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ABSTRACT

We propose novel deep learning based chemometric data
analysis technique. We trained L2 regularized sparse autoen-
coder end-to-end for reducing the size of the feature vector to
handle the classic problem of the curse of dimensionality in
chemometric data analysis. We introduce a novel technique
of automatic selection of nodes inside the hidden layer of an
autoencoder through Pareto optimization. Moreover, Gaus-
sian process regressor is applied on the reduced size feature
vector for the regression. We evaluated our technique on or-
ange juice and wine dataset and results are compared against
3 state-of-the-art methods. Quantitative results are shown on
Normalized Mean Square Error (NMSE) and the results show
considerable improvement in the state-of-the-art.

Index Terms— Chemometric data,sparse autoencoder,
Gaussian process regressor, pareto optimization.

1. INTRODUCTION

Chemometrics or multivariate data analysis is the science
which applies statistical and mathematical methods to pro-
cess the data obtained through spectroscopic techniques, in
order to derive information of interest. The need for chemo-
metric analysis comes from the development of analytical
instruments and techniques that are capable of producing
large amount of complex data. Data collection through spec-
troscopic technique is based on interaction of light energy of
variable wavelength with samples under test [1]. The ability
of a sample to absorb or transmit light energy is recorded in
terms of values throughout a selected bandwidth of electro-
magnetic spectrum. Whether it be food, pharmaceutical or
textile industry, concentrations of chemical components of
interest in samples are estimated through chemometric anal-
ysis. Spectroscopic data often comprises of more spectral
features or variables than the samples or observations. This
not only creates curse of dimensionality issue but also the
consecutive variables in a spectrum are highly correlated in
nature, that is, some spectral variables can be represented as
linear combination of other independent variables. The work
of Bertrand et al. [2] and Sutter et al. [3] have shown that
existence of such high collinearity between the spectral vari-

ables can result in inaccurate predictions. It is problematic to
apply directly statistical methods due to high collinearity, like
multiple linear regression (MLR) in [4–7].

In order to deal with data dimensionality and data redun-
dancy, different works have been proposed in literature [8].
Most of the previous work suggests reducing the number of
variables or features to cope with curse of dimensionality
problem, thus allowing to get more accurate results through
regression techniques. The feature reduction can be generally
achieved in two different methods. The first one contains
selecting the most relevant features based on a chosen crite-
rion from the original set of features [9–12], while in second
case the original features are transformed from one space
to another in such a way to keep the reconstruction error as
minimum as possible. This transformation of features set
from one space to another can either be linear or non-linear
depending upon the scope of application. The examples of
later method are Principle Component Regression [13] (PCR)
and Partial Least Square Regression (PLSR) [6]. PCR is
composed of simple linear regression model based on few
principle components of the original spectral data. While
PLSR focuses on calculating the linear projections that shows
maximum correlation with the output or target variable, thus
estimating a linear regression model determined by the pro-
jected coordinates. Benoudjit et al. [10] proposed linear and
nonlinear regression methodologies which are based upon an
incremental routine for feature selection and using a valida-
tion set. In [11,12] different techniques have been introduced
to improve the results of previous method by choosing the
best feature set for initializing the routine and finding a fea-
ture selection strategy that depends entirely on the shared
information between spectral data and target variable. An
interesting approach to the chemometrics problems has been
discussed in [14], where instead of traditional feature reduc-
tion approach, the whole information in spectral data space is
exploited by using Multiple Regression System (MRS). Sim-
ilarly, Douak et al. [15] come up with two stage regression
approach that is based on residual-based correction (RBC)
concept. Their basic idea is to correct any adopted regressor,
called functional estimator, by analyzing and modeling its
residual errors directly in feature space. The results obtained
from MRS technique outperform the ones obtained through
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Fig. 1: (a) Data collection through spectrophotometry. (b) Spectral signature. (c) Feature reduction through autoencoder neural
network. (d) Gaussian process regressor for estimating chemical parameter of interest.

traditional feature reduction techniques such as PCR and
PLSR [6, 14].

