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Abstract

Many research and development activities for scientific data
analysis have focused on scalability challenges and data-driven
features. Conversely, data visualization that focuses on models
requiring human interaction rarely involve practical and large-
scale scientific data analysis. Therefore, a gap exists between
interactive data visualization and scientific data analysis appli-
cations. In this paper, we present a design study of interactive
data visualization to support scientists who visually analyze data
from neutron scattering experiments. This study was conducted
in multiple phases: 1) problem characterization; 2) initial design
and formative evaluation; and 3) iterative design. We character-
ize the problems and the design requirements for the analysis of
the specific physical science data. We discuss the design, devel-
opment, evaluation of our visual analytics tool and as well as our
iterative developments with physical scientists. We show how to
bridge the gap between the two disciplines uncovering new po-
tential to solve their challenges in this design study. We focus
on a specific challenge, finding an optimal color mapping, which
plays a critical role in neutron scattering science and is broadly
applicable to other scientific domains. To address the challenge,
we propose two interactive visualization techniques: a dynamic
color scale bar (DCSB) and a multi-scale histogram (MSH).

Introduction

Technological advances in both sensors and high perfor-
mance computing drive escalations in the volume and complexity
of scientific data acquired through scientific experimentation. The
data acquired by such systems have tremendous potential to solve
many critical scientific challenges. Also, advances in interactive
data visualization techniques that integrate human sensemaking
with the computational power of modern computers fosters dis-
covery of new insight, which enables breakthroughs. However,
research and development activities for scientific data analysis
systems have disproportionately focused on scalability challenges
while rarely considering ‘“human-in-the-loop” approaches. The
visual analytics and information visualization fields focus on hu-
man interaction techniques, but applications usually target mod-
erate scale and tailored data sets. Therefore, a gap exists between
interactive data visualization and scientific data analysis applica-
tions. By bridging this gap, we can achieve more comprehensive
and timely understandings of data in challenging scientific sce-
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narios — the central promise of interactive data visualization.

In particular, limited human interaction capabilities hinders
the ability of scientists at the Oak Ridge National Laboratory
(ORNL) Spallation Neutron Source (SNS) to understand data
from neutron scattering experiments conducted at this unique fa-
cility. Physical and material scientists conduct experiments at
SNS producing vast amounts of data that they analyze using a
variety of scientific data analysis systems. For example, phys-
ical and material scientists often analyze data using tools that
have powerful analytic features but lack task-centered capabili-
ties. To achieve successful scientific data visualization design,
task-centered design is required that explicitly incorporates user
workflows and tasks into domain requirements [21].

In this paper, we present a design study on the use of inter-
active visual analysis to support SNS scientists who analyze data
from neutron scattering experiments. Our approach for presenting
this research follows the design study methodology [26, 35]. In
addition to design lessons learned and insights gleaned for visu-
alization research, we propose two interactive visualization tech-
niques that are designed to alleviate limitations of the existing
tools. This study was conducted in multiple phases: 1) prob-
lem characterization; 2) initial design and formative evaluation;
and 3) iterative design. In the problem characterization phase,
we met with the physical scientists to gain a better understand-
ing of their data, challenges, and needs. We then worked together
to identify a set of design requirements through iterative discus-
sions. We then designed a prototype version of our initial frame-
work based the design requirements and conducted a formative
evaluation to evoke more feedback on our initial design. Based
on the evaluation results, we iteratively refined and improved our
framework. One of the interesting phenomena was that as this
study progressed, they suggested new unforeseen ideas and fea-
tures. While we identified several tasks in their workflow that can
be addressed through interactive visual analytics, this paper fo-
cuses on finding an optimal color mapping which is one of the
most critical aspects of their analysis.

To address the color mapping issue, we propose two interac-
tive visualization techniques: a dynamic color scale bar (DCSB)
and a multi-scale histogram (MSH). DCSB allows users to di-
rectly manipulate the current color mapping with simple user in-
teractions for finding an optimal color mapping. MSH supports
multiple scales in a histogram rather than one uniform scale where
users can apply a small scale (fine resolution) to a specific distri-
bution range they want to focus upon while maintaining context
and the overall shape of data distribution without space distortion,
and panning and zooming. These techniques can work either sep-
arately or together. In addition to the neutron scattering data, we
conducted case studies on other types of data. We show how our
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Figure 1. Dynamic Color Mapping with a Multi-Scale Histogram. The multi-scale histogram clearly represents the value distribution of not only entire data
(gray), 3D volume data (b) but also the focused sub-set (green), an extracted slice data from the 3D volume. The slice image (a) is colored according to the

dynamic color scale bar under the histogram.

techniques are applied to other scenarios through the case studies.
The main contributions of this paper are the following:

e We characterize the problems and the design requirements
for the visual analysis of the specific physical science data.

e We design, develop, and evaluate our visual analytics tool
through collaboration with many physical scientists.

e We propose new interactive visualization techniques to ad-
dress a major challenge: finding optimal color mapping.

e We show how to bridge the gap between the interactive data
visualization and scientific data analysis uncovering new po-
tential to solve their challenges.

Related Work

In this section, we begin by reviewing previous studies re-
garding “human-in-the-loop” research for scientific data analysis.
We then discuss color considerations in data visualization for two
sub-topics: color scale and color mapping. We conclude the sec-
tion with a review of existing work regarding multi-scale data vi-
sualization.

