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Abstract
Local defects are very common on printed pages. Automatic

detection of such defects will help the product support personnel
to diagnose the problem and fix it more efficiently. Among pre-
vious works on local defect detection on printed pages, most of
them divide the printed page into small blocks and calculate the
variation within each block. This method is time consuming and
not robust in dealing with defects at different scales. In this pa-
per, we propose a robust framework for detecting the local defects
on scanned printed pages. To achieve the efficiency and robust-
ness, our framework applies the Gaussian pyramids method and
the selective search method. We also create manual features for
classification to increase the detection accuracy. Finally, apply-
ing our method on printed pages demonstrates its efficacy.

1 Introduction
Printed image quality is always a top issue in the printing

industry. No matter how you improve the hardware or software in
the printer, printing defects always exist. It’s important to detect
and recognize them in a timely manner so the manufacturer can
make adjustments to the printers accordingly.

Printing defects are mainly divided into three categories:
streaks, banding and gray spots. In this paper, we will focus on the
detection of gray spot defects. Comparing with other two kinds of
defects, gray spot defects are caused by contamination, dirt or de-
bris in the paper path while with inkjet printers, streak defects are
mainly caused by multiple missing nozzles. The streak and band-
ing defects according to their causes are more widely distributed
and more easily spotted by human eyes. But gray spot defects are
not easy to be detected directly by human eyes in a pure color test
page due to their small size and sparse distribution. But such de-
fects will cause problems when printing customer contents which
are usually not pure color prints. This will cause severe flaws
in the final printed image. It is important to find these defects
and then, from the detection result, we can deduce the potential
cause of them and get it fixed – either to clean the paper path or
purge the printing nozzles. To achieve a more precise deduction,
enough information from a batch of test prints is needed. Tradi-
tionally, when certain kinds of defects occur in the printed images,
the manufacturer will send out technicians to investigate flaws by
looking directly at the print under certain lighting condition. This
is time consuming and lacks accuracy. So an automatic detection
of the printing defects is important, and can greatly increase the
work efficiency.

Many challenges come up in gray spot defects detection. De-
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tecting the gray spot defects is similar to texture analysis of an im-
age, trying to locate the region which has large variation from its
neighborhood. This variation, in our case, is the non-uniformity
of the texture neighborhood. But defect detection in scanned
printed pages is a little different from analyzing textures of dig-
ital images. Firstly, the detection is conducted on the scanned
printed pages. This means we will encounter the noise from high
frequency halftone patterns. These halftone patterns cause a cer-
tain non-uniformity compared with the original digital image. If
one zooms in the image to certain scale to search for the gray
spots, they cannot be seen, since gray spots are overwhelmed by
the halftone patterns. Secondly, gray spots have different scales
even though they are very small comparing with the image scale.
Thirdly, the gray spots are sparsely distributed. The size of our
scanned images are very large (6535 × 5072 pixels). This re-
quires the detection method to have a certain efficiency.

Figure 1: Scanned monochro-
matic printed pages.

Figure 2: Scanned color printed
pages.

Figure 1 shows an image clipped from a scanned monochro-
matic page. Figure 2 shows an example from a color printed page.
Since they are scanned in high resolution, it is a little bit hard
for human eyes to directly spotted the defects. The defects are
marked out by blue bounding boxes. They are sparsely distributed
and have variable sizes. It is much easier for human eyes to de-
tect the defects directly by removing the high frequency halftone
pattern first. We will give an comparison example about halftone
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pattern removal later. Besides, by comparing these two examples,
we can see that the monochromatic patch shows a higher contrast
when searching for the gray spot defects. This implies that it is
easier to do detection on grayscale images or a single L* channel
instead of directly detecting defects on color images due to higher
contrast.
In this paper, we propose a framework to automatically detect the
gray spot defects on scanned printed images from an electropho-
tographic printer. We try to use an efficient segmentation-based
method to detect the potential regions that may contain the gray
spot defects and apply classification with manual features to in-
crease the detection precision. Another superiority of our method
is we do not need the reference image in the detection process,
which makes the method more practical since there is often no ref-
erence image offered when inspecting the defects on customers’
prints.