Compared to these approaches, we proposed an automatic
deep learning based feature extraction technique. In the last
few years, deep learning has shown outstanding results on a
variety of computer vision problems like tracking [16], video
summarization [17], crowd analysis [18, 19], segmentation
[20,21], and anomaly detection [22], to name a few. In a nut-
shell, deep models learns hierarchical features [23] and have
the capability to learn the structure of the underlying data. In-
spired by this, we designed an autoencoder neural network
[24] for removing redundant and irrelevant features from the
spectral data. It is an automatic feature extraction technique
that is capable of linear and nonlinear feature extraction based
upon the selection of parameters of the architecture. Pareto
optimization technique is applied in order to choose the best
architecture (in terms of model complexity) of autoencoder
for the feature extraction. After extracting meaningful fea-
tures from the original feature set, we exploited Gaussian pro-
cess regression to solved our regression problem.

The rest of the paper is organized in the following order.
In the section 2, we explain our proposed method. In section
3, we present autoencoder training and parameter optimiza-
tion. Section 4 illustrate our baseline regressor. In section 5,
quantitative results are presented and section 6 concludes the
paper.

2. PROPOSED APPROACH

We focus on estimating sugar and alcohol concentration in
orange juice and wine datasets. The whole pipeline can be
seen in 3 discrete steps. In the first step, date is acquired
from the liquids through near infrared (orange juice data set)
and mid infrared (wine dataset) reflectance spectroscopy tech-
nique Fig. 1(a,b). In the 2nd step, the acquired data is pro-
cessed through auto-encoder neural network for feature re-
duction Fig. 1 (c) and then in the last step, Gaussian process
regressor estimate the concentrations of mentioned compo-

nents Fig. 1 (d). The aim of autoencoder is to retrieve set
of features which are the best representation of original data
without redundancy. In the next section 3, the feature reduc-
tion step is explained.

3. AUTOENCODER

An autoencoder is a neural network that is trained to recon-
struct the input data into the output with minimum amount of
reconstruction error. They are designed in a way not to copy
the input but to learn important and unique feature of the in-
put data. Autoencoders are mainly used for pre-train deep
networks dimensionality reduction, feature learning and gen-
erative modeling of data. It is composed of two main parts,
input layer and output layer together with hidden layer con-
necting the two layers. The input layer has the same number
of nodes as the output layer. To build an autoencoder we need
encoding function at the input, decoding function at the out-
put and loss function to calculate the amount of information
loss between encoded representation and decoded representa-
tion of the input and output data respectively.

3.1. Encoder

It maps an input vector x ∈ Rn, into encoded representation
h(x) ∈ Rm. The typical form is affine mapping followed by
nonlinearity (eq. 1). The parameter is set Θ = (w, b) where
w is weight matrix of size mxn and b ∈ Rm is bias vector, f
is activation function.

hΘ = f(wx+ b) (1)

3.2. Decoder

It maps the resulting encoded representation h(x) back into
an estimate of reconstructed n-dimensional vector r ∈ Rn,
where

rφ = g(f(x)) (2)
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rφ = g(w′h+ b′) (3)

The parameter φ =
{
w′, b′

}
, wherew′ is weight matrix of

size is nxm, b′ ∈ Rn is bias vector and g is activation function
of the decoder. The autoencoder tries to learn a function rφ '
x , thus each training data x(i) is mapped to corresponding
reconstructed data r(i).

3.3. Loss function

Imposing sparsity constraint on the hidden nodes of an au-
toencoder enables the model to learn unique statistical fea-
tures of the data even when the number of hidden units are
larger compared to the feature space of the input data. A neu-
ron is considered active if its output value is close to maxi-
mum value of the activation function used (close to 1 for sig-
moid activation function) and inactive if its output is close to
minimum value (0 in case of sigmoid). The average activa-
tion of ith hidden unit ρ̂i (eq. 4), where n is total number of
inputs, xj is the jth training example and hi activation of jth

hidden unit is given as:

ρ̂i =
1

n

n∑
j=1

hi(xj) (4)

Choosing sparsity parameter ρ small (ρ=0.01) and impos-
ing ρ̂i = ρ constraint, Kullback-Leibler divergence term is
applied to penalize ρ̂i. Penalty value that diverges from ρ will
give reasonable result.