Human-in-the-loop in Scientific Data Analysis
Scientific data analysis has predominately focused on algo-
rithmic speed and scalability. Scientific visualization techniques
also commonly describe new visual representations, but large
scale scientific data analysis research is typically not focused on
“human-in-the-loop” data analysis strategies that hinge upon hu-
man interaction techniques. The opposite situation is found in in-
formation visualization and visual analytics research, where scal-
ability and performance are usually not the main objective. Thus,
scientific data analysis is ripe for disruption from the standpoint of
interactive visual analysis. Nevertheless, there are some encour-
aging examples of interactive visual analysis for scientific data.
For example, Mohammed et al. have introduced a new technique
for understanding brain functions using a new interactive compo-
nent that displays a 2D abstraction space [23]. Users interact with
points in this space to transition between different abstraction lev-
els of astrocytes and neurons in an flexible manner. Wang et al.
have described an interactive nested parallel coordinates plot tech-

nique for explore multi-resolution climate ensembles [39]. This
technique incorporates novel visual representations with a sepa-
rate interaction interface for drilling down into connected geo-
spatial views. The authors describe case studies involving domain
experts where the experts’ feedback is analyzed to demonstrate
the advantages of the approach. Our technique focuses more on
direct, embedded interactions, but we also rely upon domain ex-
pert feedback as a means for evaluating and evolving the design.
The concept of embedded interactions follows recent work by En-
dert et al. in which they argued for a “human-is-the-loop” philos-
ophy for visual analytics [11]. Here the focus shifts to examining
the user’s work process and fitting analytics into existing interac-
tive procedures often involving direct interaction with the visual
representations. Our design supports this idea of joint reasoning
between machines and humans through interactive visual repre-
sentations. Saket et al. have studied how user interactions influ-
ence the ability to control and decode graphical encodings [30].
Our technique uses such embedded encodings and incorporates
suggestions provided in the work, such as the availability of addi-
tional feedback for the color scale and histogram scaling methods
and careful design in the interaction techniques.

Colors in Data Visualization

Color is often utilized for visually displaying metric infor-
mation, patterns, extrema, and other features. A color map or a
color scale is defined as an array of colors that is used to map data
values to the colors that are assigned to visual features in a data
visualization (e.g., a graphical objects fill color or pixel values).
Both terms are used interchangeably in the scientific literature. In
this paper, we use the term color scale. We define a color mapping
as a procedure that maps data to the colors of a chosen color scale,
which involves finding optimal alignment between color and data
values. The process of the using colors for visualizing data can
be split into two steps: color scale selection and a color mapping.
Choosing a color scale is usually done prior to the color mapping.
Both steps significantly influence perception, data interpretation,
and decision making [2, 29]. The methods used in the two steps,
however, focus on different aspects of the use of colors. We will

IS&T Infernational Symposium on Electronic Imaging 2019
680-2 Visualization and Data Analysis 2019



now discuss these differences.

Color Scale: Traditionally, many studies have focused on
color scales and many related topics [2, 29, 28, 40]. Ware [40]
conducts many experiments for evaluating and comparing a wide
range of color scales. Some techniques are proposed for se-
lecting color scales, which are driven by characteristics of data
and human perception to assist users to choose appropriate color
scales [2, 29]. Rheingans emphasizes tasks and audiences with
respect to choosing a color scale [28]. Zhou and Hansen provide
a comprehensive review of color scale choices and a taxonomy for
choosing the appropriate color scales [42]. Recently, Bujack et al.
propose a framework to assess color scales based on a mathemati-
cal metric that mimics human perception [4]. These works mainly
focus on how to design color scales regarding a color choice based
on color models, such as RGB, HLS, HSV and color ordering and
transition.

Color Mapping: The methods for a color mapping focus
on methods to map data values to colors instead of choosing a
particular pre-defined color scale. Despite the importance of this
area, relatively little research has been done in this area. Col-
orbrewer [3] provides handcrafted discrete color pallets for vari-
ous tasks. PRAVDAColor [2] and ColorCAT [22] propose tools
guided by principals of the human perception to suggest a set of
color scales based on data type, spatial frequency characteristics,
and tasks. Although the tools allow users to choose and edit color
scales, they do not focus on how to map the colors to data values.
Samsel et al. propose a tool called ColorMoves [31, 33, 32] that
allows users to place, move, and resize a color scale and embed
it into each other on a histogram of data via an intuitive drag-
and-drop process. This enables the users to interactively create
a tailored color mapping for specific data and visualization goal.
ParaView [1] also provides a similar function for editing a color
mapping based on data. While the function allows users to handle
various properties of a color scale and define a color mapping by
adjusting a color transfer function, it can be difficult to use for
users who lack advanced data visualization training.

Our DCSB technique also supports a similar feature, dy-
namic color mapping manipulation based on a histogram of data.
However, we have enhanced the feature by enabling a discrete
color scale and multi-scale navigation of the histogram. In this
paper, we describe the improved features and emphasize the de-
sign lessons learned by collaborating with physical scientists as a
design study.

Multi-Scale and Focus + Context Visualization

Multi-scale visualization techniques mainly focus on the
way of data abstraction [25, 41, 9] and transition between different
scales [38, 10, 8]. The techniques allow users to explore data at
different scale levels and provide effective data aggregation meth-
ods. Mélange [10] introduce the design goals of multi-focus inter-
action for multi-scale visualization. Stolte et al. [38] use data cube
aggregation and Elmqvist and Fekete [9] use hierarchical aggrega-
tion to abstract data. Woodring and Shen [41] propose a technique
for temporal exploration across different temporal resolutions for
salient trend detection. ZAME [8] demonstrates a technique for
visualizing many scale levels of a graph powered by high ren-
dering performance. However, these techniques mainly display
overview or detail level of data at one time.

