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Abstract

We present a computer interface to visualize and interact
with mathematical knots, i.e., the embeddings of closed circles in
3-dimensional Euclidean space. Mathematical knots are slightly
different than everyday knots in that they are infinitely stretchy
and flexible when being deformed into their topological equiva-
lence. In this work, we design a visualization interface to depict
mathematical knots as closed node-link diagrams with energies
charged at each node, so that highly-tangled knots can evolve by
themselves from high-energy states to minimal (or lower) energy
states. With a family of interactive methods and supplementary
user interface elements, our tool allows one to sketch, edit, and
experiment with mathematical knots, and observe their topologi-
cal evolution towards optimal embeddings. In addition, our inter-
face can extract from the entire knot evolution those key moments
where successive terms in the sequence differ by critical change;
this provides a clear and intuitive way to understand and trace
mathematical evolution with a minimal number of visual frames.
Finally our interface is adapted and extended to support the de-
piction of mathematical links and braids, whose mathematical
concepts and interactions are just similar to our intuition about
knots. All these combine to show a mathematically rich interface
to help us explore and understand a family of fundamental geo-
metric and topological problems.

Introduction

In topology, knot theory [1] is a field that concerns the equiv-
alence between classes of mathematical knots. While knot theory
is a concept in algebraic topology, it has found applications to
problems in physics [2] [3], chemistry [4], bioinformatics [5] and
3D printing [6] etc. A major task of knot theory is to find ways
of telling whether two knot diagrams are diagrams of equivalent
knots. In particular we will want to know if a given knot diagram
represents a knot equivalent to an unknot, that is, a knot repre-
sentable by a knot diagram without crossings. The question being
asked here is not a geometric problem in the usual way we think
about geometry, because the mathematical knots are slightly dif-
ferent than the everyday knots. The specific shapes of the knots
don’t matter to our question — If we nudge the knot images just
a bit, it does not make any difference to the question, even though
the geometric shape of the knot is changed. Knot equivalence is
a topological question where we don’t care about knots’ length
or angles. The objects of interest in this paper are mathematical
knots that are considered infinitely stretchy and flexible, even if
they also appear to be physical so they won’t cut into themselves
during a mathematically valid evolution.

A standard mathematical approach to understanding knot
equivalence is in general quite challenging: one starts with a
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3D knot structure sketched as a 2-dimensional (projective) im-
age with cutaways at each crossing to indicate its 3D structure,
and then draws a sequence of mathematically valid deformations
applied to the knot image to generate its isotopy towards the final
goal. One way of producing such deformations to show that a knot
diagram can be transformed into another is to use a sequence of
atomic moves, known as Reidemeister moves [7]. While the three
Reidemeister moves are simple and intuitive, producing the entire
procedure using the combinations of the Reidemeister moves in
the right order is fairly difficult. Tt may take up to 236n'! moves
for a knot diagram with 7 crossings to be distorted towards its iso-
topy [7]. In this work, we are motivated to model mathematical
knots using a hybrid force model — on one hand they are in-
finitely stretchy string pieces with energies charged at the nodes,
so that highly-tangled knots can evolve by themselves from high-
energy states to minimal (or lower) energy states; on the other
hand, they can be physical and real so one can nudge part of the
knots to change their shapes, to tie or untie the knots as if they
were the real ropes we are familiar with in our everyday life.

Related Work

Mathematical knot has been fundamental interests to visu-
alization community. The advent of high-performance interactive
computer graphics and visualization has opened a new ear for cre-
ating a tangible experience with these mathematical objects and
their topological phenomena. For example, Andrew et al. present
interactive methods to visualize geometric objects [8]. Wijk and
Cohens’ SeifertView focus on generating knots and links through
Seifert surfaces [9]. In KnotApp [10], mathematical knots are
written as fourier series and a method is presented to construct the
contact surface of a knot shape using 3D printing. Other efforts
include, e.g., methods to examine particular geometric features
in high-dimensional space via their reduced-dimensional analogs
(see e.g., [11] [8]), that allows interactive experiences with high-
dimensional entities in three-dimensonal space accessible to us.
Visualizing knot equivalence involves not only efforts to display
static knot structures, but also to illustrate changing structures that
require deformations or interactions, such as the moves to take
one knot into an equivalent one. Several successful efforts already
exist to visualize the knot dynamics. For example, Scharein’s
Knotplot is a widely used tool to draw and interact with math-
ematical knots [12]. Wu’s work supplement Ming’s knot pro-
gram [13] with a local minimal MD energy calculation to asso-
ciate knots with energies. Brown’s work has been focused on 3D
ropes’ physical simulation, with a visualization tool developed to
allow real-time manipulation of virtual ropes [14]. KnotSketch
[15] adopts an enhanced version of Gauss code to facilitate the
manipulation of virtual knots. Zhang et al. develop a family of

