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Abstract
The repetitive interval is a very crucial feature of bands in

print quality assessment, because any irregularity on the surface
of a rotating component localized in the circumference will incur
repetitive defects on the output of printer [1] [2] [3]. Hence, the
repetitive interval can help us diagnose the issues. In previous
work, a cost function method provides a robust algorithm to pre-
dict the repetitive interval on less noisy samples. However, if the
samples contain more aperiodic bands and noise, the estimation
will become a challenge. Moreover, the missing periodic bands
will decrease the probability of correct prediction. In this paper,
we proposes a novel cost-function-based repetitive interval esti-
mation method for periodic bands. By adding synthetic missing
bands, we re-evaluate the cost function values to check whether it
has a better result. We also show the improvement of accuracy on
the print samples with our proposed algorithm.1

1. Introduction
Electrophotographic printers have been widely used in the

world. There are many print quality (PQ) issues shown in differ-
ent types of defects, like bands, streaks, and gray spots. Since
the electrophotographic process involves multiple delicate com-
ponents, different appearance of a certain defect might be caused
by different components. Hence, the intent of this work is to ex-
tract the features of defects so that it could help the diagnosis of
the failing components.

One of the most common printing defects in the electropho-
tographic process is bands, which is the one we want to address
in this paper. It occurs along the scan direction and repeats along
the process direction. There are some related works analyzed the
problem of halftone banding [4] [5] [6]. In addition, some works
addressed isolated large pitch bands [7] [8] [9]. However, we fo-
cus on sharp roller bands in this work. Figure 1 shows an example
of this kind of bands defect.

Our bands detection is based on the work of Zhang et al.
[10]. Some fixed threshold values from observations are used to
identify the bands. In this work, we want to explore a new method
to identify the bands using machine learning method, logistic re-
gression, to classify the potential defects.

Moreover, the repetitive interval of periodic bands is a very
important feature to diagnose the root cause components. There
are a couple of methods to deal with it. One is the histogram
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method [10], using the histogram of the intervals between neigh-
boring bands. However, if there are some aperiodic bands or
noise between two periodic bands, the correct interval will not
be chosen. Another method is the cost function method [3], with
an exhaustive search for the best solution by evaluating the cost
function value. Nevertheless, if the samples are more noisy or
corrupted, this method is not able to estimate the repetitive inter-
val correctly. For example, there may be multiple equally spaced
bands sequences, and some of the true periodic bands may be
missing. Therefore, we introduce synthetic missing bands in our
work to improve the accuracy. We will discuss more details in
later sections.

Figure 1: Example of bands defect.

2. Methodology
In this work, the pipeline we used can be divided into two

parts: bands detection and repetitive bands analysis shown in Fig.
2. Our algorithms are specifically tailored to the test page shown
in Fig. 1

2.1 Bands detection
In order to extract the features of bands, we need to iden-

tify the bands first. The steps in this part include pre-processing,
bands profile extraction, and bands identification. We follow pre-
vious work in pre-processing and bands profile extraction. The
details are described in [10].
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Figure 2: Overall pipeline of proposed algorithm.

Pre-processing
First, we de-screen the input sample to remove halftone pat-

terns and then mask fiducial dots, the non-printable area, and the
bar code which contains confidential information. Because the
bands might fade along the scan direction, we partition the sam-
ple into three regions, left region, center region, and right region
[10] so that we can analyze each region independently.

Bands profile extraction
In the bands profile extraction step, the input is one region

of the image from pre-processing. The image is converted from
the sRGB color space to the CIE 1931 XYZ color space. Then
we use spatial projection of the 2-D image onto the process di-
rection by computing the mean value of each line along the scan
direction [10]. Afterwards, we perform color space conversion
from CIE XYZ to CIE 1976 L∗a∗b∗ on the 1-D projection data.
To better distinguish the bands from the background, we subtract
the baseline from the 1-D projection data for each channel. The
baseline is obtained from the filtered 1-D projection data. Finally,
we can compute ∆E defined in Eq. (1) and combine it with the
sign of the baseline removed L∗ channel projection data as our
bands profile. The sign value represents whether the ∆E is lighter
than the background or darker than the background.

