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Abstract
In the last decades, many researchers have developed al-

gorithms that estimate the quality of a visual content (videos or
images). Among them, one recent trend is the use of texture de-
scriptors. In this paper, we investigate the suitability of using Bi-
narized Statistical Image Features (BSIF), the Local Configura-
tion Pattern (LCP), the Complete Local Binary Pattern (CLBP),
and the Local Phase Quantization (LPQ) descriptors to design
a referenceless image quality assessment (RIQA) method. These
descriptors have been successfully used in computer vision ap-
plications, but their use in image quality assessment has not yet
been thoroughly investigated. With this goal, we use a framework
that extracts the statistics of these descriptors and maps them into
quality scores using a regression approach. Results show that
many of the descriptors achieve a good accuracy performance,
outperforming other state-of-the-art RIQA methods. The frame-
work is simple and reliable.

Introduction
In many multimedia applications, image contents are al-

tered during transmission, enhancement, and compression stages.
These modifications often insert visible impairments that may be
perceived by human observers. Therefore, the development of
techniques that are able to predict the visual quality, as perceived
by human observers, can lead to substantial advances in multi-
media applications. Objective image quality assessment (IQA)
models are frequently deployed in such settings to predict visual
quality automatically.

Objective IQA methods can be classified according to the
amount of available reference information they require. If a pris-
tine content (reference) is required to estimate quality, the method
is classified as full-reference (FR). If the method only requires a
limited amount of information regarding the reference image, the
method is classified as a reduced-reference (RR) method. Since
requiring full or limited reference information can be a severe
impediment for some applications, the solution is to adopt no-
reference (referenceless) methods, which assess the quality of im-
ages with no information about the reference [1].

Referenceless IQA (RIQA) methods are broadly classified
into two categories, namely distortion-specific (DS) and general-
purpose (GP). DS methods include approaches that assess the vi-
sual quality impaired by a specific known distortion types, such as
ringing [2], compression [3], or blockiness [4] artifacts. Although
DS models can be suitable in specific contexts, these models are
difficult to generalize to other distortion types. On the other hand,
GP methods demand no prior knowledge about the artifact type,
being, therefore, more suitable for diverse multimedia scenarios.
As expected, designing GP methods is more challenging [1].

GP methods can be modeled using purely data-driven ap-
proaches based on the extraction of low-level image features,
which are then mapped to subjective image quality scores using
regression. GP methods can also be designed considering nat-
ural scene statistics (NSS), which models the statistics of natu-
ral images (without distortions) and quantify the severity of the
distortion by measuring the degree of “unnaturalness” caused by
the presence of distortions [5, 6, 7]. NSS-based methods can ex-
tract features in different domains, such as discrete cosine trans-
form (DCT) domain [8, 9], discrete wavelet transform (DWT) do-
main [10, 11], spatial domain [12], etc. More recently, convolu-
tional neural networks (CNN) have also been used in the design
of NR-IQA methods [13].

Recent studies that show that visible impairments alter the
statistics of texture descriptors [14]. This work was inspired by
some quality-aware texture descriptors that have recently been
proposed for quality assessment purposes, which include the Lo-
cal Variant Patterns (LVP) [15], the Orthogonal Color Planes Pat-
terns (OCPP) [16], and the Salient Local Binary Patterns [17, 18].
In this paper, we investigate the use of four different descriptors
in the design of RIQA methods: the Complete Local Binary Pat-
tern (CLBP), the Local Configuration Pattern (LCP), the Local
Phase Quantization (LPQ), and the Binarized Statistical Image
Features (BSIF) descriptors. A ML framework is used to ana-
lyze the performance of these four descriptors for the RIQA ap-
plication. More specifically, we tested several combinations of
the statistics extracted by these descriptors as feature vectors for
a random forest regression algorithm [19].