Visualization techniques: detail + overview and focus + con-
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Figure 2. Using a tool (i.e., Mantid), the scientists type the min and max
values corresponding to specific colors using a keyboard (bottom right black
rectangle), confirm the color mapping result (left), and continue until they are
satisfied with the resulting image.

text that show both overview and detail of data at the same time
have many benefits for data analysis [12, 34, 16, 5]. Detail +
overview displays the global overview of data and details of a se-
lected sub-set in separate views. On the other hand, focus + con-
text use one view for showing global context and details within
the context using a visual distortion technique. Focus + context
(i.e., fisheye) has advantages of displaying an area of interest in
sufficient detail and spatially relating the details to the global con-
text. A rich literature on this technique are mainly differentiated
by the way of transition between the global and focus regions [19].
Vizster [15] proposes methods involving a network topology that
is able to display the full detailed network of the focus nodes
and the remainder of the network at increasing coarse resolutions.
Stackzooming [18] provides an interactive way to show several
parts of data at different levels of detail, but the separated views
can hinder preservation of the user’s mental maps for the separate
regions of data. Our MSH technique allows for users to magnify a
distribution range of interest while preserving an awareness of the
whole distribution without an additional view and visual distor-
tion. To the best of our knowledge, this is the first work designed
to support multiple scales of a histogram.

Background

The SNS at ORNL is a unique Department of Energy (DOE)
user facility. Researchers from across the globe visit the SNS
to execute their neutron scattering experiments for scientific re-
search and industrial developments using the most intense pulsed
neutron beams in the world. The researchers then analyze the
acquired experimental data using several scientific data visualiza-
tion tools. Given the expense and limited time for SNS experi-
ments, the researchers need an effective and straightforward tool.
Although the existing tools are powerful, the scientists of SNS
have stated that the limitations of the scientific data visualization
tools hinder the discovery of new insights which can lead to scien-
tific breakthroughs. For example, color mapping usually requires
a trial and error process in their typical approach. Nevertheless,
the SNS researchers often state that uncovering significant pat-
terns in their data mainly hinges on finding the right color map-
ping. This situation has motivated our investigations.

https://neutrons.ornl.gov/sns
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Process Overview

This design study was conducted over a period of ten
months. The overall goal of this study was to support the SNS re-
searchers in performing visual analysis of their experimental data.
For this goal, we collaborated with expert physical scientists at
the SNS facility. One of the scientists, who is also a co-author of
this paper, leads development activities related to visual analysis
of neutron scattering data and he was actively involved in plan-
ning and conducting this study. We follow the standard design
study approaches [26, 35]. Our study was driven by understanding
and characterizing the challenges in the visual analysis process of
neutron scattering experimental data. This problem-driven design
process was organized in three stages: problem characterization,
initial design and formative evaluation, and iterative design.

Problem Characterization: We began by meeting with sev-
eral active researchers at SNS to gain a better understanding of
their needs and the details of their analytic tasks. Also, we met
with senior-level researchers to get a wide and high-level of their
research goals. Through iterative discussions with these domain
experts we determined which challenges we should focus on and
devised an appropriate action plan for solving the challenges. Our
discussions involved visits to their workplaces to observe them
performing data analysis tasks which helped us gain a better sense
of their goals and the characteristics of their data. We then ab-
stracted the tasks and derived design requirements for visual anal-
ysis. The characterized problems and design requirements are dis-
cussed in detail in Section, Problem Characterization.

Initial Design and Formative Evaluation: We designed
and implemented a prototype based on the identified design re-
quirements. In this phase, we also held regular meetings with the
researchers to brainstorm, elicit requirements, and discuss proto-
types and ideas. Our SNS collaborators also hosted a hackathon
event for scientists and engineers outside of ORNL who work on
neutron scattering data visualization. We presented and demon-
strated our prototype at the event to gather more feedback on our
initial design. The hackathon participants provided constructive
feedback which translated into new needs and requirements for
our work. The initial design and the formative evaluation results
are reported in Section, Initial Design and Formative Evaluation.

Iterative Design: We iteratively refined and improved the
prototype based on the results of the formative evaluation. In the
beginning, many ideas and features were proposed, but we ruled
out some features and decided to focus on the most important
ones through discussions with our collaborators. The final design
is discussed in Section, Iterative Design.

Problem Characterization

The goal of the problem characterization phase is to under-
stand data, identify and abstract tasks, and formulate design re-
quirements. Although we focus on specific aspects of the data and
the tasks related to their visual analysis process, it is difficult for
visualization researchers to fully understand such neutron physics
data, theories behind, and specific analysis tasks. Through our
regular discussions of specific concepts with the physical scien-
tists, we gained a better understanding and applied this knowledge
to the prototype designs. Also, by incorporating an expert scien-
tist in our design team, our efforts were grounded in actual data
analysis challenges and we could leverage his expertise to ensure
scientific accuracy.
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Figure 3. Histogram of a slice data of neutron scattering 3D volume and the
colored slice image (upper right). The slice data are mapped by the colors
vertically below of the DCSB. Color mapping is initially suggested based on
the quartiles of data.
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Figure 4. Histogram of the slice data of another part in the same neutron
scattering 3D volume data and the slice image. The data distribution and the
range of values are much different from the data in Figure 3

Data description

The SNS produces neutrons with an accelerator-based sys-
tem, where neutrons are produced by a process called Spallation.
Researchers from diverse disciplines, such as physics, chemistry,
and materials science use SNS neutron scattering instruments to
determine complex crystal structures that are described by unit
cells with tens to millions of atoms. Experiments generate data
sets that are large, multi-dimensional, and involve complex trans-
formations. The size of data files produced in a single experiment
may vary from hundreds of megabytes to hundreds of gigabytes,
with a typical file being about ten gigabytes. Depending on the ex-
perimental configuration, billions of neutron events are measured
and transformed into scientifically relevant dimensions, three of
which are related to the spatial location (x, y, and z), 3D data
and each location has its energy intensity value [27, 20]. SNS
researchers visualize and analyze this 3D data for determining
structures of their materials. Figure 1 (b) shows an example of
the 3D visualization. In this paper, we focus on this visual analy-
sis task of the data.