683-1



&) KnotGUI

Knot Data
Read/Write

@w. - O X
Knot Files Read -

F——1
Knot Gallery

OGB!
QDD

@@@@@@

Energy
" -
Current Mouse Status | 3 S Plot
MouseDraw_____ 03
i
0.5
E.QL
0.2
01# — L L
a 100 200 300 400 500 600 700 800 900 1000
e o Y 2D/3D
m View
Sk
N
Key
Key Moment Total: 7 Moment
Selected Moment: 4 VleW

BHSP O

Figure 1: Visualizing Mathematical Knot Equivalence: our tool allows users to produce and trace equivalent knot diagrams through force-driven mathe-

matical relaxation and physically-based interactions.

methods to visualize knots in 3D and 4D space [16] [17], and a vi-
sualization interface to interact with mathematical knots with the
Reidemeister moves [18]. While most prior visualization efforts
have been studying knots with the approved mathematical moves
(i.e., the Reidemesiter moves), they typically provide expert’s in-
terfaces to display and interact with knots (and sometimes their
evolved shapes) on a 2D screen. The work presented in this paper
aims at an hybrid approach to bringing combined power of force-
directed topological refinement methods and physically-based in-
teractions to facilitate automatic optimization and understandable
interaction with mathematical knots.

The rest of our paper is organized as follows. We will start
with an overview of the interactive interface that allows one to
sketch, edit, and polish knot diagrams. We then proceed to de-
scribing our force models and topological relaxation methods to
refine knots’ embeddings. Having established the main visual-
ization paradigms, we proceed to a method to extract the critical
frames as key moments from the long sequence of knot evolution.
We next extend the our interface to the depiction of the mathemat-
ical links and braids and their equivalence. Finally we will present
a preliminary user experience study, with a conclusion drawn in
the end.

Overall Scenario

Figure 1 shows the typical screen image of our visualization
interface. From the user’s perspective, there are four major dis-
play components in the interface: a paper-like panel in the central
area to sketch knots and explore their deformations, two display
windows where the mathematical knot’ energy over time is plot-
ted and the knot’s 3D rendering is provided, and a playback win-
dow to display the key moments captured from the entire knot
deformation process.

The central panel is the main tool that allows users to visually
explore knot/link structures and suggest deformations with auto-
mated relaxation and manual editing. More importantly, when
users visually explore or make changes to the structures, all the
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windows are coordinated to allow users to toggle between syn-
chronized 2D diagram, 3D rendering, and the associated energy
plotting, which we will discuss more later. The playback win-
dow is a key frame player that allows users to access and trace the
key moments during the whole mathematical deformation pro-
cess. User operations in our interface are designed and supported
in the hierarchy as follows:

e Nodes and segments — these are the basic geometric struc-
tures of the mathematical entities in this work, and our inter-
face allows one to manually edit their properties, e.g., their
coordinate values.

e Knots, links, and braids — these are the mathematical ob-
jects of interest in our work they can be visually explored
with user-performed translation/rotation/scale, or topologi-
cally relaxed in an unsupervised way, and users can also in-
tervene the relaxation by nudging parts of the structure with
physically-based interactions, by treating part of the knots
as 3D physical ropes.

e Mathematical entities and phenomena — all static and
changing structures presented in our interface are visualized
and traced, and can be exported as images and data files
containng the geometric information.