2 Related Work
A lot of work has been done on printed page defect detection.

Most of them share similar procedures: image preprocessing , po-
tential defect locations detection, feature extraction, defects clas-
sification and image postprocessing. Previously, researchers used
a set of sliding windows with different sizes filtering through im-
ages to estimate the potential location of defects. This is time
consuming and of low accuracy when we have defects with vari-
able sizes. They designed all kinds of filters to detect the de-
fects. Nowadays, as deep learning has become more common-
place, people are starting to use convolutional neural networks to
detect defects.
For print defects detection, Wang et al. [1] designed a pipeline to
automatically detect the local defects using reference images. But
the detection algorithm is not very efficient and robust since they
used fix-sized grids to locate the defects. Jing et al. [4] used the
Structural Similarity (SSIM) [5] Index to score the quality of im-
ages containing all kinds of defects, such as streaks, bands, gray
spots, dark spots, and fading defects. Their work is similar to
Wang et al. [1] in that they used reference images for defect de-
tection, which is not practical since usually we will not have the
reference images for customer contents. Nguyen et al. [2] [3]
designed a system to score the quality of a printed page based on
detected defects using a support vector machine with hand-crafted
features.

3 Methodology
The framework of our method, shown in Figure 3, can be

divided into three parts: (1) color space transformation and de-
screening, (2) candidate region detection, (3) feature extraction,
and (4) classification.

3.1 Preprocessing
As we discussed in the introduction, detecting defects in the

L∗ channel is much easier than in a color image. So we first trans-
fer the original scanned images from the sRGB color space into
the L∗a∗b∗ color space. We expect a higher contrast on gray spot
defects.
Then, we try to remove the high frequency halftone pattern from
the scanned print pages, since this will make the scanned print
more smooth and will ease the later detection. Removing high fre-
quency halftone textures is also call descreening. The descreening

process actually simulates the human vision system which focuses
on the low frequency textures. We apply the Nasanen filter, a low
pass filter, to the scanned print page. Here, we show two images
as an example proving the effectiveness of this filter in removing
the halftone pattern.

Figure 4: Patch on left hand side is an original patch while the
other one is descreened to remove the high frequency halftone
patterns by filtering through a low pass filter.

In Figure 4, we show the difference between the original
patch and the preprocessed patch. The preprocessed patch is
much smoother so it is easier to detect the local defect marked
by the blue circles.

Local Defect Detection
In this step, we try to detect the potential regions of inter-

est (ROI), which mark the possible defect locations. In order to
deal with the local defects of different sizes, traditionally people
use different sizes of sliding windows. But this method is not ro-
bust for defects with variable sizes; and it’s time consuming. And
the more variable the defect size is, the higher the cost is. So
we design a new robust and efficient framework to make sure we
can detect defects with variable size more precisely. To achieve
this, we apply the Gaussian pyramid method [6] and the selective
search method [7].

The Gaussian pyramid method has been widely used for a
long time. To apply this method, we just need to use a Gaussian
kernel to blur the image and downsample it. By doing this, we
achieve the image in next level, which is small in size compared
with original image. We keep doing this on the newly generated
images to give us more images. If we stack them together, we will
get a image pyramid. Detecting local defects in different pyramid
levels makes sure that our result is more robust.

The selective search method is an object detection method.
It is developed based on a graph-based segmentation method pro-
posed by Felzenszwalb et al. [8]. We apply this method in dif-
ferent pyramid levels. This may give us multiple detection results
for each defect in different pyramid levels. We can fuse the results
for each defect in different levels. This will improve the detection
precision, and give us more information about each defect, which
will help us to discriminate the defect patches from non-defect
patches in the classification step later. For example, we may miss
the detection of some defect in one pyramid level but we may suc-
cessfully detect it in other pyramid levels, which make these de-
tection results in different pyramid levels complementary to each
other. And some big local defects that are not detected in lower
pyramid levels may be detected in higher pyramid levels.
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Figure 3: Gray spot defect detection framework.

