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Abstract
Multi-line scan systems have been introduced as linear light

field cameras and subsequently for 3D ranging for industrial in-
line applications. Up to now there have been no viable calibration
methods to determine intrinsic and extrinsic parameters of such a
system which would allow (i) metric measurements and (ii) line-
scan image geometric rectification. Our work closes the gap by
exploiting special properties of a typical multi-line scan setup,
which internally uses a fast area-scan sensor that can also be op-
erated in the line-scan mode. This allows the use of standard cali-
bration approaches to determine the intrinsic camera parameters.
We introduce a novel method to compute extrinsic camera param-
eters w.r.t. the transport direction. Consecutively, the images are
rectified for all constructed line-scan views. This takes into ac-
count estimated camera model parameters in order to generate
an EPI-corrected linear light field that is suitable for accurate 3D
reconstructions. Furthermore, we introduce a novel calibration
target that is characteristic by an asymmetric central element as
well as a tailored fast detection algorithm. The proposed method
significantly improves the 3D reconstruction quality and allows
for absolute 3D measurements in metric units using the multi-line
scan setup. The performance of the proposed method is demon-
strated on several representative real world examples.

Introduction
For light field processing in inline applications, where ob-

jects are inspected while moving on a linear transport stage, multi-
line scan cameras are highly suited due to fast acquisition and pro-
cessing speeds. In our previous work we introduced algorithms
for multi-line scan cameras for a precise 3D reconstruction via
multi-view stereo [15] and hybrid approach exploiting additional
photometric stereo cue for improved depth detail [1].

So far multi-line scan setups were deployed only with high
quality industrial lenses with little to no optical distortions and at
resolutions where mechanical adjustments was sufficient. How-
ever, when used with lenses with more geometrical distortion,
lower quality lenses, at higher resolutions or with imprecise ad-
justment, a geometrical calibration became essential to achieve
accurate 3D measurements. We present an approach to find a new
virtual sensor plane oriented such that the linear transport is taken
into account. Our method allows a significantly improved 3D re-
construction results.

Numerous geometric calibration targets are commercially
available (e.g. [6]), however for high accuracy / high magnifica-
tion measurement a target with very low manufacturing tolerances
(in µm-range) is required. This requirement essentially excludes
all targets printed on a standard office printer. Additionally, due
to a small field of view at high magnifications the appropriate cal-
ibration target needs to contain a small easy-to-recognize marker
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Figure 1: Illustration of a multi-line scan acquisition setup (left)
that includes lens distortion as well as rotation w.r.t. the trans-
port. At each time instance a set of lines is captured from the sen-
sor, then the object is moved by a constant increment. Each line
captures the object under a different viewing angle and is subject
to a different perspective transform and lens distortion. All con-
structed views are saved in an image stack (right). Note that, with
an uncalibrated system, object points may travel along bent curves
within the image stack. Each horizontal slice through the image
stack represents one multi-line frame captured by the sensor at a
single time instance.

in the center, as there is no guarantee to see the whole pattern.
Hence, our approach was to take a high-precision grid distortion
target from a well-established manufacturer and design and apply
our own central marker. For our very small asymmetric marker
we also developed a fast and reliable detection method.

Related work
There exist numerous toolboxes for the geometric calibra-

tion of area-scan cameras. Although the multi-line scan camera
is usually built around a fast area-scan sensor, which is operated
in a multi-line scan mode that is capable of capturing multiple
line-scan images simultaneously. This is a very specific line-scan
setup in which standard calibration methods such as [2, 13] can
be used to compute intrinsic camera parameters including a lens
distortion model. Extrinsic parameters need to be estimated and
interpreted in a system-specific way w.r.t. the direction of the
transport stage. To our knowledge, there has not been a practical
method to rectify multi-line scan data for 3D reconstruction tasks.
Therefore, we propose a novel rectification procedure as well as
provide method for calibrated 3D reconstruction using rectified
image stacks.

Line-scan calibration usually either uses (i) structured light
[11], (ii) originates in remote sensing and assumes the transport
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direction to be orthogonal to the line scan direction [3, 7, 8, 9],
(iii) assumes an orthogonal transport condition [5, 12], and finally
(iv) systems that consist of a camera and a 2D laser finder [16].