A Brief Review of Texture Descriptors
Texture descriptors are algorithms that characterize visual

features related to textures. Among the available texture descrip-
tors, the Local Binary Pattern (LBP) is arguably one of the most
successfully texture descriptors. Its sucess is due to the simplic-
ity of the LBP model, which describes the local textures of an
image by performing simple operations while achieving high per-
formance on many texture-based problems. Formerly proposed
by Ojala et al. [21], LBP takes the following form:

LBPR,P(Ic) =
P−1

∑
p=0

S(Ip− Ic)2p, (1)

where S(t) = 1 for t ≥ 0 and S(t) = 0 otherwise. In eq. 1,
Ic = I(x,y) is an arbitrary central pixel at the position (x,y),
Ip = I(xp,yp) is a neighboring pixel surrounding Ic. The neigh-
boring positions are given by xp = x+Rcos(2π p/P) and yp =
y− Rsin(2π p/P), where P is the total number of neighboring
pixels Ip, sampled with a distance R from Ic.
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Figure 1: Framework of CLBP descriptor [20].

Although effective for many texture-based applications, the
LBP does not have a good perfromance in some applications.
Therefore, LBP variants have been proposed to better adapt it for
these applications. In this paper, we investigate the suitability of
the BSIF, the CLBP, the LPQ, and the LCP descriptors in the de-
sign of referenceless image quality assessment methods. These
variantes were chosen based on recent studies that suggests that
NRIQA methods using these descriptors have a high correlation
with subjective quality scores [14].

Complete Local Binary Patterns (CLBP)
The LBP descriptor considers only the local differences of

each pixel and its neighbors. Additionally, the complete local bi-
nary patterns consider both signs (S) and magnitude (M) of the lo-
cal differences, as well as the original intensity value of the center
pixel [20]. Therefore, the CLBP feature is a combination of three
descriptors, namely CLBPS, CLBPM , and CLBPC. Fig. 1 illustrates
the computation of the CLBP feature.

The CLBPS and CLBPM components are computed using the
local difference sign-magnitude transform (LDSMT), which is
defined as LDSMTp = sp ·mp, where sp = S(Ip− Ic) and mp =
|Ip− Ic|. The sp is the sign descriptor used to compute CLBPS,
i.e. CLBPS is the same as the original LBP and it is used to code
the sign information of the local differences. CLBPM is used to
code the magnitude information of local differences:

CLBPM =
P−1

∑
p=0

τ(mp,c) ·2p, (2)

where τ(x,c) = 1 if x≥ c and τ(x,c) = 0, otherwise. Specifically,
c is a threshold set as the mean value of the input image I. Fi-
nally, the CLBPC is used to code the information of original center
gray level value CLBPC = τ(Ic,c). The three descriptors, CLBPS,
CLBPM , and CLBPC, are combined. Individual histograms are
computed and concatenated. This joint histogram is used as a
CLBP feature.

Local Configuration Patterns (LCP)
LCP [22] decomposes the image information into two levels:

local structural information and microscopic configuration infor-
mation. The local structural information is composed by LBP
features, while the microscopic configuration (MiC) information
is determined by the image configuration and the pixel-wise in-
teraction relationships. MiC is modeled by estimating the optimal
weights of the neighboring pixel intensities, which helps to recon-
struct the central pixel intensity linearly. The reconstruction error
E is defined by:

E(w0,w1, ·,wP−1) =

∣∣∣∣∣Ic−
P−1

∑
p=0

wpIp

∣∣∣∣∣ , (3)

where wp are weighting parameters associated with neighboring
pixel Ip. Least square (LS) techniques are used to find the minimal
reconstruction error and to select the optimal parameters. The
optimal parameter WL is given by:

WL =
(

V T
L VL

)−1
V T

L CL, (4)

where CL is the LS problem and VL is the neighbouring pixel in-
tensities. Rotation invariant features are obtained by applying the
Fourier transform to the optimal parameter WL:

HL(k) =
P−1

∑
p=0

WL(i) · e
− j2πkp

P . (5)

|HL| gives the MiC feature that encodes the pixel-wise interaction
relationships and the local contrast of each pattern.

Local Phase Quantization (LPQ)
LPQ [23] performs a quantization of the Fourier transform

phase in local neighborhoods. Assuming that G(u) and F(u) are
the discrete Fourier transforms (DFT) of the blurred g(z) and orig-
inal f (z) images, which are related G(u)=F(u) ·H(u). Assuming
that h(x) = h(−x), its DFT is always real and the phase assumes
only two values, namely:

∠H(u) =

{
0, H(u)≥ 0
π, otherwise.

