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Abstract
We improve High Dynamic Range (HDR) Image Quality As-

sessment (IQA) using a full reference approach that combines re-
sults from various quality metrics (HDR-CQM). We combine met-
rics designed for different applications such as HDR, SDR and
color difference measures in a single unifying framework using
simple linear regression techniques and other non-linear machine
learning (ML) based approaches. We find that using a non-linear
combination of scores from different quality metrics using support
vector machine is better at prediction than the other techniques
such as random forest, random trees, multilayer perceptron or a
radial basis function network. To improve performance and re-
duce complexity of the proposed approach, we use the Sequential
Floating Selection technique to select a subset of metrics from a
list of quality metrics. We evaluate the performance on two pub-
licly available calibrated databases with different types of dis-
tortion and demonstrate improved performance using HDR-CQM
as compared to several existing IQA metrics. We also show the
generality and robustness of our approach using cross-database
evaluation.

Introduction
High dynamic range (HDR) and wide color gamut (WCG)

capability have now become mainstream in consumer TV dis-
plays and is making headway into desktop monitors, laptops and
mobile device products. In the consumer industry, the term HDR
generally means the combination of HDR and WGC, and we will
use that shorthand terminology here. Since HDR systems pro-
vide a more complete representation of information that the hu-
man visual system can perceive, which makes evaluating content
shown on these HDR systems is essential. Since subjective eval-
uations can be time-consuming and expensive, there is a need for
objective quality assessment tools. Various full reference HDR
quality metrics such as HDR-VDP-2 (HDR visual difference pre-
dictor) [1, 2], DRIM (Dynamic range independent metric) [3],
HDR-VQM (HDR video quality measure) [4] have been proposed
for image and video quality assessment (IQA/VQA). HDR-VDP2
and HDR-VQM require modeling of both the human visual sys-
tem (HVS) and the display, whereas DRIM, in addition to HVS
modeling, results in three distortion output maps making it more
difficult for interpretation. Alternatively, due to lack of HDR ob-
jective metrics, LDR/SDR (low/standard dynamic range) metrics
were also used to evaluate HDR quality. Examples of full ref-
erence LDR metrics that have been used in literature for HDR
quality evaluation are MS-SSIM (Multi-scale structural similarity
index) [5], IFC (Information fidelity criterion) [6], VIFp (pixel-
based visual information fidelity) [7], FSIM (Feature similarity
index) [8], VIF (visual information fidelity) [7] and so on.

Recent studies [9, 10, 11, 12], have evaluated both HDR

and LDR quality metrics for HDR quality assessment. In par-
ticular, [11] evaluated the performance of 35 objective metrics on
a publicly available database. [12] evaluated the performance of
12 metrics on five different HDR databases. Although the HDR
based metrics, HDR-VDP-2 and HDR-VQM outperform existing
LDR metrics, modifying some LDR metrics such as MS-SSIM
by applying calibrated non-linearities can result in performance
close to the HDR based metrics in terms of correlation [11].

Since visual content and its corresponding distortion have
varying degrees of diversification, it is quite challenging to rely
on a single metric. Many of the SDR metrics are applied to the
video signals in the code value domain and do not consider the
effects of the display they are being viewed. HDR metrics gener-
ally consider the specific code-value-to-luminance relationship of
the display. In our previous work [13], we proposed an HDR IQA
technique that combined various HDR and LDR quality metrics.
This was inspired by the Video Multi-method Assessment Fusion
(VMAF) approach [14, 15], which in turn is based on [16, 17].
In this work, we combine various metrics designed for differ-
ent applications (HDR, LDR/SDR and color difference measures)
in one framework for improved performance of HDR IQA. We
use a greedy approach based on Sequential Forward Selection
(SFS) [18] to select metrics to be included in the final model.
Next, we combine these different quality metrics using machine
learning (ML) approaches. To find the best technique for com-
bining these metrics, apart from linear regression, we also evalu-
ate Support Vector Machine (SVM) regression [19, 20], Random
Trees (RT) regression [21], Random Forests (RF) regression [22],
Multilayer perceptron [23] (MLP) regression, and Radial Basis
Function (RBF) [24, 25] network regression. The resulting model
(HDR-CQM) can be used to predict overall quality for HDR im-
ages. We confirm our choice of the ML technique being used
by assessing its performance on two databases with different dis-
tortions. We also perform cross-database evaluation to show the
generality and robustness of our proposed metric. To the best of
our knowledge, this is the first approach that aims at combining
various metrics, including HDR, LDR and color difference met-
rics, in a single unifying framework for HDR IQA in an efficient
manner using machine learning techniques.