Calibrating the multi-line scan camera
The image stack M ∈ Rm×n×p for our multi-line scan setup

consists of n images corresponding to the sensor lines l1, · · · , ln
read from the camera (see Fig. 1). Due to the nature of our setup,
the distortion of image v is constant along the z-axis, namely the
lens distortion’s segment of lv because of the constant transport.
Furthermore, since transport direction t = (t1, t2, t3) and sensor
plane I can be in arbitrary position w.r.t. each other, there will
almost certainly be a perspective warping from line lv to lv+1 (e.g.
shearing).

In the following we will describe an algorithm for mapping
from each line’s pixel positions x to new positions xnew that cor-
rects these lens distortions and perspective warpings along sensor
lines.

Calibration parameters and transport direction
The multi-line scan camera uses a single optical system (see

Fig. 1) and can operate also as an area-scan camera. Hence, we
acquire images of a planar calibration target and compute all in-
trinsic and extrinsic camera parameters, that include focal length
f , principal point c and distortion vector k, using a conventional
area-scan calibration approach [2, 13]. We assume that the world
coordinates origin in the camera center O and that the third coor-
dinate axis w = (0,0,1) coincides with the principal ray. There-
fore, the image plane (or sensor plane) I is spanned by vectors
u = (1,0,0) and v = (0,1,0) and centered at c = (0,0, f ).

It is important to use the linear transport stage for a subset
of these images, so that we also get a good estimate of the nor-
malized transport direction t w.r.t. the camera-centered world co-
ordinate system. For a high-precision linear stage, the distances
of the calibration target in a series of acquisitions is known (up
to a tolerance provided by the manufacturer) and can be used to
evaluate the accuracy of the calibration method in metric units.

Virtual image sensor plane
We reconstruct a rectified image stack obtained the multi-

line scan camera by defining a new virtual image plane I′ and
warping the original line scan images accordingly. Hence, we
define a new coordinate system:

u′ = 1/
√

t2
1 + t2

2 · (t2,−t1, 0)

v′ = (t1, t2, t3) (1)

w′ = 1/
√

t2
1 + t2

2 · (−t1 t3,−t2 t3, t2
1 + t2

2 ),

as illustrated in Fig. 2. The vectors u′ and v′ span a new sensor
plane I′, which has the following properties:

• its center c′ = f ·w′ has distance f to the camera’s center,
i.e. the distance from the camera centers to the image planes
is the same, so there is minimum scaling from I to I′,

• the v′-axis is aligned with the transport direction t, hence
image points only move along one axis, which is equiva-
lent to the stereo vision EPI-constraint which makes stereo
correspondence analysis a 1D problem, and
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Figure 2: In the classical pinhole model (ignoring lens distortion),
an object in space (abstracted as three colored lines) is mapped
onto the image plane I with the principal point c at its center at
distance f from the camera center. We propose a new image plane
I′ also at distance f which has the v′-axis parallel to the transport
direction t. A homography H maps from one coordinate system
to the other.
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Figure 3: The images of three parallel lines in the old sensor
plane I when taking lens distortion into account are called x′ (left).
Their perspectively warped projections x′′ onto I′ are resampled
as x′′′ such that their distances in u′-direction are equal (middle).
We then project back into the original sensor plane I (right).

• the rotation from w to w′ around the camera’s center is min-
imal, thus the perspective distortions from images in I to
images in I′ are minimal.

Pixel warping algorithm

In this section we introduce algorithmic details of our pixel
warping procedure.

1. Shift & undistort. To rectify the line scan images, each
pixel position on the sensor x = (u,v), where u = {1, ...,m} iter-
ates over all the pixels of one line and v = {1, ...,n} over the line
indices, is translated such that the principal point c is at (0,0) and
undistorted according to focal length f and the distortion vector
k. The new positions are denoted as x′ = (x′,y′).

2. Project to virtual sensor. Each homogenized pixel posi-
tion (x′,y′,1) is projected onto the new image plane through the
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Figure 4: The color interpolation scheme of xnew along line lv is
derived from the linear interpolation between the back projections
xnew onto I and the original positions (u−1,v) and (u,v).

camera center by a homography in projective 3-space:

H =

 u′1 v′1 w′1/ f
u′2 v′2 w′2/ f
f u′3 f v′3 w′3

 (2)

=

 1
1

f

 ·U ·
 1

1
1/ f

 ,

with U =

 u′1 v′1 w′1
u′2 v′2 w′2
u′3 v′3 w′3

 and U−1 = UT .

Hence a point x′ ∈ I is mapped to x′′ = f/(x′w′1 + y′w′2 + f w′3) ·
(x′u′1 + y′u′2 + f u′3, x′v′1 + y′v′2 + f v′3) ∈ I′. The mapping of
sensor lines under H is visualized in Fig. 3 as the transformation
between the left and center image.