(6)

For the LPQ descriptor, the phase is computed in the local
neighborhood Nz, for each pixel position of f (z). The local spec-
trum is computed with the following equation:

F(u,x) = ∑
y∈Nz

f (y) ·wR(y− x) · e− j2πuy, (7)

where u is the frequency and wR is a window given by:

wR(x) =

{
1, |x|< NR

2
0, otherwise.

(8)

The local Fourier coefficients are computed at four
frequencies for each pixel position, i.e., F(x) =
[F(u1,x),F(u2,x),F(u3,x),F(u4,x)], where u1 = [a,0]T ,
u2 = [0,a]T , u3 = [a,a]T , and u4 = [a,−a]T . In these cases, a is
sufficiently small to satisfy H(ui) > 0. The phase of the Fourier
coefficients is given by the signs of the real and imaginary parts
of each component F(x), computed by scalar quantization, i.e.,
q j = 1 if g j ≥ 0 and q j = 0 otherwise. Specifically, g j is the j-th
component of G(x) = [Re{F(x)}, Im{F(x)}]. After generating
the binary coefficients q j, the feature vector is generated using
the same technique used in the LBP.
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Figure 2: Framework of the proposed referenceless image quality assessment methodology.

Binarized Statistical Image Features (BSIF)
Differently from previous descriptors, which operate on pix-

els, BSIF [24] works on patches of pixels. Given an image patch
X of size l× l pixels and a linear symmetric filter Wi of the same
size, the filter response si is computed as follows:

si = ∑
u,v

Wi(u,v)X(u,v) = wT
i x, (9)

where vectors w and x contain the pixels of Wi and X , respectively.
The binarized feature bi is 1 if s j > 0 and 0 otherwise.

The filters Wi are learned via independent component analy-
sis (ICA). The binarized features bi are aggregated following the
same procedure described for generating the LBP labels. The de-
scriptive features are obtained by computing the histogram of the
aggregated data.

Proposed Framework
In the previous section, we presented four texture descrip-

tors, which were designed for pattern recognition and computer
vision applications. Our goal is to investigate if these descrip-
tors are suitable for image quality assessment, more specifically to
RIQA applications. Moreover, we are interested in understanding
the relationship between the type of descriptor and the accuracy
performance of the corresponding RIQA method.

Figure 2 depicts the overall framework of the proposed
RIQA method, which is composed of a training stage and a pre-
dicting stage. In the training stage, we use a set of pristine and de-
graded images, with the corresponding subjective quality scores.
These quality scores, often called mean observer scores (MOS),
are obtained by performing psychophysical experiments with vol-

untary participants, who rate the quality of each image in the
database. This labeled database, which is composed by pairs of
test images and their corresponding MOS values, is used as an
entry to the training stage. In this work, we will refer to the k-th
image as Ik and to the associated MOS value as vk.

For each pair (Ik, vk) of the labeled database, the training
stage extracts the image features to generate the IQA model. More
specifically, for each image Ik, we apply a given LPB-variant op-
erator and, then, compute the histogram Hk of the resulting out-
puts. Then, we concatenate all histograms to produce the cor-
responding feature vector. Therefore, the training data is com-
posed by a pair (Hk, vk) for each image Ik, resulting in a matrix
H ∈RK×Q and a vector v∈R1×K , where K is the number of train-
ing entries (rows of H) and Q is the number of features (columns
and the numbers of bins of Hk).

The prediction model is built using a regression model. The
model maps each Hk into a real value v̂k, which is a prediction of
the corresponding MOS value vk. The chosen regression model
is the random forest (RF) regressor [25], since this regressor has
shown a good performance in several computer vision applica-
tions. More specifically, Fernandez-Delgado et al. [26] conducted
an exhaustive evaluation of several machine learning methods and
their results showed that the RF methods have the best perfor-
mance.