Task Analysis
First, SNS researchers extract a slice by specifying a 2D
plane (see the green plane in Figure 1 (b)), which is intersected
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with the 3D volume. Usually, the 2D energy slice is orthogonal
to either the X, y, or z-axis. As shown in Figure 1 (a), the slice
extraction yields a 2D array of values that are visually encoded
as colored pixels in an image. The discovery of important pat-
terns and structures in neutron scattering experiments hinges on
selecting a right slice and applying an appropriate color scheme
that maps the range of colors to the range of values. In both tasks,
the background knowledge and intuition of the researchers are
the primary drivers for finding interesting slices and patterns in a
slice.

At the initial stage of this study, we focused on the first task,
slice selection. We developed interactive data visualization tech-
niques that leverage multi-touch interactions on a high-resolution
display in a web-based prototype [37]. The goal of these tech-
niques was to increase the efficiency of the volume slicing opera-
tion. After that, we realized that the second task, finding optimal
color mapping is the most significant bottleneck in their analy-
sis process. Thus, we focused our attention on the second task,
finding optimal color mapping, which is the focus of this paper.

Finding Optimal Color Mapping: We monitored how the
physical scientists formulate their color mappings for a given data
set. After they select a specific volume slice, they then use a de-
fault color scale (often this is the rainbow color scale) to get the
colored slice image. Figure 2 shows a specific color mapping tool
used by the scientists. They type two values: min and max at
the input fields (see the bottom-right black rectangle in Figure 2)
which are mapped to the begin and end colors of a predefined
color scale respectively, and investigate the color mapping result
in the slice viewer at left. For this case, they are interested in spe-
cific “butterfly” patterns as shown in the slice viewer. After they
get a low-fidelity sense from the initial result, they repeatedly ad-
just the values until they are satisfied with the results. However, if
they do not have enough background knowledge of the data and
experience on this process, this trial and error process becomes
very time consuming and often stalls the analysis process. We
were inspired here and wanted to investigate methods to enable
faster color mapping design.

Design Requirements

The overall goal of finding optimal color mappings in the
visual analysis of neutron scattering data is to clearly reveal im-
portant structures and patterns in the imaged data from some
material. To achieve the goal, multiple requirements should be
achieved. We identified four design requirements below in our
problem characterization phase. After our formative evaluation,
we identified new design requirements.

e RI1. Discovery: Color mappings must support the discovery
of specific hidden patterns and shapes through the visualized
2D slice image in a manner similar to the pattern shown in
Figure 1 (a).

o R2. Identification: Color mappings must quickly assist
in the identification of the values of specific patterns and
shapes areas.

e R3. Flexibility: Color mapping should be flexible enough
to support multiple scales because the experimental data sets
are characterized by extremely varying value ranges.

e R4. Effectiveness: Color mapping should be highly effec-
tive to achieve the three requirements above. While it is nat-
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ural to require effectiveness for visual analysis, the existing
tools significantly lack this requirement.

Initial Design and Formative Evaluation

In the initial design phase, we prototyped an initial version of
our tool based on the previously mentioned design requirements.
To evaluate the prototype and evoke more feedback on it, we pre-
sented and demonstrated to many potential users during a SNS-
sponsored hackathon event. We then extracted new requirements
from the feedback we gained during the event.

Dynamic Color Mapping

For data analysis, color is widely used for data interpretation
and visualization. A good color mapping, therefore, is essential to
understanding data, discovering knowledge, and accurately com-
municating information. However, finding optimal matching be-
tween color and data is challenging. An optimal color mapping
is also varied depending on the visualization tasks, such as em-
phasizing extrema, identifying clusters, and finding patterns [28].
Therefore, an effective apprach is required to determine color
mappings according to the objective of analysis—what they want
to see in the data. Also, the definition of an appropriate way of
mapping data to a color scale is complicated by the fact that there
is no perfect method that produces a single “best” partition of data
ranges into colors. There are recommended methods based on the
statistical distribution of data, such as min/middle/max, quartiles,
and quintiles, which also have certain advantages, but such pre-
defined methods cannot guarantee optimal results [2]. Also, even
if there are domain specific standards and conventions, there are
no required rules in most cases. The reason behind our design
decision is that the scientists want to arbitrarily assign colors to
data according to their understanding of the data, the data char-
acteristics, and the questions of their interest in the data (R1-R3).
Therefore, we designed the DBSC and MSH techniques to enable
a flexible, intuitive, and effective way for finding an appropriate
color mapping to fulfill the requirements (R4).