Modeling Mathematical Knots with Forces

In this section, we focus on a family of methods used to
implement the algorithms, interaction procedures, and user inter-
faces in our knot interface. Our fundamental techniques are based
on a wide variety of prior art, including the 2D Reidemeister move
interface for knot manipulation [18], sketching based knot inter-
faces described in [12, 16], and general graph layout algorithms
presented in [19, 20].

Knot Representation and Creation
Mathematical curves are represented as node-link diagrams
in our work. An initial diagram of a 3D cruve can be obtained
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Figure 2: Knot representation and creation in our work. (a) Initial topo-

logical structure represented using an array of line segments and nodes.
(b) An improved and smoother structure with interpolation splines. (c)
Redefine the topological structure by toggling crossing orders. (d) The
3D rendering of the mathematical knot with color, texture, and shading.

by projecting each vertex from R3 (xyz—space) to R? (xy—plane),
but various parts of the diagram appear to touch each other due
to the projective collapse of the z dimension. Let K = (V,E)
represent this initial diagram of a given smooth curve in R?, where
V = {v1,v3...,v, } is the finite set of vertices of the polygon and
E is the set of edges {e},e;...,e,}.

Our method allows a user to mouse-click a series of “control
points” for an initial planar diagram, and construct the 3D curve’s
topology by assigning each vertex a ternary “eye-coordinate” or,
depth z: z =1 for vertices on strands crossing over another sec-
tion, z = —1 for vertices on strands crossing under another, and
z = 0 for vertices on un-interrupted strands. The set of con-
trol points define the basic topology of a curve embedded in 3-
dimensional space. The visual appearance can be significantly
improved by computing a Cubic Spline [21] between each of the
nodes along the knotted curve.

Consider Figure 2 for an illustration of our knot representa-
tion and creation. Figure 2(a) gives a piece of curve represented
by an array of line segments connecting each pair of the control
points defined by a user. While the 3D embedding in Figure 2 is
sufficient to define the curve’s topological structure, we can use an
interpolation spline to provide an improved visual image in Fig-
ure 2(b). The sketched knot diagram in Figure 2(a) and (b) is an
unknotted curve. Our interface allows users to toggle the cross-
ings with mouse clicks on the crossing area to redefine the curve’s
topology. For example, the double click illustrated in Figure 2(c)
brings the original unknotted curve into a true (and the simplest)
mathematical trefoil knot.

In Figure 2(a)-(c), the mathematical curve is presented in a
pen-and-ink style to create the classical “knot-crossing diagrams”
by attaching a thickened curve segment in background color be-
hind each of the curve segments in foreground color [16]. In this
way, the two-dimensional projected curve is broken each time
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when it is occluded by another piece of the whole curve that is
nearer to the 3D projection point. In Figure 2(d) we show an
alternative 3D rendering view by attaching smooth and colored
cylinders to replace the 2D line segments [22].

The Force Models

Our basic force model implements an infinitely stretchy
string pieces with energies charged at each control point. Two
knots are equivalent if one can be transformed into another by
stretching or moving it around without tearing it or having it in-
tersect itself. We are thus motivated to implement a hybrid force
model that allows the mathematical curves to be stretchy and can
relax by themselves in most cases. Meanwhile, the string pieces
can also be moved around without tearing or self-intersection just
as a 3D rope that we are familiar with in our everyday life.

Next we will discuss the force models and collision avoid-
ance mechnisms we implement to stretch and move mathematical
curves around, and observe their automatic topological evolution
in our knot diagram tool.

Mathematical Relaxation. To simulate the dynamics of mathe-
matical knots in R3, we now replace the knots’ control points with
electrostatically charged masses and replace each segment with a
stretchy link to form a mechanical system [12]. The masses are
placed in the initial layout. Then links between masses are in-
finitely strechy in that each mass is attracted by its two immediate
neighbors and repelled by all other non-adjacent ones. Thus the
positions of the masses and the length of the links are incremen-
tally updated with the two forces, until a minimum energy state is
achieved. The two types of forces being implemented for mathe-
matical relaxation are defined as follows:

e Attractive mechanical force Fy applied between adjacent
masses on the same component to attract adjacent masses
towards each other. The mechanical force is a generaliza-
tion of Hooke’s law, allowing for an arbitrary power of the
distance between masses.