Combining Quality Metrics for HDR IQA
(HDR-CQM)

A brief overview of our method to combine various quality
metrics for HDR IQA is shown in Figure 1. As seen in Figure 1,
the proposed metric has a training and testing component. During
training, we collect pairs of reference and corresponding distorted
HDR images. We first compare the reference and distorted im-
ages using various IQA metrics. We then use the SFS method for
selecting a subset of IQA metrics in an efficient manner, whose
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Figure 1. Block diagram of proposed HDR-CQM metric

combination gives the best performance, from the pool of various
IQA metrics. Finally we combine the scores of the selected met-
rics in a non-linear manner using support vector machine since
that gives the best result.

Let’s assume that we want to combine the scores of k IQA
metrics and we have T training images. The quality scores of the
t-th training image using the various metrics can be denoted as
xt = {xt1, . . . ,xtk} where t = {1,2, . . . ,T} are the image indices.
The final quality score can be denoted as q(xt), which can ei-
ther be a linear combination of individual scores if we use LR,
or a non-linear combination of k scores if we use ML techniques.
During training, we would like to determine the weights in case
of (say) LR or SVM, or the decision boundaries in case of RT
or RF, such that it minimizes the difference between q(xt) and
the Mean Opinion Score (MOS) score (obtained from subjective
studies) and can be represented as

argmin ||q(xt)−MOSt ||, (1)

where t = {1,2, . . . ,T} are the training image indices, ||.|| denotes
a certain norm such as Euclidean norm or l1 norm and MOSt is
the mean opinion score for image t. The difference metric will
depend on the type of ML techniques being used. Please note that
the training is an offline process.

During testing, we take as input a reference image and a dis-
torted image. We then compare those two images using the pool
of k IQA metrics identified by the SFS method during training.
Then, we combine the scores from each of the k metrics using
weights derived during training and combine them to get the final
quality score.

IQA metrics
Various IQA metrics have been proposed in literature to eval-

uate human visual quality experience. Recent studies [11, 12]
performed extensive analysis of objective quality metrics for
HDR IQA. Different metrics were used for evaluation in both
work [11, 12]. In addition to the metrics that were presented in
our previous work [13] viz., HDR-VDP-2 [1, 2], HDR-VQM [4],
MS-SSIM [5], IFC [6], VIFp [7], FSIM [8] and FSITM [26], we
considered three additional metrics – UQI [27] and two color dif-
ference measures – CIE ∆E2000 [28] and ∆ICTCP [29].

HDR-VDP-2 and HDR-VQM were developed for HDR
quality assessment. HDR-VDP-2 is a calibrated metric and takes

into account models regarding point spread function of the eye,
the light-adaptive CSF, and masking within an oriented multi-
scale decomposition. HDR-VQM is a video quality metric com-
puted in PU [30] space and also relies on multi-scale and multi-
orientation analysis, as well as simple temporal differences which
are pooled. In this setup, we compute HDR-VQM on still images,
thus having zero temporal error. Both HDR-VDP-2 and HDR-
VQM perform spatial pooling to compute overall quality score.

We considered six metrics that were all designed for LDR
content. MS-SSIM is a multi-scale technique that models the
quality based on the assumption that the HVS uses structural in-
formation from a scene. VIFp analyzes the natural scene statistics
and is based on Shannon information. FSIM analyzes high phase
congruency, extracting the gradient magnitude to encode contrast
information. IFC uses natural scene statistics to model natural
scenes and its distortion to quantify statistical information shared
between reference and distorted images, and uses that informa-
tion about fidelity as a measure of quality. FSITM compares the
locally weighted mean phase angle map of the reference image
to that of its associated distorted image. UQI does not use any
HVS modeling but models the image distortion as a combination
of loss of correlation, luminance and contrast distortions.

Finally, we use a couple of color difference metrics. CIE
∆E2000 is a color difference measure that includes weighting fac-
tors for lightness, chroma and hue along with the ability to handle
the relationship between chroma and hue. It was designed for the
CIELAB color space, which is limited to SDR. ∆ICTCP is a newer
metric based on the ICTCP [31] color representation, which was
designed to be more perceptually uniform with HDR signals.

