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Abstract
High pressure die casting (HPDC) has been developed since

the late nineteenth century for a breadth of manufacturing ap-
plications. The process forms molten metal into molds at high
temperatures given a complex array of parameters and variables
that are challenging to observe. We used a set of thermal cameras
to capture imagery of the die used as a mold during its cooling
process between part productions. This data was used to train a
convolution neural network to assess the quality of the part just
produced based on the thermal characteristics of the surface of
the die. The system achieved 90% accuracy when distinguishing
between parts that met quality standards and parts that did not.

Introduction
High pressure die casting (HPDC) is used to create alu-

minum, zinc, magnesium, and lead alloy parts by pouring or in-
jecting molten metal into a die (mold). The process has been
widely used in manufacturing since its initial development for
typecasting in the 19th century, especially to produce high vol-
ume components [3]. Although years of practice has developed a
robust base of die casting expertise, much of the process remains
arcane due to the difficulty of observing the complex array of pa-
rameters in real time. While the process has been refined over
the last century, there are still a numerous unknowns within any
given casting cycle. In the worldwide push toward smart factories
[1, 2, 4, 7, 10], HPDC is a unique challenge due to the inten-
sity of the environment that needs to be observed. Any sensors
integrated into an HPDC machine must not only be able to with-
stand the high temperatures but also observe accurately despite
the harsh environment created by the process.

To offer additional insights into the process — with the ob-
jective of increasing efficiency and reducing the production of de-
fective parts — we developed a real time thermal monitoring sys-
tem that can be integrated directly into the die casting process.
Data collected by this system was then used in conjunction with
the results of downstream part quality testing to train a model that
can assess if a part that has just been cast is likely to be of good
quality. The remaining sections of this paper delve into the con-
text of our task, the specifics of our method, and the results we
have achieved so far.

Context
High Pressure Die Casting

The objective of HPDC is to produce good quality parts. In
order to do so, process parameters have to be carefully managed
to efficiently create high quality parts. These parameters include:
injection speed, injection pressure, die temperature, melt pressure,
flow rate, metal temperature, and alloy chemistry [10]. Managing

these parameters is a challenging task that has historically been
done using the expertise of engineers and traditional statistical
approaches like taguchi methods [8]. In recent years, there has
been a growing push towards smart factories that integrate ad-
vanced data analytics into manufacturing processes to improve
quality and increase efficiency. These efforts include integration
of data analytics into die casting as discussed in [1, 2, 4, 7, 10].

In order to understand where data analytics best fits in the
die casting process, an overview of the process itself is necessary.
A high level depiction is shown in Figure 1 [3].

In high pressure die casting, molten metal is added to the die
which has a cavity that acts as a mold for a part. The time it takes
for the metal to solidify, as well as the final material characteris-
tics of the part being cast, are heavily dependent on the thermal
characteristics not only of the metal but also of the die surface
[10]. Failure to optimize these parameters can not only cause the
process to be inefficient but can also lead to several types of de-
fects in the final part [1]. Common defects include gas and air
porosity, inclusions, shrinkage, and cracks [1]. Porosity defects
in particular are well tested and quantified as part of the normal
manufacturing process [1]. For our work, we will focus in par-
ticular on porosity defects because their close correlation with die
surface temperature [1, 10] and also their prevalence in die casting
production.

Thermal Imaging
Thermal imaging is widely used for heat sensitive and low-

light applications where infrared signals are relevant. Unlike a
standard camera, thermal cameras are not impacted by light (bar-
ring significant associated heat), however there are several other
key characteristics of the environment and the observed target that
impact the infrared signals and must be accounted for in order
to obtain accurate measurements [9]. These parameters include:
(1) atmospheric temperature, (2) window temperature, (3) win-
dow transmission, (4) reflected temperature, (5) object distance,
(6) relative humidity, and (7) emissivity. These parameters are
diagrammed in Figure 2.

The window refers to an external lens. The transmission
rating of the window and the emissivity of the observed object
are both reflective of material properties of each respectively [9].
By accounting for these parameters accurately, a thermal camera
can provide accurate measures of observed temperatures within
its hardware specifications.

Thermal imaging has particular applications in die casting
and has been utilized to observe the critical thermal characteristics
of die surfaces and other high heat processes in manufacturing
[4, 9]. We build on that work by integrating real time thermal
camera observations and advanced image processing techniques
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Figure 1: Die Casting Cycle

Figure 2: Thermal Parameters

to determine part quality at cast time.