3. Resample. We resample such that the u′-coordinates are
evenly spread between their smallest and their biggest value and
the v′-coordinate is linearly interpolated. The new coordinates are
denoted as x′′′. This corresponds to the central image in Fig. 3.

4. Project back. The resampled coordinates are projected
back onto I by the inverse of Eq. 2

H−1 = diag(1,1, f ) ·UT ·diag(1,1,1/ f )

=

 u′1 u′2 u′3/ f
v′1 v′2 v′3/ f

f w′1 f w′2 w′3

 , (3)

and we call x′′′′ = f/(x′′′u′3 + y′′′v′3 + f w′3) · (x′′′u′1 + y′′′v′1 +
f w′1, x′′′u′2 + y′′′v′2 + f w′2) ∈ I.

5. Distort & unshift. Finally, we distort the pixel positions
according to our camera and distortion model to arrive at xnew.

Rectification of the image stack
To allow for simpler and faster correspondence analysis one

needs to use the estimated calibration parameters in order to get
the EPI-corrected image stack. The mapping from x to xnew is
constant with respect to the v- and z- component, hence only the
u-component of the pixel positions changes along a line lv. Our
input image stack has color values M(u,v,z) and these do not
change under the distortion and the coordinate transforms H, thus
M(x) = M(x′) = M(x′′). The color values M(xnew) = M(x′′′′) =

M(x′′′) are interpolated linearly in the new sensor plane I′ as

M(x′′′′,v) = s ·M(u,v)+(1− s) ·M(u−1,v), (4)

where s = xnew− x = xnew− u ∈ R (see Fig. 4 for the geometric
interpretation).

To rectify the line-scan image with index v, we duplicate
(xnew

i ,v) with i = {1, · · · ,m} for all p frames of the image. This
m× p map tells us how to interpolate each pixel. For all n views
we get m×n× p maps which transform the old image stack to its
rectified version (see Fig. 5).

New 3-dot calibration target
In order to facilitate better quality calibration with fewer ac-

quisitions of the calibration target, especially at high magnifica-
tions, we have developed a new central marker consisting of three
asymmetric dots printed on an off-the-shelf high precision regular
dot pattern calibration target (see Fig. 6).

The main advantage of a calibration target with such a cen-
tral element is that its markers may fill the entire field of view of
the camera as long as the central element is readable (cf. [6]).
Moreover, our new central marker is designed to be robust and
easy to recognize while providing information about image mir-
roring. We claim that due to the 3-point central element, it is one
of the smallest possible asymmetric configurations.

Algorithm for pattern detection
The new calibration target comes with an algorithm for the

detection that proceeds as follows:
1. Detect & filter. Acquire area-scan images, identify circu-

lar blobs Bk, filter them by circularity and average size according
to predefined thresholds and put them into the list of all blobs A.

2. Sort by diameter. Compare each blob’s diameter to the
average diameter of four of its direct neighbors and sort the list
according to this ratio, resulting in a list of sorted blobs B.

3. Detect potential central elements. Starting with the
biggest element of this list, e.g. Bk ∈ B, check if exactly two
of Bk’s 24 nearest neighbors B+

k ,B
−
k are also in B. If so, copy

Ck := Bk into a new list of possible central elements C⊂ B. Con-
tinue for some or all members of B.

4. Find optimal transform. For each of these Ck ∈C, check
all 6 possible affine transformations Tj that map Ck and its neigh-
bors C+

k , C−k to their ideal versions i, i+, i− of the grid G (see
Fig. 6), i.e.

T1(Ck) = i, T1(C+
k ) = i+, T1(C−k ) = i−

... etc. (5)

T6(Ck) = i, T6(C
+
k ) = i+, T6(C

−
k ) = i+

and map all other blobs Bk ∈ A by Tj. Take the central ele-
ment {Ck,C

+
k ,C−k } and the transform Tc for which the distance

of 8 nearest neighbors of i under Tc from the grid is minimal and
below a threshold.

5. Begin gridding. Knowing that Tc(C) = i, map i’s 1-ring
(8-connected neighborhood) j into the grid using Tc and take the
nearest Bk ∈ A for which ‖Tc(Bk)−{i1, ..., i8}‖ is smaller than
some threshold. This assigns 2-dimensional grid coordinate to
each discovered Bk (the 8 orange points surrounding i in Fig. 7).
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Figure 5: Left- and right-most (out of several) light field images
obtained by the multi-line scan camera: before (top) and after
(bottom) application of the proposed geometric calibration. The
auxiliary grid of green lines shows how each pixel compares from
left to right, the auxiliary red lines emphasize lens distortion in
the uncalibrated views. Note that this method only rectifies in the
vertical direction and that horizontal EPI shifts using y′′′ have to
be taken into account during the 3D reconstruction.