Figure 5: Segmentation results of a non-defect patch. Left im-
age shows the original patch, while the right one shows the fur-
ther segmentation result, with blue marks centers and green marks
outlines of foregrounds.

Feature Extraction
After getting potential locations of gray spot defects, we

need to do further classification on them. To achieve this, a naive
way is to reshape patches extracted in the last step into vectors and
feed them directly into our classifier. This method will achieve a
certain precision, but is still not good enough since we will lose
much spatial information contained in the image. And the im-
age vectors will not focus on the features describing the patch
containing defects. So we create some manual features from the
image, which will focus on the texture distribution and average
energy of the defect patches. From this, we can expect a higher
detection precision. From the previous step, we achieve potential
locations of defects, and overlay tight bounding boxes over them,
represented by P. To derive finer locations of defects within the
bounding boxes, we apply Otsu’s method to further separate the
defects from the background. And we can also decide the center
and outline of the defects from the segmentation results. Figures 5
and 6 show a pair of examples to illustrate the difference between
defects and non-defects segmentation results. The blue plus signs
represent the cluster centers of the segmentation while the green
lines represent the outline of the foreground. For defect patches,
the foreground is usually a regular, approximately elliptical shape
and with one single cluster and one center. But non-defect patches
tend to have multiple centers and irregular shapes for the fore-
ground. These observations are helpful for us in building manual
features later.

After getting more precise locations and masks of our de-
fects within each patch, we create manual features for each de-

Figure 6: Segmentation results of a defect patch. Left image
shows the original patch, while the right one shows the further
segmentation result, with blue marks the only center and green
marks outlines of the foreground.

fects from the further binary segmentation. Let’s represent each
finely segmented defected region as I ∈ P in each patch. To cre-
ate the first feature, we convert the image patch from sRGB to
CIE L∗a∗b∗ color space. Then for each patch P, we calculate the
mean average values in three different channels.

L∗avg =
1
|P| ∑i∈P

L∗i , a∗avg =
1
|P| ∑i∈P

a∗i , b∗avg =
1
|P| ∑i∈P

b∗i

Here, |P| represents the cardinality of the set P. Based on this, we
calculate the normalized ∆E value for each patch.

∆Ei =
√

(L∗i −L∗avg)
2 +(a∗i −a∗avg)

2 +(b∗i −b∗avg)
2 i ∈ P

After this, we get the variance of ∆E values.

σl =

√
1

|P|−1 ∑
i∈P

(∆Ei−∆Eavg)2

∆Eavg =
1
|P| ∑i∈P

∆Ei

We can still create other features such as area coverage ratio be-
tween foreground and background RA, perimeter to area ratio
RPA, intensity difference Idi f f , and Weber’s contrast Cw. Let B
represent the background in patch P, where P = B∪ I.

RA =
|I|
|P|

Idi f f = (Ī− B̄)/255

RPA =
C(I)
|I|

Cw = (Ī− B̄)/B̄
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Figure 7: Patches example. The first patch shows us examples
containing gray spot defects while the second patch shows exam-
ples which have no gray spot defects included. The textures and
average luminance of the patches from the two classes are quite
different. This shows us a promising way to separate them from
each other.

In the above, C(·) represents the function to calculate the perime-
ter of the input. Ī and B̄ represent the mean pixel value of defects
and background, respectively.
As we mentioned previously, another naive way is to input the re-
shaped image patch into the classifier. We will compare the results
of applying this naive way with the results by using our manual
features in Section 3.

Classification
In this step, we use machine learning methods to classify

the ROIs obtained from last step. We classify the data into two
groups: defect and non-defect patches. We reshape the patches
into size of 40× 40. Below, we give an example of defect and
non-defect patches for training.

