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Abstract
Vehicle pose estimation is a vital technology for reconstruct-

ing the circumstaces of traffic accidents. We propose a novel
method for reconstructing the trajectory of vehicles from drive
recorder images and a point cloud around the road. First, we
apply ORB-SLAM to image sequence of the drive recorder for ob-
taining the vehicle pose trajectory; however this is based on rela-
tive coordinates and a relative scale. For estimating the absolute
coordinates and scale of the trajectory, which cannot be obtained
from a monocular SLAM like ORB-SLAM, we match the feature
points detected in the image sequence with the three-dimensional
(3D) point cloud of surrounding environment.

For finding 3D points matching the feature points, we gener-
ate candidate images by the rendering 3D point cloud of the sur-
rounding environment using the position initially estimated by the
Global Positioning System (GPS). Next, we match to obtain the
3D two-dimensional (2D) generated images and drive recorder
image to get 3D-2D point correspondences between the 3D point
cloud and the drive recorder images; thus, we can convert the
relative estimation of the camera pose by ORB-SLAM to the coor-
dinates of the 3D point cloud of the surrounding environment. In
the evaluation experiments, we confirmed the effectiveness of our
method by comparing the vehicle poses estimated by our method,
with those of RTKGPS, which exhibits high measurement preci-
sion.

Introduction
In recent years, along with aging, traffic accidents of el-

derly drivers and buses have occurred frequently, and there have
been many victims of such incidents. Therefore, in recent years,
driving support system [7, 9, 15], automatic braking systems for
accident avoidance [17, 6, 4], and automatic driving technology
[16, 19, 11] have been actively researched. For the practical ap-
plication of these technologies, the trajectory drawn by the vehicle
represents essential data.

The on-the-spot inspection of these accidents is currently
limited to the method of reconstructing the vehicle’s trajectory
based on the brake marks left on the road and the damage to the
surroundings. There are two problems with such approaches. One
is that the accident cannot be reconstructed accurately, as the sit-
uation is affected by the roads and surrounding conditions before
the accident. The other is that quantitative estimation results can-
not be obtained.

We propose a novel method of estimating the vehicle’s tra-
jectory from the drive recorder videos and high-precision LiDAR
point cloud to make practical use of these technologies for re-
alizing more accurate on-the-spot inspection. In our proposed

method, a drive recorder image sequence is input to the ORB-
SLAM [13] to estimate the vehicle’s trajectory. This trajectory is
a relative estimation in the coordinate system based on the ORB-
SLAM processing system [13]. However, in real on-the spot in-
spection and collection of trajectory data, it is essential to esti-
mate the vehicle’s trajectory on the real-world scale. That is,
it is necessary to match the LiDAR point cloud with the drive
recorder image. Thus, instead of directly calculating the relation-
ship between the three-dimensional (3D) LiDAR point cloud and
the two-dimensional (2D) drive recorder image, we generate can-
didate images by rendering the 3D point cloud of the surround-
ing environment using initially estimated position by GPS. Next,
we match those generated images and drive recorder images to
obtaind the 3D-2D point correspondences between the 3D point
cloud and the drive recorder images, so that we can convert the
relative estimation of the camera pose by ORB-SLAM [13] to the
coordinates of the 3D point cloud of the surrounding environment.

In the evaluation experiment, we applied the proposed
method to a drive recorder mounted on a vehicle traveling about
40 m. Regarding the position in the estimation results, we
compare it with the highly accurate Real Time Kinematic GPS
(RTKGPS), and for the posture, we generate the image from the
point group based on the estimation results and compare it with
the corresponding in-vehicle camera image to verify the accuracy.

Related Works
SLAM(Simultaneous Localization and Mapping) and

VO(Visual Odometry) are essential technologies for autonomous
driving. SLAM can be divided into RGB-D SLAM and
Monocular SLAM. The latter monocular SLAM and VO do
not require distance information and enable the camera trace
and 3D reconstruction with only RGB images. However, these
techniques have a disadvantage in that the scale can not be
uniquely estimated from only RGB images. Thus, to solve scale
uncertainty, Wolcott et al. [18] proposed a method of localizing
an autonomous driving vehicle in urban environments. Using
LiDAR intensity values, they render a synthetic view of the
mapped ground plane and match it against the camera image by
maximizing the normalized mutual information. Futhermore,
Caselitz et al. [5] addressed the scale uncertainty by taking
the optimization problem based on the ICP algorithm for point
cloud reconstructed by ORB-SLAM [13] and LiDAR point
cloud. Our method employs visual odometry to track the camera
trajectory via local bundle adjustment. For this purpose, we
rely on components of Stereo ORB-SLAM [13] presented by
Mur-Artal et al.. This is a state-of-the-art, open-source solution
for monocular SLAM that stands in a line of research with PTAM
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[10].

Proposed Method
In this section, we describe our proposed method, which esti-

mates vehicle’s trajectory from drive recorder images and LiDAR
point cloud data. Figure. 1 shows a flow diagram of the pro-
posed method. Our method consists of three parts(ORB-SLAM,
the matching rendered LiDAR point cloud and drive recorder im-
ages, and scale conversion). After 3D LiDAR, we describe each
part in detail.