KL(ρ||ρ̂i) = ρ log(
ρ

ρ̂i
) + (1− ρ) log(

1− ρ
1− ρ̂i

) (5)

where KL(ρ||ρ̂i) is the Kullback-Leibler divergence be-
tween Bernoulli random variable with ρ mean and Bernoulli
random variable with mean ρ̂i. If ρ = ρ̂i, KL(ρ||ρ̂i) = 0,
else increases monotonically as ρ̂i diverges from ρ. Minimiz-
ing the KL divergence penalty term leads to ρ̂i to be close to
ρ. The overall loss function will be as the following:

L(Θ,Ω)= 1
N

∑N
n=1

∑K
k=1(xkn−rkn)2+λ∗Ωweights+β∗Ωsparsity

where Ωsparsity is sparsity regularizer and calculated as
eq. 6:

Ωsparsity =

m∑
i=1

KL(ρ||ρ̂i) (6)

Similarly, Ωweights is L2 regularization term. It’s task
is to avoid overfitting by penalizing the rate in which the
model reacts to changes in the training example distribution
and forcing the model to learn most significant features. It is
calculated as eq. 7

Ωweights =
1

2

L∑
l

N∑
j

K∑
i

(wlij))
2 (7)

where L is number of hidden layers, N is the number of
training examples and K is the number of features. In the
lost function, λ is coefficient for the L2 regularization term
Ωweights and β is the coefficient for sparsity regularization
Ωsparsity term.

3.4. Training

Once the model is setup, our goal is to minimize the cost func-
tion L(Θ,Ω) as a function of weights w and bias b. To train
our autoencoder neural network, we initialized each param-
eter w(l)

i,j ,and b(l)i each to a small random value near zero (

N(0, ε2) distribution for a small ε)), and then apply stochas-
tic conjugate gradient decent (SCG) algorithms to learn the
network parameters of autoencoder. Random initialization is
necessary, if all the parameters start off at identical values,
then all the hidden layer units will end up learning the same
function of the input.

3.4.1. Pareto Based Multi Objective Learning(PMOL)

The choice on model complexity and mean squared error
(MSE) are two trade-offs to optimize. As we increase the
number of hidden nodes MSE decreases. However, the in-
crease in the number of hidden-neurons might lead to overfit-
ting the data, thus decreasing the generalization performance
of the model. The goal is to find an optimal solution for
both model complexity and MSE that maximizes the model
performance. We exploited PMOL for estimating the optimal
number of parameters for our autoencoder. It uses vector of
objective functions and therefore number of optimal solutions
are more than one. Pareto front of optimal solution is a set
of non-dominated solutions, being chosen as optimal, if no
objective can be improved without sacrificing at least one
other objective. On the other hand a solution X is referred
to as dominated by another solution Y if, and only if, Y is
equally good or better than X with respect to all objectives.
Pareto based multi object optimization can be formulated as
eq. 8 with Q objective functions;

f(p) = [fi(p), i = 1, ....., Q] (8)

subjected to the equality constraints

gj(p) = 0 j = 1, 2, ..., J (9)

And the K inequality constraints

hk(p) ≤ 0 k = 1, 2, ...,K (10)

The aim is to find vector p∗ which minimizes f(p), in our
case since we have two objective function thus pareto based
bi-objective learning problem can be formulated to minimize
the two objectives, that is data fitting term and model com-
plexity term given by eq. 11

f1 = −L(E|Θ), f2 = γk log(L) (11)
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Methods Orange juice Wine

Douak et al. [15] 01574 0.0070

Benoudjit et al. [14] 0.2435 0.0052

Alhichri et al. [25] 0.32076 0.0034

Ours 0.1711 0.0042

Table 1: Quantitative results of our method against 3 state-
of-the-art methods. Numeric values shows Normalized Mean
Square Error (NMSE), the lower is NMSE, the better is per-
formance.