Method
Our method for HPDC analysis starts with an automated

thermal imaging software controlling two radiometric thermal
cameras. To collect accurate data, we tune the thermography pa-
rameters to account for environment variables and material prop-
erties in order to achieve accurate temperature readings. Finally,
we take that data and train a convolution neural network (CNN)
to infer the quality of the produced part based on the thermal im-
ages of the die. An overview of how our approach fits into the
traditional manufacturing process is shown in Figure 3.

Traditionally, parts extracted from die casting go to machin-
ing, which adds significant value to the part. From machining
they are then sent to quality control to test for a range of defects
including porosity defects. Any parts with porosity above a given
threshold are discarded losing all the value added during machin-
ing in addition to the original cost of producing the part in casting.
Our proposed method uses a thermal camera system to capture
images at the time the part is first cast and uses those images to
determine if the part has a porosity defect. With our system, the
machining phase can be bypassed for these parts saving signifi-
cant time and materials.

Image Capture
Our data capture system leverages two thermal cameras each

positioned to view a different side of the die. For our experiment
we have one camera positioned to look at the moving side of the
die - the side that opens to remove the part - and one positioned to

look at the fixed side. These two angles capture about 90% of the
die surface and include a view of all critical components. During
the die casting cycle after a part has been taken out of the die, but
before new metal is poured in, a cooling agent is applied to the
die as shown in Figure 1 [3]. Our system captures thermal images
of the die shortly before and shortly after this cooling spray. This
allows us to see not only the heat signature of the die but also
observe if it is cooling evenly.

Thermography Parameter Tuning
In order to calculate accurate temperature values based on

the infrared light received by the cameras, we must account for the
effects of various environment parameters and material properties.
The thermography parameters we configure are: (1) atmospheric
temperature, (2) window temperature, (3) window transmission,
(4) reflected temperature, (5) object distance, (6) relative humid-
ity, and (7) emissivity [9]. To tune the parameters, we performed
an experiment where we collected temperature data off a die at 10
degree intervals between 100 ◦C and 300 ◦C. During this experi-
ment we used a temperature probe to measure the temperature of
the die at four key points around the main heating coils. Based on
this acquired ground truth and the captured thermal images, we
used a genetic algorithm to test different combinations of six of
the parameters (object distance was held constant) and determine
the best combination to optimize our accuracy within the desired
temperature range.

Data Analysis
With an automated data capture system integrated into sev-

eral die cast machines and the themography parameters tuned, we
were able to start learning from the data. We collected two and a
half months of radiometric thermal images. Each part created dur-
ing this time was also tested for several possible defects includ-
ing porosity and leaks as part of the standard manufacturing pro-
cess. Experts link the issues of high porosity and off scale leaks
to abnormal thermal characteristics in the die casting process [1].
Given this knowledge and using the test results for each part as a
ground truth, we identify two defect cases of interest - POR (high
porosity) and OFF SCALE LEAKER (off scale leaks). We limit
our data to one part model and remove other types of failure cases
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Figure 3: Die Casting Inspection and Data Analytics

that cannot be clearly linked to the die casting process.

After this initial filtering of the experimental data set, we
have 671,648 images across 167,912 cycles including 166,187
cycles of GOOD parts, 706 cycles of POR (porosity) parts, and
1,019 cycles of OFF SCALE LEAKER (off scale leak) parts.
Each cycle / part has four images - moving before spray, moving
after spray, fixed before spray, and fixed after spray. These im-
ages are arranged in a 2x2 grid. Each individual image is an RGB
image of relative temperature values utilizing an iron-bow color
map. The individual images are 320 x 256 pixels. The combined
image is 640 x 512 pixels.

We design a CNN classifier architecture initially target-
ing three output classes - GOOD, POR, OFF SCALE LEAKER.
CNN is chosen due to the wide success of the algorithm in image
processing applications [5]. Our CNN utilizes common layers:
convolution with zero-padding and rectified linear (ReLu) acti-
vation, max pooling, and fully connected. An overview of our
architecture is shown in Figure 4

Each convolution layer uses 32 3x3 filters with stride of 1,
zero padding of 1 and rectified linear activation. The max pooling
layer utilizes a 2x2 kernel with stride of 2. The fully connected
layer has 128 nodes. Finally, the output layer has three output
classes - POR, OFF SCALE LEAKER, and GOOD.