Fa(i) = Ho|[Visr —villP (Vies — vi) + "

Hallvier —villP (viig — )
where H, is a constant.

e Repulsive electrical force F, applied between all not-
adjacent pairs of masses, following the generalized electro-
static model.

N Hllvi—vijl|*(vi—vj) )
[li=jl[>1

Fr(i) =

where the electric force also allows for a general power of
the distance » with the purpose to repel all non-adjacent
link components, H, is a constant. In our studies [12],
o=—-6,=2.
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Figure 3: The two forces used for mathematical relaxation: attractive
forces applied between adjacent beads and repulsive forces applied be-
tween all other pairs will allow the curve to deform and simplify its em-
bedding automatically.

The force model for mathematical relaxation is illustrated in
Figure 3. The embedding in this example has only 5 masses. With
our defined force model, each mass is attracted by its two neigh-
boring masses, and repelled by two non-adjacent masses. For ex-
ample, vy is attracted by its two neighboring masses, i.e., v, and
vs, and repelled by v3 and v4. To update the mass location, the
aggregated force F¢ = F, + Fy on each mass is calculated to de-
termine the new position of the mass if no topological constraints
were active. We use a fairly simple update mechanism — the
curve has an invisible intial radius R, and if the distance to update
the mass is greater than 0.2 % R, we clamp the distance moved at
0.2 %R in the same direction defined by the aggregated force F,. If
there was topological constraints active during the mass location
update, we will simply only update the mass in the same direction
but with less magnitude to ensure all components have a distance
no less than 2 xR from each other. We will discuss this in more
detail later.

Physically-based Interaction. Often times we also want to
treat part of the mathematical knot as a piece of 3D rope to move
it around, or to nudge the knot to change its shape. We use the
mass-sprinng model to simulate such physically-based manipula-
tion scenarios. The basic idea is to attach a virtual spring between
two adjacent masses (vj,vj). Each spring has its resting lengths
defined in the initial layout, and will produce a restoring force
when compressed or stretched during the knot manipulation:

Fspring(ivj) =—K-vj 3)

where Fypring (i, ) is the force exerted upon the virtual spring con-
necting v; and v;, vjj is the amount that the spring stretches relative
to its defined resting length, and X is the proportionality constant,
often referred to as the spring constant. The spring constant is a
positive constant whose value is dependent upon the spring which
is being studied. When part of the curve is manipulated, all the
springs that form the mathematical curve will generate forces that
incrementally update the locations of all the masses until all the
springs are restored to their initial lengths (see e.g., Figure 4).

Vi N
M Mv
2
V3

b,
OVARVVNO
V3 Vi V2 Vi Va

(a) (b) (©
Figure 4: A mass-spring system with three masses. (a)-(c): Manipulation
on vy will change the lengths of the two springs, which will produce forces
to restore to their resting lengths.

Collision Avoidance. During the process of mathematical re-
laxation and physical simulation, mathematical knots can be
stretched or moved around without tearing or self-intersection. At
each simulation cycle, a new position for each mass is proposed
by our force-driven model, and collision avoidance is strictly per-
formed to detect potential collision between point and point, point
and segment, and segment and segment. Most of the computation
here is distance calculation. When two components are detected
at a distance 8 < 2 R, the pair of closest points on the colliding
components are identified to define a 3D vector v passing through
them. Then each component is shifted way by R — & /2 along v in
an opposite direction to be out of collision range.

Input: Initial Layout of V.= {v|,v5...,v,,}
Output: Updated Layout of V = {v,v...,v,}
while the potential collisions are not handled do
fori=0,....,n—1do

Fe(i) = Fa(i) + Fe (i)

v; :vi+0.2*R*ﬁ* ”E}“”;

end

fori=0,..n—1do

for j=0,..n—1do

if i # j then

if 6(vj,vj) <2*R then

v, =vi+(R—-8/2);
Vj:Vj—(R—5/2);
end

if 6(vj,sj) < 2R then
vi=vi+(R—8/2);
V=V~ (R—=8/2);
V;Jr] =Vj+1 —(R—5/2) N
end

if 6(s,sj) < 2R then
V;:ViJr(R*B/Z);
Vigg = Visr +(R=68/2);

v;:vj—(R—é/Z);

Vi = Vi~ (R=8/2);

end

end

end
end

end
Algorithm 1: Collision avoidance mechanism for knot defor-
mation.