where f1 = −L(E|Θ) is data fitting objective function
and f2 = γk log(L) is model complexity objective function.
f1 is log-likelihood function that is found with a maximum
likelihood estimation algorithm. E = (ε1, ε2, ...εL) is a set of
multi-dimensional reconstruction error. Assuming the error is
multivariate normal distribution with Mean vectorM = 0 and
covariance Σ, then the distribution function is given by:

p(ε) = N(M,Σ) =
1

2π
√
|Σn2

f |
exp(−1

2
εTΣ−1ε) (12)

where the negative log-likelihood function will be repre-
sented by

−L(E|Θ) = log

L∏
i=1

p(εi) (13)

γ is a constant determined by a pareto optimizer, L is in-
put training sample size, k is the number of parameters of the
model to be estimated (weight and bias).

4. GAUSSIAN PROCESS REGRESSION

Gaussian process regressor (GPR) is a powerful non-parametric
technique with precise uncertainty model used in regression
problems. Instead of finding correct parameters to fit for
basis function, GPR focus on deducing the correlation in all
the measured data. A Gaussian process is a Gaussian ran-
dom function that is characterized by mean and covariance
functions, m(x) and k(x, x′):

f(x) ∼ GP (m(x), k(x, x′)) (14)

A detailed description GPR is beyond the scope of this paper.
Interested readers may refer to [26]. We used GPR in this
work because our data is non-linear and GPR fits very well
for our problem.

5. EXPERIMENTS

In this work we have used two spectrophotometric datasets,
coming from the food industry. The first dataset deals with
determining sugar content in the orange juice sample by near
infrared reflectance spectrometry [27]. The training and test
samples in the orange juice data are 149 and 67 respectively;
with 700 spectral variables that represents the absorbance
(log 1/R) between 1100nm and 2500nm. The value of R
represents light reflected by the sample. The concentration
of sugar ranges from 0% to 95.2% by weight in the sam-
ple. The second dataset deals with the determination of
alcohol content by mid-infrared spectroscopy in wine sam-
ples [27]. The training and test data sets contain 91 and 30
spectra, respectively, with 256 spectral variables that are the
absorbance (log 1/T ) at 256 wave numbers between 4000
and 400 cm−1 (where T is the light transmittance through
the sample thickness). Alcohol content varies from 7.48% to
15.5% by volume. No preprocessing has been performed on
the orange juice and wine datasets.

For the quantitative results, the accuracy of the approach
is represented in normalized mean square error (NMSE) met-
ric, which is define as:

NMSE =
1

Vtrain+test

M∑
i=1

(yitest − y′itest)2 (15)

where M represents the number of testing samples, yitest
and y′itest are the real and estimated outputs for the ith test
sample xitest and Vtrain+test is the combined variance of the
training and test output samples yitrain and yitest. The results
are listed in Table ??. It can be seen that our approach gives
good results on both the datasets compare to other state-of-
the-art methods.

6. CONCLUSION

We propose a novel deep learning based chemometric data
analysis technique for estimating sugar and alcohol concen-
tration in orange juice and wine samples. L2 regularized
sparse autoencoder is trained end-to-end for reducing the size
of the feature vector to handle the classic problem of curse of
dimensionality in chemometric data analysis. The optimal set
of parameters of the autoencoder are selected through pareto
optimization. And Gaussian process regressor is applied on
the reduced size feature vector for estimating the concen-
tration of sugar and alcohol in the corresponding samples.
The method is compared against 3 state-of-the-art methods.
Quantitative results are shown on Normalized Mean Square
Error (NMSE) and our approach shows better results on both
datasets. In future, we are planning to test our approach on
more datasets. Moreover, we are also planning to use stacked-
autoencoder for feature reduction. Furthermore, we would
apply different regressor like linear, support vector and ker-
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nel support vector regressor for estimating the corresponding
quantities.
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