Finally, after the training stage obtains a prediction model,
the image quality of individual images can be estimated using this
model. The estimation procedure used by the predicting stage is
the same used in the training stage. In other words, the predicting
stage computes the same features (descriptor histograms) and uses
the trained model to obtain an objective quality score v̂k.
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Table 1: Correlation values of concatenations of the best descriptors, tested on LIVE2, CSIQ, and TID201 databases.
LIVE2 CSIQ TID203 Hits

Configuration LCC SROCC KRCC LCC SROCC KRCC LCC SROCC KRCC DIS ALL

BSIF (1) 0.93261 0.93473 0.78654 0.82886 0.79092 0.60667 0.72834 0.65033 0.47632 0 0
CLBP (2) 0.92709 0.92698 0.77503 0.81665 0.77059 0.58061 0.70064 0.62889 0.45709 8 0
LCP (3) 0.91648 0.91455 0.75519 0.82118 0.76454 0.57751 0.70448 0.61048 0.43924 8 0
LPQ (4) 0.92312 0.91675 0.75803 0.80444 0.76039 0.58050 0.71746 0.65445 0.47403 3 0
1 & 2 0.93170 0.93393 0.78673 0.84318 0.81004 0.62461 0.74796 0.68459 0.50275 3 0
1 & 3 0.93742 0.94181 0.79911 0.84879 0.80897 0.62734 0.72941 0.64007 0.46964 14 2
1 & 4 0.93820 0.93186 0.78365 0.82930 0.79105 0.61037 0.72579 0.65303 0.48100 2 0
1 & 4 0.92585 0.93408 0.78460 0.84499 0.79189 0.60767 0.76157 0.67323 0.49396 8 0
2 & 4 0.93616 0.92713 0.77488 0.84451 0.80021 0.61818 0.72828 0.66646 0.48620 0 0
3 & 4 0.92809 0.92538 0.77098 0.84060 0.79503 0.61285 0.74430 0.68124 0.49723 6 0
1,& 2 & 3 0.93551 0.94099 0.79866 0.84599 0.81246 0.63158 0.75316 0.67277 0.49396 22 0
1 & 2 & 4 0.94533 0.93625 0.79035 0.84796 0.81411 0.63121 0.74956 0.68594 0.50570 11 1
1 & 3 & 4 0.94157 0.93741 0.79117 0.84781 0.81422 0.63393 0.74399 0.67418 0.49388 6 2
2 & 3 & 4 0.93474 0.93086 0.77992 0.85347 0.80860 0.62819 0.76518 0.70536 0.51960 15 4
1& 2 & 3 & 4 0.94014 0.93707 0.79208 0.85114 0.81332 0.63199 0.68572 0.64534 0.48200 8 0

Simulation Results
Each of the tests reported in this work corresponded to 1,000

simulations. For each simulation, we computed the linear cor-
relation coefficient (LCC), the Spearman’s rank correlation co-
efficient (SROCC), and the Kendall rank correlation coefficient
(KRCC) between the quality predictions produced by the objec-
tive methods and the corresponding subjective scores (MOSs).
We report the average of these correlation coefficients over all
simulations. We also computed the variation of these coefficients,
which are not reported here since the results were mostly con-
stant. The tests were performed using 3 popular image quality
databases:

• LIVE2 [27]: This database has 982 test images, including 29
originals. This database includes 5 categories of distortions:
JPEG, JPEG 2000 (JPEG2k), white noise (WN), Gaussian
blur (GB), fast fading (FF).

• CSIQ [28]: This database has a total fo 866 test images, con-
sisting of 30 originals and 6 different categories of distor-
tions. The distortions include JPEG, JPEG 2000 (JPEG2k),
JPEG, white noise (WN), Gaussian blur (GB), fast fading
(FF), global contrast decrements (CD), and additive Gaus-
sian pink noise (PN).