Algorithm 1 describes our collision avoidance mechanism.
When mathematically evolving or being physically manipulated,
the knots preserve the underlying topological structures while
their geometric shapes are refined or simplified. Figure 5 shows a
mathematical relaxation for K notg.
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Figure 5: The relaxation for Knot?.
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During mathematical relaxations, knots” embeddings are up-
dated by the attractive and repulsive forces applied to the masses,
and tend to move to a stable configuration. It is also believed that
this force-driven model is likely to only deform knots’ embed-
dings to a local minimum [23]. Figure 6 shows one such situation
where an overhand knot can’t seem to escape from the local min-
imum construction with the mathematical relaxation model (see
e.g., Figure 6(a)). In Figure 6(b)(c), the user nudge part of the
overhand knot (very much like we try to untie a shoelace). This
intervention helps “untie” the knot and it continue to evolve by
itself and eventually reach a global stable configuration (an un-
knotted circle, see e.g., Figure 6(i)).
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Figure 6: An overhand knot is relaxed and simplified to an unknot with
physical intervention in the middle of the mathematical relaxation.

Plotting The Knot Energy

Knot energy is an important feature to be extracted when
knots are deformed. In mathematical relaxation, a highly-tangled
knot can evolved by itself to a simplied configuration, This is
essentially driven by the knot’s energy, charged at each of its
masses. The energy is calculated based on the geometry of the
knot and it changes when the knot updates its geometric structure
during the deformation. A global minimal energy state is expected
when the knot achieves its final goal.
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There are several energy models being studied in the litera-
ture [24]. In our study the Minimum Distance (MD) energy model
is used. MD energy model determines the knot energy using the
minimum distances, which is consistent with force-directed algo-
rithms where forces are also calculated by distances. The MD
energy of a knot X is defined as follows:

LiL;
2
Dy

E(K)=3 “4)

where L; is the length of edges e;, D;; is the minimum distance
between non-neighboring edges e;, ;.

Our visualization tool plots the knot’s MD energy in a syn-
chronized display window. In most of the mathematical relax-
ations, a mathematical knot will simplify its geometric structures
driven by the two forces towards a lower-energy state. For exam-
ple, Figure 7 shows the MD energy plotting for a piece of highly-
tanged curve during the mathematical relaxation. At the begin-
ning, the curve untangles by itself and its MD energy declines
quickly as plotted. This is mainly because the repulsive forces in
our force model can quickly repell most masses from each other
to simplify the curve’s structure. After around 900 computational
iterations, the attractive and repulsive forces on the knot’s masses
seem to balance out, and the knot is stuck in a local minimum
energy state (see e.g., the fairly flat MD energy curve between it-
eration 900 - 1100.) The knot would stay in this embedding if no
intervention was applied to help it escape from the local minimum
energy state. Around iteration 1200, a physical intervention is ap-
plied to nudge part of the curve, which resulted in a temporarily
raised MD energy. However, this intervention helped the curve to
break from the local minimum state, and further relax by itself.
The curve evetually relax into a trivial knot after 1700 iterations.

Extracting Key Moments from Knot Evolution

Mathematical relaxation under the force-directed algorithm
often takes a huge number of computing iterations, and leads to a
very long process for one to observe the knot deformation, the in-
teresting moments, and the final state. One interesting question is
how to extract from the evolution process only those key moments
when critial changes are taking place.

Key moments extracted from the knot evolution can effectly
communicate about the topological problem we are interested in.
In fact, a large portion of the mathematical evolution are trivial
geometric updates and do not matter to the topological question
being asked. These moments can be ignored from a mathemat-
ical visualization perspective. Secondly, we often need to trace
the mathematical evolution to examine and validate each of the
changes being produced. Computational or numeric errors in the
long evolution might result in illegal moves or changes that do not
respect the topological constraints, and eventually an incorrect fi-
nal state. Therefore another value of key moment extraction is
to provide a clear interface for us to trace and validate the entire
mathematical evolution being proposed.

