opinion score is reduced 
by the semantic impact. Conversely, a negative value for 
𝜀!,!"#$ brings to light that the mean opinion score was 
increased by the semantic impact of the labels. 
 By its very nature, 𝜀!,!"#$ can only be approximated by 
simulation but cannon by estimated through direct 
estimation. In this respect, for each of the 4 types of content, 
we simulated 25 virtual panels of 25 observers and the 
quantitative results are presented in Table 5.  
 

	

Relative	error	in	MOS	

min	 average	 max	

3D	high	quality	 0.05		 0.11		 0.19		

3D	low	quality	 -0.06		 -	0.14		 -	0.16	

2D	high	quality	 0.06		 0.13		 0.19	

2D	low	quality	 -	0.01		 -	0.05	 -	0.15	
TABLE 5 RELATIVE ERROR IN MEAN OPINION SCORE 
COMPUTATION CANCELED BY THE ADVANCED PROCEDURE 
 

 The values reported in Table 5 demonstrate both the 
need for and the efficiency of the advanced method: 
between 5% and 15% absolute relative variations in the 
mean opinion score can be related to the semantic impact.  
 The results reported in Table 5 are in agreement with 
the ones reported in Tables 1-4: for high quality content, the 
semantic impact is associated to a reluctance effect (i.e. the 
mean opinion score is reduced because of the Excellent 
label) while for low quality content the overall effect is of 
increasing the mean opinion score (the avoidance of the 
Poor label). 

6 Conclusion 
 The present investigates the possibility of canceling the 
semantic impact induced in the mean opinion score 
computation by the semantic labels generally associated to 
the discrete grading scales: Excellent, Good, Fair, Poor, and 
Bad. In this respect, two different approaches can be 
considered.  
 First, the subjective evaluation can be carried out on a 
continuous, unlabeled scale and the scores thus obtained can 
then be post-processed by using (1)-(4) so as to compute the 
mean opinion score (3) and its confidence limits – by means 
of (4) – on any q level discrete grading scale. This way, a 
more flexible and versatile evaluation framework is 
obtained and the controversial issue of the numbers of 
evaluation levels on a discrete scale is intrinsically 
bypassed. 
 Alternatively, the experiments can be carried out on 
discrete, semantically labeled grading scale (e.g. as the ITU 
SSCQE) and the scores thus obtained can be cleaned from 
the semantic impact by using (10)-(12). This way, although 
the experiments are carried out according to conventional 
(current day) standards, more reliable mean opinion scores 
are obtained: although they are intrinsically subjective, the 
scores will no longer be impacted by the cultural influence 
of the labels semantics. Note that, as shown by the 
experiments reported in Table 5, such a semantic influence 
is as large as 5% to 14%. 
 These results may pave the way towards either updating 
the standard evaluation procedure (in the sense of modifying 
the grading scale) or of post-processing the scores obtained 
in traditional way. Of course, future work is required in this 
respect. First, we shall investigate more accurate (in the 
quality evaluation sense) possibilities of detecting outliers 
based on continuous scale evaluation as well as on different 
local scoring statistical behavior [19]. Secondly, we shall 
extend our methodological framework presented in Section 
3.3 for computing confidence limits for the mean opinion 
score formula (12). 
 Besides the direct, standard updating perspective, our 
results can find their usefulness in other related applicative 
fields. For instance, they can be also considered for 
completing some objective visual quality metrics (which are 
generally continuous) with a post-processing step allowing 
them to be better matched to the subjective evaluations. 
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 Note that the problem of finding the objective 
continuous quality metrics featuring the highest correlation 
with the subjective scores (generally assigned on discrete, 
semantically labeled scales) is still an open research topic 
[19]: hence, future work will be devoted to reconsider state 
of ten art study and to investigate whether and at what 
extent such results varies with the semantic impact (i.e. with 
the 𝜌 coefficients) and/or with the cleaning of their 
influence (i.e. with the 𝛾 coefficients. 
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