∆E =
√
(L∗pro j−L∗base)

2 +(a∗pro j−a∗base)
2 +(b∗pro j−b∗base)

2 (1)

Bands identification
After the 1-D bands profile extraction process, the small fluc-

tuations of ∆E are eliminated by the threshold value. We use the
mean value of ∆E plus the standard deviation of ∆E as the thresh-
old value. Next, we locate the edges of peaks. Moreover, if there
are positive and negative values of ∆E within a peak, we separate
it into a light peak and a dark peak. In other words, each peak is
either light or dark. After that, we extract features by computing
the center, height, width, area, and sharpness (transition width)
for each peak.

However, the human vision system is complicated. Some
peaks are invisible among the detected peaks. There are two rea-
sons we want to classify visible and invisible potential defects.
First, we obtain better data quality. For example, we lower the
false alarm rate. Second, if too many invisible potential defects

are included in the repetitive interval estimation in the later pro-
cess, it would harm the performance and accuracy of the estima-
tion of periodic bands.

In this work, we apply logistic regression to build our clas-
sification model. The model is a weighting function to predict
the probability of the binary output. That is, visible or invisible.
We choose three features: height (maximum ∆E of a peak), min-
imum sharpness of two sides, and width in the logistic regression
algorithm. Then , we apply this model to our bands identification
algorithm. The detailed results will be shown in Section 3.

2.2 Repetitive bands analysis
The features are extracted after the bands identification pro-

cess. Hence, we can use the information of each band to predict
which band belongs to a set of periodic bands. In our method,
the maximum value of ∆E, light/dark, and center position of each
band are used in our repetitive interval estimation algorithm.

Repetitive interval estimation
There are two phases in the proposed estimation algorithm:

an initial guess and adding synthetic missing bands. We apply the
cost function method [3] to make an initial guess and improve the
accuracy by adding synthetic missing bands.

Phase 1: Initial guess. Since the repetitive bands are gen-
erated from one single component [3], they should look similar.
Thus, we compare the strength of light bands and the strength
of dark bands. Here, the strength is the maximum value of ∆E.
The larger one determines whether our candidate set of repetitive
bands will be dark or light. All following process are operated on
the center positions of this candidate set of repetitive bands.

First, we want to present the cost function briefly, and sum-
marize the algorithm steps. In order to introduce the cost function
method clearly, we start with the notation. N is the total number
of bands in the candidate set and the input data is the positions of
candidate bands denoted by ~b = [b1,b2, . . . ,bN ]. Assume there
are p periodic bands and define the membership vector ~m to
indicate which band belongs to the set of repetitive bands. That is,

~m = [m1,m2, . . . ,mN ], mi =

{
1, periodic
0, aperiodic

i = 1,2, . . . ,N.

There are two variables in the cost function. One is o which is
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the position of the first periodic band. The other is the repetitive
interval ∆b. Therefore, the predicted positions of the periodic
bands can be expressed as

b′k = o+(k−1)∆b, k = 1, . . . , p.

The cost function is defined as the mean square error between the
predicted positions of the periodic bands and the true data. It can
be represented as shown in Eq. (2).

φ =
1
p

N

∑
i=1

mi

(
o+∆b(

i

∑
j=1

m j−1)−bi

)2

(2)

To find the optimal solution of o and ∆b for a given member-
ship vector, we take the first derivatives of the cost function with
respect to two variables, o and ∆b, respectively. Then, we apply
the first order necessary condition (FONC). The closed-form op-
timal solution for a fixed membership vector ~m can be obtained
by solving the linear equations. The solutions are shown in Eq.
(3) and Eq. (4).

ô(~m) =
2(2p−1)
p(p+1)

N

∑
i=1

mibi−
6

p(p+1)

N

∑
i=1

(
i

∑
j=1

m j−1)mibi (3)

∆̂b
(~m)

=
12

p(p+1)(p−1)

N

∑
i=1

mi(
i

∑
j=1

m j−1)bi−
6

p(p+1)

N

∑
i=1

mibi

(4)

However, p and ~m are unknown. In order to find the best
solution, this algorithm uses an exhaustive search with these two
variables. The flow is described in Fig. 3. The input is the true
data ~b and the total number of candidate bands N. The initial
value for parameter p is 3. For a given p, we have

(N
p
)

possible
combinations of the membership vector. Mpossible denotes the set
of possible membership vectors. For each membership vector in
Mpossible, we compute the optimal position of the first periodic
band and the optimal repetitive interval by Eq. (3) and Eq. (4).
Then, cost function value can be obtained by these two values for
a given membership vector. The relationship is described in Eq.
(5).