The key ideas of the overall scenario should now be clear.
The logical series of extracting key moments from knot evolution
are as follows:

o Create a sequence of snapshots from the deformation. We
will capture every moment from the entire knot evolution,
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Figure 7: The energy plotting for a “monster” unknot being relaxed.

and we want to optimally aligns the knot across moments
for the purpose of identifying changes.

o Identifying the changes across moments. For example,
crossing number can be calculated and traced across all mo-
ments. If the crossing number is changed, a critical change
has taken place from one moment to another.

e FExtracting the key moments. To represent key moments
of the evolution, an array of “Snapshots” are caputured
from those moments when knot crossing number is changed
across the moments (i.e., when critical changes took place
in those moments.)

Finding the Best Projections. Mathematical knots do not pre-
serve orientations during the deformation. A knot can appear to
be very different when presented with different orientations. For
example Figure 8(a) shows a fairly complicated “unknown” knot
with a large number of crossing numbers in the presented view.
The underlying structure, a Knotllgl, is revealed in Figure 8(b) as

known as the knot’s best projecction.

(a) (®)
Figure 8: Underlying knot structure and comparison of knot structure
need to studied with the knot’s best projection. (a) an “unknown” knot
with many crossings that are just artifacts of the projected angle. (b)
The knot’s best projection view reveal its Knotllg1 structure with the least

crossing numbers in the view.
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To identify key moments of the deformation where critical
changes have taken place, we need to compare the knot images
across a long sequence from an appropriate viewpoint. This type
of computational comparison can be done by first orienting the
3D knot to the best projection (so that the number of crossings is
minized in the presented view), and then calculating its crossing
number changes from one moment to another.

A widely-used measure to evaluate the quality of best views
of objects is viewpoint entropy based on Information Theory [25].
The idea of a larger entropy value means more information is
included. In our study we implement an optimization measure,
which features the area of projection and the visibility of segment
in the projection. The formula is described as follows:

N L
1K) = ¥, log "+ (9) )
s Ly L
where L; represents the projected length of curve segment s; , L,
is the total length of the knot curve embedded 3D; V(i) is the
visibility test function for curve segment i, ¥ (i)=-1 if the segment
is crossed by another segment, and otherwise ¥ (i)=+1. Here the
larger length of projected curves will contribute to a larger entropy
value, and the number of crossings (collisions) in the projection
contributes to the entropy value as a penalty. In this way, the best
projection is identified as one that contains the longest curve and
the least number of crossing numbers in the projection.
With the viewpoint entropy defined above. The knot dur-
ing the relaxation process is incrementally rotated in the 3-
dimensional space, and the entropy value is calculated upon each
oriention to identify the best projection that has achieved the
largest viewpoint entropy value. We use Figure 9 and Figure
10 to show the result. Figure 9 shows an array of representative
“snapshots” from its entire relaxation process, with many snap-
shots containing a large number of interruptions that could have
been avoided if the knot was presented in a better projection. In
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Figure 9: The relaxation for a trefoil knot in 3D space does not present its best view in 2D space.
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Figure 10: Using the best projection finding method, the relaxation illustrates the knot’s best projection over time.

(a) (b) (©) (d)
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Figure 11: Key moments extracted from the trefoil knot’s relaxation where each moment represents a critical change to the knot, and the knot image is

optimally aligned from one moment to another.

Figure 10, each of the moments presents the knot structure with
the least number of interruptions and provides a clear visualiza-
tion for us to understand how the knot has been evolved during
the entire process.

Key Moment Selection. Although finding knot’s best projec-
tion at each selected moment can display the knot’s underlying
structure with the maximal information and the least interrup-
tions, the knot images in successive terms (see Figure 10) do not
preserve its orientation. This is because our best projection view is
identified by rotating the knot in all angles to identify its greatest
possible viewpoint entropy. This introduces visual discontinuities
in the array of “snapshots” presented in Figure 10.