3D-LiDAR
Figure. 2 shows the 3D-LiDAR that we use to measure the

3D point cloud of the surrounding environment. This device can
acquire color information, so we can obtain both depth and color
information of each point. In actual measurement, this device is
installed at intervals of several tens of meters on the road, and the
point clouds are integrated in consideration of each measurement
position.

ORB-SLAM
ORB SLAM [13] is a monocular SLAM using ORB feature

[14] that can be computed at high speed by binary string descrip-
tion. the processing is divided into three threads, as follows: the
tracking, matching and loop closure threads. At the beginning
of processing, the scale is determined by initialization for the in-
put RGB images. Next, based on the initialization scale and co-
ordinate system, the relative camera pose is estimated, and the
environmental map is reconstructed as a 3D point cloud. In our
proposed method, it is necessary to estimate the relative vehicle’s
trajectory. For this purpose, we rely on the components of ORB-
SLAM presented by Mur-Artal et al. [13]. The image taken by
the drive recorder set in the car is affected by distortion of the lens
of the drive recorder and the windshield. Thus, we calibrate the
drive recorder and input drive recorder images to ORB-SLAM
[13], with the distortion removed. Figure. 3 shows the drive
recorder images before and after distortion removal. With this
process, we can estimate the relative vehicle’s trajectory.

Matching the Rendered LiDAR Point Cloud and
Drive Recorder Images

Via the processing in the previous section, the relative vehi-
cle’s trajectory based on ORB-SLAM [13] is estimated. To con-
vert the relative trajectory to the scale of the real scale LiDAR
point cloud, we need match the point cloud and drive recorder
images. However, it is difficult to directly perform this matching,
so we match the image generated from the point cloud and the
drive recorder image. It is assumed that the location where each
frame of the drive recorder image is taken in the point cloud has
already been acquired by the GPS mounted in the vehicle. How-
ever, since the general GPS includes an error of several meters, a
more accurate estimation of the vehicle position and orientation is
necessary. In this proposed method, we generate images from the
LiDAR point cloud based on the position obtained from the GPS
and the direction of the vehicle.

Generate Images from Drive Recorder Image
We generate projection matrix PPP in Eq. (1) from the infor-

mation on the GPS position and the rough direction of the vehicle.

By applying matrix PPP to the LiDAR point cloud, we convert each
point cloud into a coordinate system with the virtual camera view-
point:
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As shown in Fig. 1, some of candidate images are generated by
randomly changing the angle of Eq. (2) in accordance with the
advancing direction. Next, a point group in front of the vehicle
is projected onto the determined image plane. If a point cloud is
projected to the same pixel, the point closer to the camera point
of view is rendered. Figure. (10) shows an example of an image
generated from the LiDAR point cloud.

Matching
Multiple viewpoint candidate images are generated from

GPS information. In the next step, these generated images are
matched with drive recorder images based on the RANSAC ro-
bust estimation method [8]. We calculate all the corresponding
points and distance of corresponding. AKAZE feature [1] is used
for matching between the generated candidate images and drive
recorder images. The AKAZE feature [1] employs an algorithm
that improves the KAZE feature’s processing speed [2]. The
Gaussian filter used in the SIFT [12] and SURF features [3] blurs
the edges of objects, and it has the disadvantage that local features
can not be extracted. To remedy this disadvantage, the KAZE fea-
ture [2] is processed so that local features can be extracted pace;
thus, the calculation takes time. Thus, the AKAZE feature [1]
uses a unique descriptor called a Modified-Local Difference Bi-
nary (M-LDB), and by incorporating unique ideas for speeding
up the calculation of the pyramid structure, it is possible to im-
prove the robustness and speed. We have learned empirically that
we can even match robustly images that do not have many feature
points robustly, like images generated from the point cloud.

Figure. (5) shows the matching between an image from
which distortion has been removed and an image generated from
a point group. With this matching, we can acquire a plurality
of correspondences between the image coordinates and 3D point
cloud. By solving the PnP problem from these corresponding
points, we can estimate the position and orientation of the target
drive recorder image in the LiDAR point cloud.

Transformation of the Coordinate System
The trajectory estimated by ORB-SLAM is a relative scale

based on initialization. Therefore, it is necessary to convert the
coordinate system of the ORB-SLAM to the coordinate system of
the LiDAR point cloud. As shown in Eq. (3, 4), the first frame es-
timation result from ORB-SLAM is initialized (with the position
and orientation of the camera) as the origin:

tttORB init = OOO. (3)

RRRORB init = III. (4)
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Figure 1. Flow of the proposed method.

Figure 2. 3D-LiDAR (Z+F IMAGER 5010C, 3D Laser Scanner).

Figure 3. Left: Image with distortion removed. Right: Original image.