The histogram (Figure 3) shows the value distribution of a
slice of a 3D neutron scattering data. A color scale bar is placed
below of the histogram. We call the color scale bar as with the
DCSB technique. Here, we use a diverging color scale (blue, red,
and yellow at the start, middle, and end respectively). Diverg-
ing color scales usually have a higher perceptual resolution than
sequential color scales and visually divide the scalar values into
three logical regions: low, middle, and high. The high perceptual
resolution and the regions provide more visual cues that help to
interpret data [24]. Each data value in the histogram is mapped to
the color vertically below of the DCSB. For both outer ranges of
the bar, we use both edge colors (blue and yellow) respectively in
this mode, but it is also possible to have only the values covered
by the DCSB are colored by the color scale. The image (see upper
right in Figure 3) shows the resulting colored slice image after ap-
plication of the current color mapping. As we mentioned earlier,
the existing tools have done color mapping using matching min
and max values of the data to the color scale. However, as a result
of our monitoring, starting with this method often did not help
enough in finding the optimal color mapping. We have observed
many cases where the efficiency of the task varies greatly depend-
ing on how the scientists start with the color mapping. Thus, we
suggest an initial color mapping based on the quartiles of data to
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Figure 5. Users can resize and move the DCSB (a,b), and isolate a specific region of their interest (c) to find the optimal color mapping according to their
analysis objectives. Each upper left rectangle displays the slice by the corresponding color mapping.

guide users to increase its efficiency. The left and right edges of
the DCSB (bottom) in Figure 3 corresponds to the first and third
quartiles of the data respectively. The slice image (upper right)
displays the results of the initial color mapping. The scientists
stated that this mapping suggestion significantly improves the ef-
ficiency of their work, especially when the user has low back-
ground knowledge of the data.

DCSB is designed to dynamically map a color scale to data
using straightforward point, click, and drag interactions. Users
can adjust the horizontal length of the DCSB by dragging either
left or right edges and move its location by sliding it horizontally.
As shown in Figure 5 (a), the extended DCSB shows more contin-
uous patterns over the larger region than the one in Figure 3 (R1).
In Figure 5 (b), shrinking and moving the DCSB discriminates the
two parts corresponding to the left (blue) and right (yellow) sides
of the bar. This capability can help identify the specific shapes
in the slice (R1). Also, users can make specific regions visible
while masking others using a single color (i.e., gray) as shown in
Figure 5 (c) where only the values that are covered by the DCSB
are colored by the color scale. So, users can isolate specific parts
within the value range by concealing the other parts (R1 and R2).

The histogram (Figure 4) shows the distribution of another
slice data in the same experimental data. The range of values is
much different from the one in Figure 3. While the first and third
quartiles of the histogram in Figure 3 are overall 3 and 5.5 re-
spectively, the ones of the histogram in Figure 4 are overall 100
and 200. When they move their attention from the first slice (Fig-
ure 3) to the second slice (Figure 4), they can not reuse the first
color mapping as it fits the first slice. So they need to find the
new color mapping for the second slice again. By adjusting the
DCSB, they can ad easily find the desired color mapping for the
second slice (R4). As the user manipulates the display settings
and sees the visualization change, their understanding of the data
improves. At the same time, the color mapping transforms into a
more suitable configuration for finding important features in the
underlying data. This dynamic manipulation interacting with the
data by using the control devices engages visual sense, seeing the
representation change in response and then contributes to the un-
derstanding of the data and finding the optimal color mapping.

Multi-Scale Histogram

Knowing a frequency distribution of data (histogram) en-
ables users to better understand and determine the color mapping
for the data [3]. Also, the color mapping becomes a tool for in-
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Figure 6. Histogram scale size. A large scale size shows the overall shape
of the data distribution (top) while a small scale size is appropriate to repre-
sent the detail of the underlying distribution (bottom).

teractively exploring data by increasing or decreasing the value
range corresponding a specific color or allocating more colors to
the range for segmenting it into small parts. In fact, the scien-
tists did not pay much attention to the histogram of the data val-
ues for the color mapping before we started this study. However,
after they saw our DCSB, they gained interest in the frequency
distribution information that the histogram provides. Also, they
were interested not only in the histogram of one slice data but
also in the histogram of the entire 3D volume data as shown in
Figure 1 (b). For experimental purposes, we produced those two
histograms and then superimposed them as shown in Figure 8 (a).
The gray color histogram bars represents the entire data, and the
green color bars are for the slice data as shown in the enlarged
region (1). The histogram of the entire 3D data set is severely
skewed right, which has a considerably longer tail on the right
side. While the vast majority of the data is concentrated at the
head of the distribution, the histogram fails to reveal the detail of
the majority. Also, the difference in the (vertical and horizontal)
scales of both histograms is extremely large. Figure 8 (b) shows
the histograms of the same data using a smaller bin size than the
previous one. Here we see that increasing (a) or decreasing (b)
the bin size does not address this issue.

The basic idea behind standard histograms is that the area of
each bar represents the fraction of a frequency (probability) distri-
bution. However, a histogram is not a mathematical formula but
one of the popular visualization techniques to show a data distri-
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Figure 7. Visual status changes of MSH and DCSB from (a) to (c) by user interactions. Gray and green bars show the distributions of entire data and a slice
data respectively. Finally, the histogram (c) shows the detail of the slice data and retains the overall context.
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Figure 8. Using either large (a) or small (b) bin sizes of a histogram still

does not guarantee good visibility of the detail of the majority.