LDR metrics are designed for gamma encoded images with
small range of luminance values whereas the HDR images in these
datasets have linear values to account for wider luminance ranges.
Since the databases that we considered are comprised of HDR
images in the linear range, we applied HDR-VDP-2 and HDR-
VQM directly since these are calibrated metrics and require abso-
lute luminance. The LDR metrics were computed in the PQ do-
main [32]. For the LDR metrics, we first convert the gamma do-
main code values to linear luminance and then convert luminance
to the PQ domain and denote that using PQ suffix. This is based
on the results from [11] that found calibrating the LDR metrics
via either the PQ or PU non-linearities always improved their per-
formance compared to applying them directly on the code values
of the signal space. Further, such processing focuses the quality
on the achromatic channel of human vision, which is known to
have the better spatial performance. Any purely color differences
(i.e., iso-luminant) are ignored in the LDR analysis due to the
models limitations, since there may be some chromatic distortion
if 422 and 420 profiles were used, or in the tone-mapping distor-
tions. Then we normalize the RGB color components to [0, 1]
range and transform the RGB color space to YCbCr color space.
The quality score was computed on the luminance (Y) channel
since [11] found that using the Y channel alone instead of using
the mean of the Y, Cb and Cr color channels resulted in the best
performance. We thus consider only the Y channel for the LDR
metrics and denote that using Y suffix. The color difference mea-
sures were not computed in the transformed spaces. CIE ∆E2000
require a conversion from RGB to CIELAB color space consider-
ing a D65 100nits reference white point whereas ∆ICTCP require
a conversion from RGB to ICTCP color space. We assume that
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the databases are either in sRGB or BT. R. 709 formats, both of
which use the same primaries. They use a normalized luminance,
but a calibrated chromaticity. Please note that the normalization
was not applied to HDR and color difference metrics.

A list of all IQA metrics considered for HDR-CQM are
shown in Table 1 along with the average computational cost of
those metrics for one 1920 X 1080 image using Matlab on a com-
puter with Intel Xeon processor with 16GB RAM.

Table 1: List of IQA metrics with their computational cost
Index IQA Metrics Time (sec./image)
q1 HDR-VDP-2 22
q2 HDR-VQM 5.8
q3 MS-SSIM PQ Y 0.8
q4 IFC PQ Y 8.6
q5 VIFp PQ Y 0.8
q6 FSIM PQ Y 0.8
q7 FSITM PQ Y 3.6
q8 UQI PQ Y 0.6
q9 CIE ∆E2000 2.8
q10 ∆ICTCP 1.4

Databases
We consider two different publicly available databases to

compare the performance of the different metrics. The first
database [33] (referred to as Database 1) contains 20 HDR images
with a resolution of 1920 X 1080 pixels. The images are adjusted
for a SIM2 HDR monitor and compressed with JPEG XT with
various profiles and quality levels. 240 compressed HDR images
were created using two different tone mapping operations [34, 35]
for the base layer, four different bit rates were chosen for each
original image using 3 profiles of JPEG XT. The images were
presented in a side-by-side manner, one of which was reference
and the other a distorted version, and the subjective scores were
collected from 24 participants.

The second database [12] that we considered is a combina-
tion of two different databases proposed in [36] and [12]. [36]
is composed of 5 original HDR images which were first tone-
mapped using [37], following which 50 compressed images were
obtained using three different coding schemes – JPEG, JPEG2000
and JPEG XT. These images were presented one after the other
on a SIM2 HDR47E display and scores were collected from 15
participants. [12] use a similar experimental paradigm as [36]
and once again use 5 original HDR images from which 50 com-
pressed images were obtained. They used JPEG and JPEG2000
(with different bit rates) and the LDR images were obtained us-
ing two different mapping operations [37, 32]. Thus our second
database (referred to as Database 2) has 100 images.

Metric Selection
We consider 10 different quality metrics shown in Table 1

and to reduce complexity, we need to find which combination
of these metrics is best for HDR-CQM. Including a poor IQA
metric may negatively affect the performance of HDR-CQM. In
such cases, we would not like to include that metric in the final
model. Similar to [16, 17], we use a greedy approach based on
SFS [18]. SFS starts with an empty target set and repeatedly adds
the most significant metric. It has better performance than branch-

Algorithm 1 Sequential Forward Selection (SFS)
Input: Q = {q1,q2 . . . ,qn} . Set of available metrics
Output: Q∗ = {q1,q2 . . . ,qk},k < n . Set of selected metrics

1: procedure SFS
2: Start with the empty set Q∗ = {}
3: Select the best metric

q+ = argmax
q∈Q−Q∗k

O(Q∗k +q)

4: Q∗k+1← Q∗k +q+

5: k← k+1
6: end procedure

and-bound techniques and lower cost than exhaustive approaches.