φ
(~m) =

1
p

N

∑
i=1

mi

(
ô(~m)+ ∆̂b

(~m)
(

i

∑
j=1

m j−1)−bi

)2

(5)

After obtaining the cost function values for all
(N

p
)

possible
combinations of the membership vector in Mpossible, the optimal
result for the given p is the minimum cost function value φp. So
we save its corresponding estimated repetitive interval ˆ∆bp and
membership vector ~mp. We repeat above process until we finish
the computations for p = 3,4, . . . ,N. In the last step, we compute
the fitting error defined in Eq. (6), which is the cost function value
normalized to its repetitive interval. At the end of this phase, we
have the fitting error εp and its corresponding repetitive interval

and membership vector, for p = 3,4, . . . ,N. How do we choose
the best solution from this set of possible solutions? There are two
aspects we need to consider. The first is the fitting error. How-
ever, we cannot just choose the minimum one. Because when p
is small, it is easy to find equally spaced bands. Thus, the fitting
error is small. In previous work, the criterion was to choose the
maximum p from those with fitting error less than 5% [3].

εp =
1
ˆ∆bp

√
φp (6)

Since our samples are more noisy, there is a larger probabil-
ity to find multiple equally spaced band sequences with different
repetitive intervals. In addition, missing periodic bands might af-
fect the estimation because the criterion tends to choose the solu-
tion with maximum p. In our previous work, we only determined
a single repetitive interval. That is, we selected from the candi-
date sets of periodic bands with fitting error less than 5% that set
with the maximum number p of periodic bands. To solve this
problem, we introduce synthetic missing bands and re-evaluate
the cost function value to find the best solution. To begin with,
we choose candidate sets of periodic bands with fitting error less
than 5% as our candidates for Phase 2.

Figure 3: Cost function estimation algorithm.

Phase 2: Adding synthetic missing bands. For each candi-
date set, we check whether there is an existing band at twice the
interval away from either end of the set of periodic bands. If no
such band exists, we check the next candidate set. On the contrary,
if such a band at twice the interval does exist on either end of the
candidate set of bands, we add that band and a new synthetic band
that is equally spaced between the band at the end of the set and
the new band to update this candidate set of periodic bands. Note
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that it is possible that additional bands are located at the repetitive
interval, beyond the new band that is added to the candidate set.
In this case, these bands will also be added to the candidate set.
In fact, we may end up merging two candidate sets of periodic
bands. After that, we have a new set of fitting errors correspond-
ing to our updated sets of periodic bands. If the smallest fitting
error is smaller than our best-so-far fitting error, then we update
the best-so-far solution. We repeat this process until all candidate
sets have been checked. Finally, we apply the same criterion as in
the previous work [3] to select the best one. That is, choose the
set with maximum p from those sets for which the fitting error is
less than 5%. The overall repetitive interval estimation algorithm
is described in Fig. 4.

Figure 4: Proposed repetitive interval estimation algorithm.

In our previous work, we also found missing bands. How-
ever, we only used one candidate set. We choose the one best
result from the first cost function estimation and then continue
adding bands one interval away until the set of periodic bands ex-
pands to fill the whole page. The purpose for our previous method
is to find as many periodic bands as possible. However, here our
target is to improve the accuracy. The key idea of our proposed
method is searching more possibilities and using less synthetic
data. We use more candidates from Phase 1 initial guess and only
add one or two synthetic bands in Phase 2 for each candidate set.

Bands identification for periodic and aperiodic bands
After the estimated repetitive interval is determined, the cor-

responding membership vector is used to identify the periodic and
aperiodic bands. Thus, we can collect the statistic values, like
maximum, average strength of periodic bands for our feature vec-
tor.

3. Experimental Results
This section shows the experimental results of logistic re-

gression and applying our algorithm on the test pages.
Maximum ∆E, minimum sharpness of two sides, and width

are our selected features in the logistic regression algorithm. We

have total of 18 sample pages and 1693 labeled bands on those
sample pages. We apply K-fold cross validation; K is 9 in this
work. First, we partition the data into 9 groups randomly; 8
groups are used for training and 1 group is used for testing. We
repeat for all 9 groups. The result is shown in Table 1. And then
we reshuffle the data 100 times. From Fig. 5, we can see the
accuracy is very stable. The average accuracy is 93.4%.