Results
Our data analysis is split into three phases: our initial ap-

proach, a refined approach, and a generalized approach. In all
three cases we used the same (with the exception of the out-
put layer) CNN architecture and hyper-parameters for classifica-
tion. The initial approach looked at discretely identifying all three
classes - GOOD, POR (porosity), and OFF SCALE LEAKER.
The refined approach changed our output layer to distinguish be-
tween GOOD and BAD parts. Finally, our generalized approach
took a broader subset of the data to improve GOOD classification
rates.

Initial Approach
Initially, we looked at both our failure cases - high

porosity (POR) and off scale leaker (OFF SCALE LEAKER)
- as independent classes. It is important to remember that
OFF SCALE LEAKER is a more significant version of a POR
(porosity) defect. The three classes can be considered broad cate-
gories along the same scale, with GOOD reflecting any parts that
test below a given porosity range, POR reflecting any parts that
test above an initial threshold but below that of a full scale leaker,
and OFF SCALE LEAKER reflects any parts that pass a signifi-
cant threshold of porosity, dramatically failing the leak test.

After removing incomplete image sets, our data set contains
112,534 GOOD, 500 POR, and 701 OFF SCALE LEAKER. The
discrepancy between the GOOD image count and the BAD image
count is approximately 100 to 1. To accommodate, we signif-
icantly down-sampled our set of GOOD images. Up-sampling
of the POR and OFF SCALE LEAKER was also considered,
but resulted in severe over-training. For the initial approach,
we separated out a test set of 100 GOOD, 100 POR, and 100
OFF SCALE LEAKER image sets. Our training set was 600
GOOD images - selected from a common subset of our 2.5 month
period - along with the remaining 400 POR images and 500 of the
OFF SCALE LEAKER images.

After 100 epochs, our initial algorithm performed with an
accuracy of 70.3% on the test set. The accuracy/ recall is broken
down for each subcategory - GOOD and BAD - and by nuanced
class - GOOD, POR, and OFF SCALE LEAKER. The results are
shown in Figures 5 and 6.

As can be seen in both figures, the GOOD classification rate
is high - 93%. The results shown in Figure 6 further indicate that
the OFF SCALE LEAKER is comparable at 87%. Our loss in
accuracy largely comes from poor recall in the POR class. To
break this down further, we look at the confusion matrix shown in
Table 1.

From Table 1 we can clearly discern that the confusion in
classifications lies predominantly in POR image sets being mis-
classified as OFF SCALE LEAKER image sets. We hypothe-
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Figure 4: Algorithm Architecture

Figure 5: Initial Approach - Accuracy by Subcategory

size that the characteristics in the images that distinguish POR
and the higher tier OFF SCALE LEAKER classifications are ex-
tremely similar due to the relationship between those two failure
types - OFF SCALE LEAKER is simply a more extreme ver-
sion of the POR defect. Due to our small image set, our al-
gorithm does not have enough training examples to distinguish
clearly between these two classes. However, the confusion matrix
also shows us that not only were very few GOOD images mis-
classified as either type of BAD image, but none of the POR or
OFF SCALE LEAKER images were misclassified as GOOD. We
quantify this performance by calculating recall, precision and F-
score for each class as described in [6]. The results are shown in
Table 2.

The recall and precision for both POR and
OFF SCALE LEAKER are low, resulting in poor F Scores
of 0.43 and 0.66 for each class respectively. However, the
recall and precision of GOOD are extremely high resulting in an
excellent F-Score of 0.96. Despite the poor performance of the

Table 1: Initial (3 Class) Confusion Matrix
Predicted

Actual POR OFF GOOD
POR 31 (31.0%) 69 (69.0%) 0 (0.0%)
OFF 13 (13.0%) 87 (8.07%) 0 (0.0%)

GOOD 1 (1.0%) 6 (6.0%) 93 (93.0%)

Figure 6: Initial Approach - Accuracy by Class

algorithm in identifying bad images, this iteration of the model
can be utilized for determination of GOOD parts.

Refined Approach
Based on our results in the initial approach, we adjust the

algorithm to look at only two classes - GOOD and BAD. The
primary objective of our research is the ability to distinguish be-
tween the GOOD and BAD, i.e., to determine the worth of a part
before the added expense of further machining. For this refined
approach we not only utilize the same architecture (with excep-
tion of the output layer class number), but also utilize the same
training and test sets as for our initial approach. The results
broken down by accuracy / recall at both the categorical level
(GOOD and BAD) and the nuanced class level (GOOD, POR,
and OFF SCALE LEAKER) are shown in Figures 7 and 8 re-
spectively.