• TID2013 [29]: This database contains 25 reference im-
ages with the following distortions: Additive Gaussian noise
(AGN), Additive noise in color components (AGC), Spa-
tially correlated noise (SCN), Masked noise (MN), High fre-
quency noise (HFN), Impulse noise (IN), Quantization noise
(QN), Gaussian blur (GB), Image denoising (ID), JPEG,
JPEG2k, JPEG transmission errors (JPEGTE), JPEG2k
transmission errors (JPEG2kTE), Non eccentricity pattern
noise (NEPN), Local block-wise distortions (LBD), Inten-
sity shift (IS), Contrast change (CC), Change of color satura-
tion (CCS), Multiplicative Gaussian noise (MGN), Comfort
noise (CN), Lossy compression (LC), Image color quanti-
zation with dither (ICQ), Chromatic aberration (CA), and
Sparse sampling and reconstruction (SSR).

For each of the databases, we report the average correlation coef-
ficients (over 1,000 simulations) for each of the distortion types
and for the complete database (ALL).

For each of the four descriptors (CLBP, LCP, LPQ, and
BSIF), we tested several different configurations of parameters to
find out which configuration had the best accuracy performance.
To select the best configuration, we counted the number of hits,

where a hit corresponded to a particular configuration that ob-
tained the best result either in terms of LCC, SROCC, and KRCC
values for the complete database (ALL). The best configuration
was the one who got the highest number of hits in terms for the
3 correlation coefficients and the 3 complete databases (the maxi-
mum number of hits is 9, since there are 3 databases and 3 coeffi-
cients). In addition, we also computed the number of hits for each
individual distortion (DIS) for the 3 databases. We chose 2 more
configurations, which corresponded to the configurations with the
first and second highest number of DIS hits.

After establishing the 3 best configurations of parameters for
each of the four descriptors, these configurations were concate-
nated and re-tested. More specifically, for each descriptor, the
feature vectors of the 3 best configurations were combined in all
4 possible ways and re-tested. Again, we compared the results (4
concatenations of the 3 individual configurations) by counting the
number of hits of the 3 correlation coefficients for the 3 complete
databases (ALL). The results obtained in these sets are summa-
rized as follows.

• The chosen CLBP combination was the pair CLBPS and
CLBPM , with uniform local and rotation invariance. For this
CLBP combination, the 3 best configurations were: (R = 1,
P = 4), (R = 1, P = 8), and (R = 2, P = 12). The single best
concatenation was the combination of (R = 1, P = 8) and
(R = 1, P = 4).

• The 3 best LCP configurations were: (R = 1, P = 4, uni-
form local and rotation invariance mapping), (R = 1, P = 8,
rotation invariance mapping), and (R = 2, P = 16, uniform
local and rotation invariance mapping). The single best con-
catenation was the combination of (R = 1, P = 8, rotation
invariance mapping) and (R = 2, P = 16, uniform local and
rotation invariance mapping).

• For LPQ, we compared 3 different methods for local fre-
quency estimation: Guassian Derivative Quadrature, STFT
with Gaussian Window and STFT with Uniform Window
(basic version of LPQ). As there were only 3 options, we
concatenated them and obtained the best results with the
concatenation of the 3 possibilities.

• We tested 8 different versions of BSIF: (1) 3x3 patch with
5 bits, (2) 3x3 patch with 6 bits, (3) 3x3 patch with 7 bits,
(4) 3x3 patch with 8 bits, (5) 5x5 patch with 9 bits, (6) 5x5
patch with 10 bits, (7) 5x5 patch with 11 bits, and (8) 7x7
patch with 12 bits. The 3 best single configurations were 4,
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7, and 8. When we tested all concatenations, we found that
the best was the one of (4) and (7).

Lines 2-5 in Table 1 show the correlation coefficients and hit
counts obtained for the best configurations of BSIF, CLBP, LCP,
and LPQ, as discussed above. In this table, numbers in bold rep-
resent the highest values of a column.

Having established the best concatenation for each descrip-
tor, we once again concatenated and tested the feature vectors of
the best overall concatenations of the 4 descriptors (Lines 2-5 in
Table 1). A total of 11 combinations of the best concatenated de-
scriptors were tested. Again, we compared the amount of hits for
the 3 databases (ALL) to choose the best overall combination of
the 4 descriptors. Lines 6-16 in Table 1 show results obtained
for several concatenations of BSIF, CLBP, LCP, and LPQ. Notice
that the overall best combination was “2& 3& 4”, which corre-
sponds to a combination of the best configurations of CLBP, LCP,
and LPQ (line 15 of Table 1). This specific configuration will be
referred as the ‘proposed method’ in the rest of the paper.