bution. There are no definitive rules about how to bin data or how
to define axes. These decisions are left entirely to the designer.
Defining x-axis scale (bin size) and y-axis scale (frequency) of a
histogram is a critical step for producing the histogram since the
scale determines what distribution features of data shown. A stan-
dard histogram supporting only one scale for each axis has limita-
tions in showing different distribution features of data in the same
visual space. For example, Figure 6 shows two histograms which
look very different but encode the same data. The scale size of the
upper histogram is 2, and the bottom histogram is 0.2. Although
the upper histogram is good at representing the overall shape of
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the data, it fails to show the detail of the underlying distribution
since the bin size is too coarse. The increased resolution of the
bottom histogram shows the detail of the distribution, but the bar
height at each bin suffers from large fluctuations. Containing ele-
ments that have extremely different values, some elements would
be invisible when shown on one scale for a specific abstraction
level. Chuah et al. [7] introduce a visualization design paradigm
called selective dynamic manipulation (SDM) that seeks object-
centered selection and direct object manipulation (e.g., scaling)
through user control. Many interactive visualization systems in-
herently support this paradigm. Based on this concept, we de-
signed a specific histogram to support multiple scales showing
both an overall shape of a distribution (context) and details of a
specific region of interest (focus). We keep the local focus spa-
tially located within the global context.

The MSH technique is designed to enable multiple scales
(resolutions) on both the frequency and bin size axes rather than
using one uniform scale. This approach allows the user to see the
detailed distribution of a range of interest while retaining aware-
ness of the entire distribution overview. We create the histogram
of both an entire 3D and a slice data and then superimposed them
in Figure 7. The series of the histograms in Figure 7 illustrates the
visual status changes of a histogram through a sequence of user
interactions. The gray color histogram bars represents the entire
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Figure 9. With the discrete DCSB technique, users can dynamically adjust
the color stops (black lines) in addition to the features of the DCSB. The
specific shapes in the middle of the slice image are clearly distinguished
from other outer regions.

3D data, and the green color bars are for the slice data. The top
histogram of the entire data is severely skewed right, which has a
considerably longer tail on the right side. While the vast major-
ity of the data is concentrated at the head of the distribution, the
histogram fails to reveal the detail of the majority.

First, the user brushes the range [0, 25] (a) along the x-axis
in the histogram (top) and then the user horizontally extends the
brush by dragging the right edge of the selected range. The ex-
tended space shows the concealed detail pattern inside the range
in the histogram (middle) where the bin size of the focus range
[0, 25] is 0.2, and the other range [25, 700] is 10. The width of
DCSB component is also adapted to the extended space. Figure 7
(1) shows the zoomed region in the black rectangle in the his-
togram (b). However, the value distribution for the selected slice
is still not clearly visible. Next, the user brushes the range [0, 1k]
(b) along the y-axis in the histogram (middle) and then vertically
extends the brush in the same manner as above. The brushed re-
gion (bottom side) of the histogram (bottom) is scaled into the
interval [0, 1k] and the other region (upper side) is [1k, 30k]. The
resulting histogram (bottom) clearly shows the value distribution
of the slice and maintains the overall distributions of other ranges
in Figure 7. If the newly added scale is still not enough to view
the distribution, the user is able to add more scales in the same
manner. Also, the user can control the DCSB component under
the histogram (bottom) while looking at the slice data and the
detailed majority of data. Even if the DCSB is placed between
two different scales, the same way is applied. Collectively, the
combination of DCSB and MSH improves the task of finding the
optimal color mapping. The final representation without any high-
lights is shown in Figure 1.

Formative Evaluation

To gain more feedback on the initial design, we conducted
a formative evaluation in conjunction with a SNS-sponsored
hackathon event which included experts external to ORNL. The
hackathon participants included scientists who work on neutron
scattering science and engineers who develop scientific data visu-
alization tools. The participants all had extensive practical experi-
ence with neutron scattering data visualizations. We presented the
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Figure 10. Users enlarge the rectangular region of interest (black rectan-
gle) within the 2D slice image (left) and visualize it in the focus view (right).
The histogram (bottom green color) represents the value distribution for the
focused region instead of the one for the entire region of the slice.

underlying ideas of the design and demonstrated our prototype to
these potential users during the event.

One interesting fact is that the participants have very simi-
lar problems with our collaborators. Like the SNS scientists, they
stated that finding the right color mapping is time consuming but
absolutely critical. For these reasons, the scientists were very in-
terested in the techniques and gave us positive feedback on the
key capabilities of the prototype. The participants recognized
that they should look at histograms more for finding an optimal
color mapping in their analysis process and seemed committed
to adopting our approach. This situation was similar to when we
first showed the DCSB technique to our SNS collaborators. Also,
some of the scientists stated that the initial color mapping sugges-
tion that uses the quartiles of data would be very helpful. They
agreed that the feature would save time and assist users in find-
ing the optimal color mapping. However, a few of them did not
understand our MSH technique. It was not easy for those famil-
iar with the traditional histograms to understand the novel feature,
as is often the case when practitioners are introduced to new vi-
sual representations. Based on our experience, training through
hand-on experience and incorporation of suggestions from scep-
tical users often alleviates such initial reactions while increasing
adoption rates. Also, they stated that the MSH would not be nec-
essary in all cases, but it would be useful if the data has elements
that have vastly different values.

The feedback we gained during the hackathon event was
constructive and informed us of their new needs. We extracted
new requirements from the feedback. We identified three new
requirements that were carried out as part of the formative evalu-
ation:

e rl. Classification: Some participants stated that we should
also consider the case of classifying the slice into multiple
regions using specific values to clearly discriminate particu-
lar shapes from others rather than continuous patterns over
a large region.

e r2. Focus: They often zoom in on a specific region to see
the details of the region in their analysis process. However,
they have to tailor the color mapping again to see the details.

e r3. Multi-Slice: We realized that one of the significant limi-
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Figure 11. Multi-Slice View. Users are able to extract one more slice from
the 3D volume and import it into the histogram to compare them.

tations of existing tools is that they allow only one slice view
at the same time. The participants stated that the ability to
compare two or more slices would be very useful.