Given a set of quality metrics Q = {q1,q2 . . . ,qn}, we would
like to determine a subset Q∗ = {q1,q2 . . . ,qk} where k ≤ n to
maximize an objective function O(Q∗) and can be represented as

argmaxO(Q∗) = argmaxPLCC(q(Q∗),MOS), (2)

where PLCC is the Pearson linear correlation coefficient. Details
are summarized in Algorithm 1.

The metrics selected using SFS are shown in Tables 2 and
3. The best individual performing metric is listed in the first row,
and the best performing n metrics are listed in the following rows
that incrementally increase the number of combined (fused) met-
rics. Metrics that contribute negatively are italicized. Please refer
to Table 1 to find correspondence between index and IQA met-
ric. SVM regression is used to combine the metrics. We use the
databases presented in [33] and [12] for evaluation and use 10-
fold cross-validation.

Table 2: Performance measure of combined metrics on
Database 1 [33] using SFS. Best result is shown in bold.

# Indices of selected PLCC
combined FR-IQA metrics

1 q2 0.9582
2 q2, q1 0.9662
3 q2, q1, q7 0.9692
4 q2, q1, q7, q4 0.9723
5 q2, q1, q7, q4, q3 0.9727
6 q2, q1, q7, q4, q3, q6 0.9729
7 q2, q1, q7, q4, q3, q6, q5 0.9713
8 q2, q1, q7, q4, q3, q6, q5, q10 0.9723
9 q2, q1, q7, q4, q3, q6, q5, q10, q8 0.9725
10 q2, q1, q7, q4, q3, q6, q5, q10, q8, q9 0.9702

From Tables 2 and 3, we can see that using a combination of
as few as two metrics, we can achieve better performance than
using a single metric. Adding more metrics results in further
improvement. An interesting observation is that if we use all
10 metrics, then the performance drops. This could be because
of increased data requirement for better estimates and increased
sources of error when more metrics are present.

Exploring learning algorithms
In this section, we compare the performance of different ML

approaches to learn the relationship between the models and the
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Table 3: Performance measure of combined metrics on
Database 2 [12, 36] using SFS. Best result is shown in bold.

# Indices of selected PLCC
combined FR-IQA metrics

1 q1 0.9360
2 q1, q7 0.9480
3 q1, q7, q5 0.9581
4 q1, q7, q5, q3 0.9606
5 q1, q7, q5, q3, q4 0.9615
6 q1, q7, q5, q3, q4, q8 0.9623
7 q1, q7, q5, q3, q4, q8, q10 0.9615
8 q1, q7, q5, q3, q4, q8, q10, q9 0.9611
9 q1, q7, q5, q3, q4, q8, q10, q9, q2 0.9547
10 q1, q7, q5, q3, q4, q8, q10, q9, q2, q6 0.9489

Table 4: Quantitative comparison of ML techniques on
Database 1 [33]. Best result is shown in bold.

PLCC SROCC RMSE
LR 0.9663 0.9632 0.3197
RF 0.9640 0.9618 0.33
RT 0.9253 0.9152 0.4706
SVM 0.9702 0.9678 0.3006
MLP 0.9684 0.9652 0.3097
RBF 0.9686 0.9663 0.3089

subjective scores (MOS). We compared linear regression (LR)
with machine learning (ML) techniques such as Support Vec-
tor Machine (SVM) regression [19, 20], Random Trees (RT) re-
gression [21], Random Forests (RF) regression [22], Multilayer
perceptron [23] (MLP) regression, and Radial Basis Function
(RBF) [24, 25] network regression. For the SVM regression, we
used ν-SVM regression with a RBF kernel. Its kernel parameter
was set to the inverse of the number of metrics. RT use recursive
partitioning to split the data into different segments. RF uses an
ensemble of decision trees from randomly sampled sub-spaces of
the input features and the final results are obtained by combin-
ing results from different trees via voting. MLP is a feed-forward
neural network and we use three layers. RBF network is a three
layer network with one hidden layer that has a non-linear RBF
activation function.