The visual experience can be further improved. To main-
tain visual continuity in the in successive terms of the “snap-
shots” we generate, we need a rigid transformation that can op-
timally align the deforming knot over moments in the least square
sense. Let Ky = (Vq, Eq) represent the knot at moment m |, where
Vi = {v11,V12.--,V1,} is the its vertices and E; is the set of
its edges. Kj deforms to K; = (V;,E;) at moment m;, where
Vi ={v21,V22 ..., V2, }. At moment m,, we add a set of attractive
mechanical force F, applied between vertices in Vi and V;,. The
set of attractive forces (see Equation 1) will align K, with Ky in
the least square sense.

Figure 11 shows an improved key moment extraction where
the least interruptions are introduced in each of the snapshot and
visual continutity is mained across snapshots.

Depicting Mathematical Links and Braids

In this section, we proceed to extending our basic algorithms
and user interfaces to support the depiction of mathematical links
and braids. Links and Braids are two important branches of knot
theory, and they share many fundamental structures and properties
of their knot counterparts.
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Link Representation. In mathematical knot theory, a link is a
collection of knots that are linked together but do not intersect
with each other. A knot can be described as a special link with
only one component [11]. Two links are considered to be the
equivalent if one can be deformed to another without any tearing
or intersections in any component of the link.

%
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Figure 12: Relaxation of 3-Brunnian link with 12-crossing. (a) Initial
diagram. (b) One component in green removed. (¢)-(f) The components

(
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of the 3-Brunnian Link will deform to three seperate trivial knots.

The force model presented in our knot interface in fact ex-
tends trivially to mathematical links which are a collections of
knots. The only essential difference is that in a mathematical link,
each vertex has still two immediate neighbouring nodes, but will
a lot more non-adjacent nodes from its own component and from
all other components in the link. Similarly, when calculating dis-
tances to identify potential collisions, points and segments from
other components should also be included. The following algo-
rithm describes the extended relaxation algorithm for mathemati-
cal links:

Figure 12(a) shows a three-component Brunnian link with
12-crossing link scheduled and relaxed in our tool. A Brunnian



Input: Initial Link Layout

Output: Relaxed Link Configuration

while the stop condition is not satisfied do

for each knot in the link do

for each mass in the knot do
Calculate F, for each mass;
Calculate F,q inside the knot;
Calculate Fy, from other knots;
Calculate Fe = Fy + Fyq + Fyp;
Generate the new position;

end

end

for each knot in the link do

for each mass in the knot do
Calculate the potential collision between

masses and segments inside the knot;
Calculate the potential collision between
masses and segments from other knots;
Adjust the position;
end

end

end
Algorithm 2: Relaxation algorithm for link.

link is a nontrivial link that becomes a set of trivial unlinked cir-
cles if any one component is removed. In other words, cutting any
loop frees all the other loops (so that no two loops can be directly
linked [26].) We can experiment with this mathematical phenoma
in our link interface. As Figure 12(b)(c) shows, we simply mod-
ified the crossings of one component to have that component in
green removed. All the components of the Brunnian link will
continue to evolve to three trivia knots and separated due to the
repulsive forces in our relaxation algorithm.

Braids Representation. Our current implementation can also
be trivially extended to depict mathematical braids and their evo-
lution. A mathematical braid is a collection of strands in space
with fixed endpoints that are braided around each other. The braid
from top to bottom forms a word in the generatorscy, 62, ...,—,_1,
where o; represents strands i passing over i+ 1. Similar to knot
equivalence, two topological braids are isotopic if one can be con-
tinuously deformed into the other without causing any of strands
to intersect each other [27].

The braid shares the same data structure and relaxation algo-
rithm as in mathematical links. To “fix” the endpoints, we assign
a negative value to the masses on the two endpoints of each strand
in the braid. These masses with negative value will not be updated
(and thus will stay fixed) during deformation and relaxation. The
strands of a braid can be presented with 2D/3D diagrams, and it
can be rearranged to its equivalent one with mathematical relax-
ation or the user’s manipulation (see e.g., Figure 13).
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(a) (b) (©
Figure 13: An isotopy between two braids. (a) 2D braid (0;0;10;). (b)
3D braid (0;0;+10;). (¢) 3D braid (041 0;0i+1).