Iterative Design

In this iterative design phase, we refined and improved the
prototype based on the new requirements identified by the for-
mative evaluation. Many ideas and features were proposed in
the evaluation phase. After discussion with our SNS collabo-
rators, we decided to add the following new features following
the new requirements: discrete DCSB (rl), focus view (12), and
multi-slice view (r3). However, we excluded some features, for
example, multiple DCSBs and a color histogram (coloring the
bins of the histogram). ColorMoves [31] uses the similar vi-
sual metaphors as multiple DCSBs and a color histogram. Using
multiple DCSBs was proposed for better classifying or providing
more perceptual detail. When using multiple DCSBs, however,
additional interactions arise. Multiple color scales may impose a
cognitive overhead as the visual complexity increases. Therefore,
we thought that for one DCSB, using a color scale with more col-
ors or a discrete color scale rather than a continuous color scale
was more useful. Using a color histogram in which the bins in
the histogram are colored by the given color scale can increase
the continuity between the data and the color scale. On the other
hand, it has a disadvantage: some colors may appear in the slice
image but the corresponding bins for those colors are too small to
appear in the histogram. This situation can make data interpreta-
tion confusing.

Discrete DCSB

‘When we choose a color scale, we need to consider the char-
acteristics of data (e.g., spatial frequency) and the purpose of the
task (e.g., classification or identification) to increase the effec-
tiveness of conveying information [29]. Using continuous (gra-
dient) color scales or using more colors does not guarantee an
optimal result. While controlling the color stops in a continu-
ous color scale may be helpful, discrete color scales enable better
identification, localization, and discrimination between data val-
ues [42, 36, 13]. Healey [14] proposes a systematic method for
choosing effective colors where seven or less colors are optimized
based on user studies.

Based on the experimental evidence and the new requirement
(r1), we implemented a new feature, called discrete DCSB, that
uses a discrete color scale instead of a gradient color scale. An
example of the discrete DCSB is shown in Figure 9 where we

IS&T Infernational Symposium on Electronic Imaging 2019
Visualization and Data Analysis 2019

10+2 me!

| 0 1 2 -1 0 1 2 - [)
Hrlu) Hrlu) H(r.lu)

Figure 12. A series of energy slices by neutron scattering experiment [6].

use a diverging five-color scheme. Users are able to dynamically
adjust the locations of color stops (black lines) in the bar and also
change the size and the location of the bar in the same manner
as the DCSB. We make the white color narrow and adjust other
color stops and both edges of the discrete DCSB to discriminate
between specific patterns (small circles at the center of the slice)
and other outer regions.

Focus View

We realized that the physical scientists often enlarged a spe-
cific region and looked at the details of the region to find a specific
pattern or shape. Although existing tools provide this feature, the
issue is that they need to change the color mapping again to see
the details in the specific region since it is fitted to the entire re-
gion. In addition to this issue, the global context disappears when
zooming in on a specific region. To address these issues, we ap-
ply a technique based on detail + overview [17]. Users are able to
select a rectangular region of interest (black rectangle) within the
2D slice image (left) as shown in Figure 10. An additional view
(right) appears for displaying the details for the region of inter-
est while the slice viewer (left) still showing the global overview
(left). Then, we show the value distribution for the focused region
(bottom green color bars) in the histogram instead of the one for
the entire region of the slice. In addition, the DCSB is aligned
with the initial suggestion based on the quartiles of the values.
Then, they can also modify the suggested color mapping based
on the histogram of the focused region using the DCSB. Note that
the slice and focus viewers are not in the histogram in the actual
system. For the DCSB, we use the discrete version to reveal the
separation of the details.

Multi-Slice View

As mentioned in requirement r3, scientists conducting neu-
tron scattering experiments are interested in investigating multiple
energy slices to see the evolution of phenomena with increasing
energy. For example, the sequential slices show how the small cir-
cles in the middle gradually grow, how they form a ring, and how
it finally disappears in Figure 12. Their existing tools, however,
do not support multiple slice views. To mitigate this issue, we
improved the prototype to allow the scientist to view two slices at
the same time. They are able to extract two slices (red and green)
from the 3D volume in Figure 11 (c). Then, they can import the
two slice datasets into the histogram where each histogram is col-
ored in the same color as the slice to maintain the cognition con-
tinuity. The width size of the bins for the slices is the half of the
ones of the global context histogram (gray), and the bins lie side
by side. The red slice is visualized in the left viewer (a) and the
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green one in the right viewer (b) in Figure 11. The color mapping
is applied in the same manner according to the DCSB.

Case Study

In this section we demonstrate how our visual analytics de-
sign can help physical scientists in finding optimal color mapping
for other neutron scattering datasets. We postulate that our tech-
niques will reduce knowledge discovery time cycles, increase the
efficiency of scientific data analysis, and have broad applications
to other scientific domains. Therefore, we also discuss how our
tool would applied to other data and problem contexts.

Bragg Diffraction Data: We apply our techniques into an-
other type of neutron scattering data called Bragg Scattering. For
this case, we use the discrete DCSB because the major goal of the
task is to identify a specific phenomenon which is described in a
specific crystal structure. The initial slice view (top right) gener-
ated by a suggested color mapping gives a user visual hints for
the desired structure and then control the MSH, making the slice
part (green) visible at the top row in Figure 14. The user then ad-
justs the DCSB to see the structure clear in the slice view (bottom
right) at the bottom row in Figure 14.