To benchmark the performance of various ML techniques,
we combine the results using all 10 IQA metrics shown in Table 1.
We randomly divide each database into disjoint 40% training set
and 60% testing set. The best parameters of ML techniques were
chosen on the basis of 10-fold cross validation. The performance
of the different learning methods is shown in Tables 4 and 5, and
we can see that SVM regression outperforms other techniques,
similar to another study involving a different class of HDR dis-
tortions (color, bit-depth, local contrast and tonescale) generally
being lower in frequency than compression distortions [38]. Thus,
we use SVM regression for the combination of various metrics.

Experimental Results and Discussion
To evaluate the performance of various metrics, we compare

the MOS obtained from the subjective study with the MOS val-
ues predicted from the different metrics. We used the technique
described in [39] to fit a monotonic logistic function to fit the ob-

Table 5: Quantitative comparison of ML techniques on
Database 2 [12, 36]. Best result is shown in bold.

PLCC SROCC RMSE
LR 0.9459 0.9354 9.3202
RF 0.9455 0.9378 9.3365
RT 0.9214 0.8987 11.1732
SVM 0.9489 0.9497 9.0543
MLP 0.9348 0.9366 10.2511
RBF 0.9417 0.9359 9.6492

jective prediction to the subjective scores as follows -

f = α +
β

1+ e−γ.(x−δ )
, (3)

where f is the fitted objective score, x is the predicted score using
different techniques and α,β ,γ,δ are the parameters that define
the shape of the logistic fitting function and are determined by
minimizing the least squares error between the subjective and the
fitted objective scores.

To quantify the performance, we use Root mean square
error (RMSE), Pearson linear correlation coefficient (PLCC)
and Spearman rank-order correlation coefficient (SROCC) [39].
RMSE is used for measuring prediction consistency, PLCC for
prediction accuracy and SROCC for prediction monotonicity re-
spectively. Lower values of RMSE indicates better performance
and higher values of PLCC and SROCC imply better accuracy
and prediction monotonicity.

We compare the individual performance of several state-of-
the-art IQA metrics with a few variations of HDR-CQM in Ta-
bles 6 and 7. From Table 6, we can see that while HDR-VQM
(q2) performs the best with database 1, it degrades the metric per-
formance when used in database 2 (Table 3). On the other hand,
q1 (HDR-VDP-2) has the best performance with the database 2,
and is the 2nd most important contributing metric in the first data
base (Table 2). Thus, it is the best overall contributor. Both met-
rics are the most computationally expensive, with HDR-VDP-2
being about 4x that of HDR-VQM. HDR-VQM is intended as a
temporal video metric, while all the others including HDR-VDP-
2 were intended to be used with still images. That aspect may
help explain the peculiar behavior of HDR-VQM, whereas the
high computational cost of HDR-VDP-2 helps its performance,
and the video capability of HDR-VQM may cause it to perform
negatively with the second database.

Amongst LDR metrics, MS-SSIM calibrated in PQ domain
performs the best for database 1 and VIFp in PQ domain works
the best for database 2. In general, HDR metrics perform bet-
ter than LDR metrics. This is because their calibration and
HVS front-end non-linearities evenly distribute the perception of
distortions across the image’s full tone-scale. While applying
such front-end non-linearities to the LDR metrics does improve
their performance (PLCC of the best performing LDR metric
on database 1 (MS-SSIM) increases from 0.8635 to 0.9323 and
PLCC of the best performing LDR metric on database 1 (VIFp)
increases from 0.7213 to 0.9231), the HDR metrics are in general
more advanced, such as having orientation channels.

Also, ∆ICTCP is better than CIE ∆E2000, for both databases.
This is expected because the HDR achromatic non-linearity of
∆ICTCP (i.e., PQ) is known to better match visibility for the HDR
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Table 6: Performance comparison of FR-IQA metrics on
Database 1. Best method is highlighted in bold, the 2nd best
method is italicized and the 3rd best method is underlined.