In this project, the test pages are softcopies of constant tone
printed from a color laser electrophotographic printer and scanned
at 600 dpi. We are only interested in the smooth area since the
bands defect in smooth areas is more obvious for our perception
[11].

Figure 6 is an example of detection result. The yellow lines
separate the three regions. The blue lines are the projection data
in signed ∆E. The black lines are the threshold values we use to
find the peaks. The red bars are periodic bands; and the green bars
are aperiodic bands.

Figure 6a and Figure 6b are the same test page, but estimated
by different methods. Usually, the bands defect is most obvious
in the center part. Thus, we check the center part only. In Figure
6a, the estimated repetitive interval is 12.2 mm by the cost func-
tion method without adding synthetic missing bands. However,
the estimated repetitive interval is 33.62 mm by our proposed al-
gorithm, which is the cost function method with added synthetic
missing bands. The blue bar shown in Figure 6b is the position
where we add the synthetic missing band. The ground truth is 34
mm. Similarly, Fig. 7 is another example for the two estimation
methods applied on the same test page. Cost function method pre-
dicted the repetitive interval to be 42.64 mm on this sample page.
But the repetitive interval estimated by our proposed method is
33.66 mm. The ground truth is the same: 34 mm. Therefore, our
method can estimate the repetitive interval better than the previ-
ous method on these test pages.

The total number of test pages with obvious periodic bands
we have in this project is 15. We apply our proposed method to
these test pages and the results are shown in Table 2.

Figure 5: 9-fold cross validation when the data is reshuffled 100
times.
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4. Conclusion
In this paper, we build a classification model by logistic re-

gression to determine whether the potential defects are visible or
invisible. The average result achieves 93.4% accuracy. In addi-
tion, we proposed a new cost-function-based repetitive interval
estimation method. We re-evaluate the cost function values by
combining true data with synthetic missing bands to improve the
accuracy on noisy and corrupted test sample pages.
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(a)

(b)
Figure 6: Comparison of estimated repetitive interval on the same
test page. The red bands have been identified as periodic bands.
The green bands are aperiodic bands. The ground truth repetitive
interval is 34 mm. (a) Estimated repetitive interval is 12.2 mm by
cost function method. (b) Estimated repetitive interval is 33.62
mm by cost function method with adding synthetic missing bands.
The blue bar is the synthetic missing band
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(a)

(b)
Figure 7: Comparison of estimated repetitive interval on the same
test page. The red bands have been identified as periodic bands.
The green bands are aperiodic bands. The ground truth repetitive
interval is 34 mm. (a) Estimated repetitive interval is 42.64 mm
by cost function method. (b) Estimated repetitive interval is 33.66
mm by cost function method with adding synthetic missing bands.
The blue bar is the synthetic missing band
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Fold index FN FP TN TP Total Accuracy Precision Specificity Sensitivity

1 4 7 101 85 197 0.9442 0.9239 0.9352 0.9551
2 10 2 73 78 163 0.9264 0.9750 0.9733 0.8864
3 5 7 88 69 169 0.9290 0.9079 0.9263 0.9324
4 7 6 113 77 203 0.9360 0.9277 0.9496 0.9167
5 11 0 107 60 178 0.9382 1 1 0.8451
6 1 5 115 85 206 0.9709 0.9444 0.9583 0.9884
7 6 9 114 88 217 0.9309 0.9072 0.9268 0.9362
8 10 1 98 70 179 0.9385 0.9859 0.9899 0.8750
9 9 7 110 55 181 0.9116 0.8871 0.9402 0.8594

Average 0.9362 0.9399 0.9555 0.9105
Table 1: Logistic regression with K-fold cross validation result for classification of visible and invisible potential defects.

Sample ID Histogram Cost function Cost function with adding synthetic missing bands

1 19.81 33.67 33.67
2 32.43 33.91 33.91
3 11.47 33.88 33.88
4 NaN 32.99 32.99
5 28.87 33.76 33.76
6 28.66 31.91 31.91
7 13.38 33.68 33.68
8 30.95 33.97 33.64
9 25.23 33.66 33.68
10 NaN 12.2 33.62
11 33.82 33.83 33.83
12 26.67 33.58 33.58
13 32.72 42.64 33.66
14 9.19 33.97 33.8
15 14.1 33.71 33.71

Table 2: Comparison of repetitive interval estimation result by histogram method, cost function method, and cost function method with
adding synthetic missing bands. The ground truth interval for these samples is 34 mm.
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