Inelastic Scattering Data: Inelastic scattering data contains
an additional dimension corresponding the energy gained or lost
by the scattered neutron. Scientists want to discover specific
curves along many directions. These curves are like a fingerprint
describing the microscopic electronic and magnetic interactions
inside the material. Using the DCSB and the histogram of the
entire 3D volume data identifies the shape and intensity of these
curves shown in the 3D volume view (top right) in Figure 15.
They gain an initial insight from those and extract a slice to in-
vestigate the curves in the 2D plane. They then add one more
scale into the MSH and adjust the DCSB again to see clear curve
patterns (bottom right) in Figure 15.

Ozone Data: We use ozone data as an example dataset other
than neutron scattering data. Each data element contains a total
column ozone amount and a measuring location (latitude, longi-
tude). The tree histograms in Figure 13 shows the distribution of
same ozone amounts measured for the southern hemisphere of the
Earth. The ozone amount is represented as a Dobson Unit (DU).
The unit of the x-axis is DU. The color mappings are different
according to the DCSBs placed underneath of each histogram.
For both outer ranges of the bar, we use both edge colors (blue
and red) respectively. According to the color mappings, each cir-
cle heatmap (upper right) visualize ozone amount of the south-
ern hemisphere of the Earth. The blue color indicates where the
amount of ozone is low, while the red color indicates the high area.
The long DCSB (Figure 13 (a)) enables the smooth color scale
that is good for showing more continuous pattern over the larger
area, while the short DCSB (Figure 13 (b)) is good for isolating a
specific area and showing the detail of the area (more colors used
in a small area). In Figure 13 (c), we apply a discrete DCSB to the
same data. The pink colors indicate where the amount of ozone
is low, while the green colors indicate the high area. The average
ozone levels over the entire globe is 300 DU, and the values lower
than 220 DU are considered parts of a ozone hole. The values
lower than 220 are indicated in dark pink, the values higher than
300 are indicated in bright and dark green. Therefore, the cate-
gorical heatmap clearly shows where the ozone hole (dark pink)
is and where it is in the normal range.
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Discussion

One of the most interesting facts we found in this study is
that interactive visualization can involve in many domains deal-
ing with data in any form and plays an important role in problem-
solving in the domains. The important thing that we need to well
understand the task and data of that domain and also to ensure that
the domain people understand the underlying ideas and analysis
pipeline of visual analytics. In this process, we should present as
many design choices as possible and discuss them. We propose
a method is that propose some existing visualization techniques
that are likely to be suitable for solving their problems, discuss the
techniques with them, select some techniques before starting with
designing a completely new visualization method. Then, start new
designs based on the selected existing techniques to be optimized
for the problem. This is because they usually do not have enough
experience and knowledge about visualization. We realized that
they have some issues that can be addressed through existing vi-
sualization techniques, without specially customized ones. They,
however, had insufficient information of what kind of visualiza-
tions are available and appropriate for their problems.

The initial color mapping feature may cause a cognitive bias
called the anchoring effect, where users are anchored to the initial
view they begin with. When making decision, humans tend to
be are heavily influenced by the first piece of information (the
anchor) they have seen. For example, the initial view offered for
a color mapping sets the standard for the rest of the mappings,
so that views better than the initial view seem optimal even if
there are other better views. As a future work, we will be looking
for ways to reduce such anchoring effect, for example through
visualization designs or statistical methods.

We found two limitations of the MSH. First, the multiple
scales of MSH can cause misinterpretation of data when compar-
ing the bins belong to different scales. For example, the frequency
does not increase at the value 25 in the histogram (b) as the value
increases in Figure 7. Since the unit size of bins at the right side of
the value 25 is larger than the left side, the frequency is increased.
We will investigate the ways to reduce the misreading problem.
Also, if the user adds more scales into the MSH, the visual and
scale complexity increases, making it difficult to interpret the his-
togram correctly. Therefore, we will improve the MSH to enable
adjusting the existing scale to the desired focus and global context
regions.

Since the scientific tools the SNS scientists currently use
have a strong computation power and a wide range of features,
they cannot be replaced with our proposed tool. Even, this is not
the goal of this study. However, we should consider finding a bet-
ter solution by using those two different tools together. We and the
scientists brainstormed how to integrate our proposed techniques
with the existing tools. One of the candidate ideas was exporting
the color mapping and then importing it into the tools they use to
support optimal color mapping design.

Conclusion

We have presented a design sturdy on applying interactive
and task-centered visual analytics to finding an optimal color
mapping in neutron scattering data analysis. Through iterative
discussions with domain experts on every phase, this study was

https://en.wikipedia.org/wiki/Anchoring
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Figure 13. Visual status changes of MSH and DCSB from (a) to (c) by user interactions. Gray and green bars show the distributions of entire data and a slice
data respectively. Finally, the histogram (c) shows the detail of the slice data and retains the overall context.

Figure 14. Bragg diffraction data. The initial slice view (top right) provides
visual hints for the desired structure, and adjusting the DCSB enables the
clear structure (bottom right).

conducted in multiple phases: problem characterization; initial
design and formative evaluation; and iterative design. Also, we
have introduced two new techniques: DCSB and MSH for im-
proving color mapping design. DCSB provides a highly interac-
tive and intuitive way of mapping data to a color scale. MSH
enables multiple scales on a histogram for effective data distribu-
tion exploration. The combination of DCSB and MSH improves
the task of finding an optimal color mapping. Our visual analytics
tool was successful in improving neutron scattering data analysis
carried out by the domain experts.
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