From Figure 7, we can see some difference in the texture
between defect and non-defect patches. Based on this observa-

tion, we use a machine learning method to classify the defect and
non-defect patches to further improve our detection results.

In order to increase the precision of classification, we also
create manual features for each patch, such as the ratio between
foreground and background within each patch, the contrast of
foreground compared to the background in each patch, and so
on. In the current situation, we create more manual features to
increase feature dimension, which will improve the classification
result.

After we get the feature vectors for all the patches, we feed
the features into a Support Vector Machine (SVM) classifier [9]
to do the training. Then we apply our trained model on test data,
which proves the goodness of our framework.

3 Experimental Results
In this section, we show some qualitative detection results.

Below is our detection result on an example page in 3 different
pyramid levels. The blue boxes represent the defects we detect
while the red ones represent the non-defects.

Figure 8: Intermediate detection result in 3 pyramid levels. Red
boxes represent regions containing no defects (false alarms). Blue
boxes represent regions containing defects. From these examples
we can see the defects are very sparse, and hard to be directly
detected by human eyes.

We used 7374 patches for training and 1844 patches for test-
ing in total. We controlled the data amount ratio between defect
and non-defect patches around 1 : 7. Defects are manually anno-
tated by ourselves. And the final detection accuracy through using
our manual features is 92.0%, while the accuracy through directly
feeding patches is 90.9%. From this, we can see our manual fea-
tures do make an improvement in detection accuracy. Below, we
use a table to show the cross validation accuracy during training.
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Table 1: 5-folder cross validation accuracy.

1st 2nd 3rd 4th 5th
Accuracy(%)
patch

90.92 90.92 90.92 90.90 90.91

Accuracy(%)
Manual
Feature

92.05 92.05 92.11 92.11 92.10

Figure 9: The plot on the top is the ROC curve for training using
patches directly with AUC = 0.75. The other one on the bottom
is ROC the curve for training using manual features with AUC =
0.77.

Here, we use receiver operating characteristics (ROC) curve
[10] to show the improvement after using the manual features for
training. During the classification, Each patch will be assigned
with possibility of being classified as a defect patch. We vary the
threshold between 0 and 1 as a decision boundary to labeling the
patches as defect or non-defect, from which we get the ROC curve
with False Positive Rate (FPR) varying from 0 to 1.

Area under curve (AUC) is a measure of the capability of
the classifier to distinguish true objects from false alarms. When
AUC = 0.5, it means the system has no separation capability.
And the higher the AUC value, the better the model predicts
defects as defects and non-defects as non-defects. We display
the two ROC curves below. The orange lines show the perfor-
mance of our classification system and the blue lines are the ref-
erence line for AUC = 0.5. We also calculate the area under curve

(AUC) values separately. Our model trained with manual features
achieves AUC = 0.77 while model trained with patches achieves
AUC = 0.75, which implies that our model trained with manual
features is better.

We also zoom in on the ROCs in Figure 10 for a False Pos-
itive Rate between 0.00 and 0.05, since this is the range that is
more likely to be of interest in real applications. The red line
shows results of our manual feature inputs with AUC = 0.0072,
while blue line shows results of vectorized patch inputs with
AUC = 0.0066. This shows us the manual feature do make an
improvement in recognizing defects.

Figure 10: ROC plots zoom in range from 0.00 to 0.05. Red line,
showing results of our manual feature inputs, has bigger AUC =
0.0072 which is bigger than that of blue line, showing results of
vectorized patch inputs, with AUC = 0.0066.

4 Conclusion
In this paper, we propose a new segmentation-based frame-

work for local print defects detection. It is more robust in de-
tection of gray spot defects with variable sizes. We also apply a
pyramid method to decrease the miss detection rate. To improve
the detection accuracy, we create manual features to describe the
characteristics of our patches. From the test results, we can see
that our framework works really well in detecting gray spot de-
fects on scanned printed pages.
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