Implementation Environment and User Study
Implementation Environment. Our visualization interface is
based on OpenGL and Windows Visual Studio C++. The soft-
ware runs on a Dell PC desktop with 3. 5GHz Intel Xeon CPU.
A preliminary evaluation to gauge user experience with this user
interface design was performed.

Participants. A total of 8 participants were recruited, including
3 males and 5 females, their age ranged between 11 to 45. These
participants include elementary school students, K-12 mathemat-
ical teachers, and graduate students from college. All of the sub-
jects have experiences with personal laptops and sketching inter-
face like Microsoft Paint software. None of them had any prior
knowledge of knot theory, except that the mathematics teachers
are familiar with topology concepts. Before performing the re-
quired tasks, all the subjects were given a brief introduction and
demonstration about the interface elements.

The Tasks. The set of tasks to complete with our knot interface
were as follows:

1. Sketch a trefoil knot (i.e., Knot? );

2. Given Knotg diagram (see Figure14 (a)) on the sheet, sketch
it on the computer and refine its structure;

3. Given Linkﬁ9 diagram (see Figurel4 (b)) on the sheet and
repeat the above procedure;

4. Deform a given braid (see e.g. Figure 13) to find its isotopy.

(a) (b)
Figure 14: The knot and link diagrams used in the task.

The Measures. In particular, we measured the usability of this
user interface following a System Usability Scale (SUS) question-
naire [15] [28], which gives a global view of subjective usability
assessments.
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Table 1: SUS-like questionnaire scores for user satisfaction.

Average

No. | Survey Scores
1 The overall function is easy to follow. 33

2 The knot edit function is unnecessarily complex. 3.6

3 The knot depiction was easy to complete. 3.8

4 The link example was difficult to depict. 34

5 The braid diagram was easy to depict. 2.1

6 The relaxation process was difficult to follow. 3

7 The key moments setting is necessary for a better observation of relaxation. | 3.5

8 The energy plotting function is useless. 3.6

9 I think that I would like to use this system frequently. 1.8

10 I needed to learn a lot of things before I could get going with this system. 34

Overall Score (sum of the aboved scores *2.5) 78.6

A pool of 10 questionnaire items covers a variety of aspects
of the system usability, including the requirement for support,
training, the system complexity and the user’s subjective reactions
to using the system (see e.g., Table 1). They are assembled with
S-score scale and different score contribution ranged from 0 to 4.
For the odd items the score contribution is the scale position mi-
nus 1. For the even items, the contribution is 5 minus the scale
position. The overall score is obtained through multiplying the
sum of the scores by 2.5 which is ranged from 0 to 100.

The Results. The result of the questionnaire scores are shown in
Table 1, ranged from 67.5 to 87.5, with an average value of 78.6.
This value is an acceptable level (65-84) in the SUS scores. The
distribution of each score is shown in Figure 15. Most participants
gave high scores to easy-using and function support. Few of them
needed extra technical support to complete the tasks. Low scores
were given to Jg. Only a graduate student who works in the field
of visualization gave a high score, which is acceptable due to the
specific topic being explored in this study. our study has had a task
to depict mathematical braids, some users found that task was too
complicated to complete. The general observation was that users
had a positive experience for knot depiction and manipulation.
Most participants were able to complete the tasks with minimum
instruction and practices.
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Figure 15: The distribution of scores.

Conclusion and Future Work

We have discussed a family of interactive methods for ex-
ploring mathematical knots, links, braids, and their mathemati-
cal phenoma such as topological relaxation. We propose a hy-
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brid force-driven model to allow mathematical knots to untangle
themselves driven by the energies, while allowing the users to in-
tervene the automatic relaxation to escape from local minimum
energy state. While many mathematical phenoma involve a long
sequence of deformation, we introduce an innovative key moment
extraction method to reduce the long evolution into a minimal
number of visual frames that represents the critical changes over
time. Our future directions include the study of more intelligent
and efficient relaxation methods to accelerate the mathematical
knot evolution, and the extension of our algorithms and user inter-
faces to support a family of mathematical entities such as surfaces
and manifolds embedded in 4-dimensional space to understand
and visualize their deformations.
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