First, the previous processing is applied to the first frame of the
key frame estimated by ORB-SLAM. By this processing, we can
obtain the position and orientation of the vehicle of the first frame
in the LiDAR point cloud. As shown in Eq. (5), the rotation axis
of the ORB-SLAM estimation result is unified to the LiDAR point
cloud:

RRRestimated i = RRRORB iRRRLiDAR init . (5)

Finally, we convert the relative scale trajectory to a LiDAR scale
one. To calculate the scale, it is necessary to estimate the position
and orientation at the absolute scale of at least two key frames. We
describe the case of scale conversion by focusing on nnnth frame.
The processing of the previous section is also applied to the drive
recorder image of the nnnth frame. We calculate the scale by divid-
ing the distance between two keyframes on the absolute scale by
the output result from ORB-SLAM(see Eq. (6)):

Figure 4. Generated image from the LiDAR point cloud.

Figure 5. Matching between the drive recorder image and generated image.
Left: Image generated from the LiDAR point cloud. Right: Drive recorder
image with distortion removed.

scale =
|tttLiDAR init − tttLiDAR n|

|RRRestimated init tttORB init −RRRestimated ntttORB n|
. (6)

We use this scale to convert the relative vehicle’s trajectory to the
LiDAR point cloud scale by considering the position information
on the absolute scale of the initial keyframe(see Eq. (7)):

tttestimated i = scale ·RRRLiDAR itttORB i + tttLiDAR init . (7)

If the scale in the direction perpendicular to the road surface is
scaled with the same weight as the traveling direction of the ve-
hicle, the error becomes large, so we calculate the scale by using
only the component in the traveling direction.

At this point, we would like to summarize our proposed
method. First, we employ stereo ORB-SLAM, as presented by
Mur-Artal et al. [13], for estimating the relative vehicle’s trajec-
tory. Next, we match the drive recorder images and generated
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images from the LiDAR point cloud to calculate the relationship
between the 3D LiDAR point cloud and the 2D drive recorder
images. Finally, we reconstruct the vehicle’s trajectory convert-
ing the ORB-SLAM estimation result by using the absolute scale
estimation.

Evaluation Experiment
The experimental environment is as follows: CPU: Intel

Core i7-5820K 3.30GHz, RAM: 64GB, drive recorder: KEN-
WOOD DRV-610, LiDAR: Z+F IMAGER 5010C 3D Laser Scan-
ner. In the evaluation experiment, we apply the proposed method
to images from the drive recorder mounted on the vehicle. Then,
by comparing the estimated vehicle’s trajectory with the highly
accurate RTKGPS, we confirm the effectiveness of our proposed
method.

Input
The input images are 200 drive recorder images mounted on

a vehicle traveling about 40 m (see Fig. (6)). We eliminate the
distortion of these drive recorder images and input them to ORB-
SLAM. The LiDAR point cloud used for scale conversion is a set
of point clouds measured by setting the LidAR at 13 places at
regular intervals on the road (see Fig. (7)).

Result
Figure. (8) shows the vehicle’s trajectory estimated by our

proposed method and the RTK-GPS which can measure position
with high accuracy. The vertical axis represents the position of
the vehicle in the LiDAR point cloud. Since the coordinate of the
point cloud in the direction perpendicular to the ground is the Y
axis, in the calculation of the scale of Eq. (6), only the X axis
and the Z axis were used. This was done because the amount of
change on the Y axis is overwhelmingly smaller than that on the
other coordinate axes, and it is sensitive to scale conversion. The
number of key frames obtained as a result of inputting 200 drive
recorder images to ORB-SLAM was 20 frames. In the evaluation,
we verified the accuracy by comparing the results of the key frame
scale conversion with those from RTK-GPS. Figure. (8) shows the
vehicle’s trajectories estimated by our proposed method and RTK-
GPS. The vehicle position is estimated accurately within 1.3 m of
error. Figure. (9) shows the estimation error. In this experiment,
only two of the obtained key frames were used for scale conver-
sion, so errors accumulated.

Conclusion
We proposed a novel method to reconstruct the vehicle’s tra-

jectory by matching the point cloud obtained from LiDAR and
drive recorder images. We input the drive recorder images to
ORB-SLAM, acquired the relative track of the vehicle, and then
converted them to the LiDAR scale by matching the images gen-
erated from the point cloud with the drive recorder images. In
the evaluation experiments, we confirmed the effectiveness of our
proposed method by comparing the position of the vehicle esti-
mated by the proposed method with the highly accurate RTK-
GPS. We showed that the vehicle’s trajectory can be estimated
accurately using drive recorder images and 3D-LiDAR. Finally,
we can propose two points to be improved as future works. One
is the process of generating images from the point cloud mea-
sured by 3D-LiDAR. Since the accuracy of our proposed method

depends on matching, it is necessary to develop a rendering sys-
tem that can generate a more accurate image. The other is process
of scale conversion. Since scale is converted once, the estimated
error tends to accumulate. We think that the accumlation of esti-
mated error can be prevented by increasing the number of scale
conversion think that the scale, we must generate images from the
point cloud and this process involves a huge computational cost.
Thus, we can say that there is a relationship between the accuracy
and computational cost of the method.
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Figure 8. Vehicle position estimation result and RTKGPS(groundtruth).

Figure 9. Estimation error.

Figure 10. Left: Original drive recorder images, Center: Image with distortion removed, Right: Images generated using the estimated position and orientation.
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