Unsurprisingly, given the clear distinction between GOOD
images and the combined POR and OFF SCALE LEAKER set

Table 2: Initial Approach Metrics
Recall Precision F-Score

POR 0.31 0.69 0.43
OFF 0.87 0.54 0.66

GOOD 0.93 1.00 0.96
AVERAGE 0.70 0.74 0.69
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Figure 7: Refined Approach - Accuracy by Subcategory

Figure 8: Refined Approach - Accuracy by Class

in the initial approach, our accuracy is greatly improved in this
two class case. The overall accuracy is 95.7% with the GOOD
accuracy dropping slightly to 87% and the classification of both
POR and OFF SCALE LEAKER images as BAD at 100%. Our
confusion matrix is shown in Table 3 and our precision and recall
for both the GOOD and BAD classes is shown in Table 4.

Table 3: Refined Confusion Matrix
Predicted

Actual BAD GOOD
BAD 200 (100%) 0 (0.0%)

GOOD 13 (13.0%) 87 (87.0%)

Table 4: Refined Approach Metrics
Recall Precision F-Score

BAD 1.00 0.94 0.97
GOOD 0.87 1.00 0.93

AVERAGE 0.94 0.97 0.95

With this refined experiment both our BAD images and
GOOD images have high F-Scores of 0.97 and 0.93 respectively.
It also remains the case that the GOOD images in this set have a
perfect precision on the test set, just as in the initial results. How-
ever, for a final application, it would be better to tune the algo-
rithm to maximize the precision of BAD image set classifications
while maintaining a good recall on bad parts in order to ensure

that no GOOD parts are mistakenly scrapped. In that case, the
precision of GOOD parts might decrease, but still greatly reduce
the number of POR and OFF SCALE LEAKER parts, saving sig-
nificant machining costs.

Generalized Approach
Toward the goal of finding greater distinction between

GOOD and BAD parts we look at a more generalized subset
of the GOOD images. We still down-sample the GOOD im-
age set significantly - from 112,534 to 900 training images and
100 testing images. Additionally, we sample the GOOD, POR,
and OFF SCALE LEAKER across the entire 2.5 months in or-
der to split training and test sets (90:10). For the GOOD images,
this results in a broader set of variations in candidates offering a
greater generalization of our algorithm. The architecture remains
the same and we continue looking at the problem as two rather
than three class. The accuracy of each subcategory and subclass
are shown in Figures 9 and 10 respectively.

Figure 9: Generalized Approach - Accuracy by Subcategory

Figure 10: Generalized Approach - Accuracy by Class

The overall accuracy drops to 81.4%. This result is lower
than the refined approach but still higher than our initial three
class approach. Breaking it down into the confusion matrix and
metrics we can look at the nuances of recall and precision for both
the GOOD and BAD cases. The confusion matrix and metrics are
shown in Tables 5 and 6 respectively.

Consider our sample objective from the refined analysis - op-
timize around BAD precision without sacrificing too much recall.
In Table 6, we can see that the precision for BAD images and
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Table 5: Generalized Confusion Matrix
Predicted

Actual BAD GOOD
BAD 83 (69.2%) 37 (30.8%)

GOOD 4 (4.0%) 96 (96.0%)
Table 6: Generalized Approach Metrics

Recall Precision F-Score
BAD 0.69 0.95 0.80

GOOD 0.96 0.72 0.82
AVERAGE 0.83 0.84 0.81

the recall for GOOD (respectively) have both increased from the
refined approach results. This increase in GOOD classification re-
call is very positive - indicating that we are far less likely to scrap
GOOD parts based on our algorithm. The drop in recall for BAD
and respectively precision for GOOD is indicative of our limited
BAD samples compared to GOOD samples in our training set.
While better at generalizing against variations in the GOOD sam-
ples, we do not have the same kind of data to draw on to further
generalize the BAD samples. This shortcoming directly inspires
some of our next steps.

Conclusion
Our results to date indicate that there are distinct character-

istics that the CNN we’ve trained can use to distinguish between
a good part and a part with a porosity or leak based defect. How-
ever, our results also demonstrated the limitations of our current
data-set - robust in good images, but limited for defect samples.
Our continuing work begins with the acquisition of additional de-
fect samples or the development of a tool to simulate defects for
training. From there, the next steps will be further refinement of
the approach and the integration of additional process parameters
and sensor data. The more information we can acquire about each
die casting cycle, the better we will be able to transition from sim-
ply classifying a part’s quality to informing the die casting engi-
neers why quality was bad for a given cycle. Extracting the ’why’
will take this application from simple cost savings on machining
to real process improvement.
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