Table 2 compares the proposed method with other state of
the art IQA methods. In this table, numbers in italics represent
the IQA method with the best overall performance (in terms of
correlation), whilst numbers in bold correspond to the reference-
less IQA method with the best performance. This table presents
the results for the complete database (ALL) and each type of dis-
tortion. As before, the first two hit counts take into account all
IQA methods, while the last two hit counts take into account only
the referenceless IQA methods. We can see that, for the TID2013
database, the proposed method achieves the best overall results
(hits ALL) and obtains 9 DIS hits. It is worth pointing out that
TID2013 is the most diverse database of the set of databases. Al-
though the proposed method does not have the best SROCC on
the other databases, the difference from the best result is only
0.0183 for LIVE2 and 0.1056 for CSIQ (considering the ALL
case), proving that the method has a competitive performance.

Conclusions
We proposed a ML method for RIQA, which is based on

combinations of texture descriptors. Our results show that the pro-
posed method is able to achieve a good correlation with subjective
quality scores, specially in more diverse contents. The ML frame-
work used to test the descriptors is generic and can be adapted to
be used for other types of feature extractors, being therefore suit-
able for general multimedia applications. Future works include
an investigation of the suitability of the proposed framework for
video quality assessment (VQA) applications.
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fication using local phase quantization. In International conference
on image and signal processing, pages 236–243. Springer, 2008.

[24] Juho Kannala and Esa Rahtu. Bsif: Binarized statistical image fea-
tures. In Pattern Recognition (ICPR), 2012 21st International Con-
ference on, pages 1363–1366. IEEE, 2012.

[25] Miao Liu, Mingjun Wang, Jun Wang, and Duo Li. Comparison of
random forest, support vector machine and back propagation neural

network for electronic tongue data classification: Application to the
recognition of orange beverage and chinese vinegar. Sensors and
Actuators B: Chemical, 177:970–980, 2013.

[26] Manuel Fernández-Delgado, Eva Cernadas, Senén Barro, and Di-
nani Amorim. Do we need hundreds of classifiers to solve real
world classification problems? The Journal of Machine Learning
Research, 15(1):3133–3181, 2014.

[27] HR Sheikh, Z Wang, L Cormack, and AC Bovik. Live image quality
assessment database release 2 (2005), 2005.

[28] Eric C Larson and DM Chandler. Categorical image quality (csiq)
database. Online, http://vision. okstate. edu/csiq, 2010.

[29] Nikolay Ponomarenko, Lina Jin, Oleg Ieremeiev, Vladimir Lukin,
Karen Egiazarian, Jaakko Astola, Benoit Vozel, Kacem Chehdi,
Marco Carli, Federica Battisti, et al. Image database tid2013: Pecu-
liarities, results and perspectives. Signal Processing: Image Com-
munication, 30:57–77, 2015.

[30] Pedro Garcia Freitas, Welington YL Akamine, and Mylène CQ
Farias. Referenceless image quality assessment by saliency, color-
texture energy, and gradient boosting machines. Journal of the
Brazilian Computer Society, 24(1):9, 2018.

304-6
IS&T International Symposium on Electronic Imaging 2019

Image Quality and System Performance XVI



• SHORT COURSES • EXHIBITS • DEMONSTRATION SESSION • PLENARY TALKS •
• INTERACTIVE PAPER SESSION • SPECIAL EVENTS • TECHNICAL SESSIONS •

Electronic Imaging 
IS&T International Symposium on

SCIENCE AND TECHNOLOGY

Imaging across applications . . .  Where industry and academia meet!

JOIN US AT THE NEXT EI!

www.electronicimaging.org
imaging.org


	Abstract
	Introduction
	A Brief Review of Texture Descriptors
	Complete Local Binary Patterns (CLBP)
	Local Configuration Patterns (LCP)
	Local Phase Quantization (LPQ)
	Binarized Statistical Image Features (BSIF)
	Proposed Framework
	Simulation Results
	Conclusions
	Acknowledgments