Method PLCC SROCC RMSE
HDR-VDP-2 0.9559 0.9552 0.3648
HDR-VQM 0.9596 0.9594 0.3490
MS-SSIM PQ Y 0.9323 0.9264 0.4488
FSITM PQ Y 0.9161 0.9147 0.5
VIFp PQ Y 0.9251 0.9226 0.4730
FSIM PQ Y 0.9173 0.9164 0.4941
IFC PQ Y 0.9010 0.8963 0.5461
UQI PQ Y 0.8608 0.8536 0.6550
CIE ∆E2000 0.7806 0.7717 0.7777
∆ICTCP 0.8166 0.8244 0.7172
MS-SSIM Y 0.8635 0.8624 0.6260
HDR-CQM (2 Metrics) 0.9666 0.9645 0.3182
HDR-CQM (4 Metrics) 0.9726 0.9703 0.2888
HDR-CQM (6 Metrics) 0.9730 0.9708 0.2866

luminance range, and in particular where the L* achromatic non-
linearity of CIELAB is known to fail for luminance less than
1nits. There are only two metrics that contribute negatively to
both databases, CIE ∆E2000 and ∆ICTCP respectively, which are
color models with substantiated accuracy in certain applications.
Both are solely pixel-wise comparisons, utilizing no spatial pro-
cessing. Their overall poor performance shows that for the dis-
tortions tested in the two data sets, that the spatial and luminance
aspects (that is the achromatic performance), dominates over any
color or advantages that the color models may have. This is likely
due to the types of distortions in the two databases, which did
not explicitly probe common chromatic distortions such as color
saturation & desaturation, or hue shifts.

Please note that our reported numbers are slightly different
from [11] because we show results on randomly divided sample
of the database containing 60% of the images. Also note that
the results reported in Tables 6 and 7 are slightly different than
the results reported in Tables 2 and 3 because we fit the logistic
function, Equation 3 to the objective scores resulting in better fit
to the MOS. We can see that our combination of quality metrics
(HDR-CQM) has better performance than the individual metrics.
The top three ranked metrics in Tables 6 and 7 are variations of
the proposed method.

To test the generality of the proposed approach, we perform
cross-database evaluation. We use all images from one database
for training and test on the images from the other database. We
choose four IQA metrics (best performing ones for the training
database) for combination and the results are summarized in Ta-
ble 8. We observe that the PLCC is high for both cases (also
higher than any individual metric) which verifies the generality
and robustness of the proposed combined metrics.

Conclusion & Future Work
In this paper, we introduce a new HDR quality measure

(HDR-CQM) that is one of the first attempts towards combining
different HDR, LDR and color difference IQA metrics to improve
the prediction of HDR image quality. In order to reduce com-
plexity and to identify which metrics to combine, we use a greedy
method based on SFS. We find that naively combining various

Table 7: Performance comparison of FR-IQA metrics on
Database 2. Best method is highlighted in bold, the 2nd best
method is italicized and the 3rd best method is underlined.

Method PLCC SROCC RMSE
HDR-VDP-2 0.9360 0.9305 10.1266
HDR-VQM 0.9212 0.9073 11.1652
MS-SSIM PQ Y 0.8885 0.8769 13.1792
FSITM PQ Y 0.7640 0.7489 19.4431
VIFp PQ Y 0.9231 0.9088 11.0306
FSIM PQ Y 0.85 0.8355 15.8197
IFC PQ Y 0.8297 0.7987 16.1657
UQI PQ Y 0.7645 0.7542 18.5437
CIE ∆E2000 0.5938 0.7717 22.1409
∆ICTCP 0.6881 0.7036 21.0638
VIFp Y 0.7213 0.7543 21.0401
HDR-CQM (2 Metrics) 0.9555 0.9568 8.5374
HDR-CQM (4 Metrics) 0.9648 0.9625 7.5707
HDR-CQM (6 Metrics) 0.9653 0.9655 7.4883

Table 8: Cross-Database PLCC evaluation (in terms of whole
database) using four metrics

Database 1 Database 2
Database 1 - 0.9417
Database 2 0.9675 -

metrics might lead to worse results and combining the right num-
ber of metrics is important. In order to combine the metrics, we
find that SVM regression is better at prediction than linear re-
gression and other ML techniques such as multi-layer perceptron,
random forest, random trees and RBF network regressor. We use
two different databases for evaluation and show that the proposed
metric outperforms state-of-the-art quality metrics by a signifi-
cant margin. We also perform the tests across databases to show
the generality and robustness of the proposed metric.

For future work, we would like to further test the perfor-
mance on more databases. We would like to explore the perfor-
mance of other FR-IQA metrics and other color spaces in addition
to YCbCr. We would also like to explore how well this technique
can scale across other distortions.
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