6. Dilate gridded area. Check if there is a square formation
of already discovered grid points that has not been explored yet
(the gray box containing j in Fig. 7, right), if so, update the trans-
form to Tnext using these four points and search for the nearest
Bk as in step (5). Otherwise, search for a new unexplored square
formation defined by point j.

Note that this griding mechanism can be applied also when
some points in the grid are undetected.

7. Finish. Keep track of all visited points in the grid G as
well as their corresponding coordinates in the input image.

Once no new Bk are found for all possible choices of j, end
the algorithm.

The proposed griding algorithm can be implemented very
efficiently using intelligent caching strategy which avoids use re-
cursion in the search for new grid points. Therefore our pro-
totype implementation showed performance already superior to
other available solutions. Thanks to circular grid points, our cali-
bration target also proved to be suitable for systems with shallow
depth of field, as circular blobs can detected quite robustly even
if they are out of focus. Moreover, their centroids are not too af-
fected by the defocus which contributes to good accuracy of the
final calibration model obtained using such a target.

Calibrated 3D reconstruction
Once the calibration parameters are known for a given multi-

line scan setup and the image stack is EPI-rectified accordingly, a
multi-view correspondence analysis is carried out making use of
depth hypothesis testing (see e.g. [15]). For a calibrated system
and each tested depth hypothesis zi (in metric units) there exists
a matrix Di(u,v) ∈Rm×n that carries all associated disparities for

i

i+

i−

Figure 6: Left: Dot pattern calibration target with our new 3-dot
central element. Right: Abstract description of the pattern. Note
that this pattern is the smallest possible asymmetric configuration
on a regular grid and three distinct marks suffice to estimate an
affine transformation, which approximates the more general per-
spective transformation needed to unwarp the image.

i

i+

i−

j

Figure 7: Left: Original image with detected grid points. Right:
Gridding strategy of grid G.

each line u and view v

Di(u,v) =
y′′′(u,v)

f
· zi

Tstep
, ∀u v, (6)

where f and y′′′ come as the result of our calibration procedure de-
scribed earlier and Tstep is the transport increment (in metric units)
given by the transport control. Afterwards, the obtained disparity
matrix Di is used to steer the correspondence analysis in order to
test a number of depth hypotheses zi. The multi-view correspon-
dence analysis itself as well as the rest of the 3D reconstruction
pipeline may be implemented via standard state-of-the-art algo-
rithms such as [4, 10, 14]. Finally, this turns the multi-line scan
system into a measurement device.

It should be noted that, unlike standard area-scan stereo
systems with fixed baseline and therefore fixed z-resolution, the
multi-line scan camera offers a flexibility in choosing baseline
depending on the required depth sensitivity. It can be shown that
the z-resolution (in metric units) of the multi-line scan camera is
defined as

zres =
f

max(y′′′)−min(y′′′)
·Tstep. (7)

It follows zres is directly proportional to the transport increment
Tstep (i.e. speed), which is a parameter that can be defined adap-
tively by the user without necessity of any hardware change. E.g.
if high depth detail is required for the given application a lower
acquisition speed need to be applied, while if only low detail is
sufficient the system may acquire adequately faster. That is in-
deed an important advantage over other depth sensing methods
with fixed depth resolution.
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Figure 8: 3D reconstruction of the image stack shown in Fig. 5 for calibrated (left) and uncalibrated (right) system. Presented 3D models
use pseudo-coloring according to the distance from the camera center.

Experimental results
Several illustrative examples of reconstructed 3D point

clouds using our calibration model are shown in Figs. 8 and 9.
3D reconstruction of the image stack shown in Fig. 5 for

calibrated and uncalibrated system is shown in Fig. 8. As only
points with sufficient reconstruction confidence are shown, the
point cloud obtained from the calibrated multi-line scan system
is much denser than the uncalibrated case (390 138 vs. 34 971
valid data points, respectively). Note that the influence of the
calibration on the result is of course much stronger for a highly
uncalibrated system like this than for well-adjusted systems (cf.
Fig. 9).

In Fig. 9 3D reconstructions of two Euro cent coins with di-
ameter 19.75 mm and 18.75 mm are shown obtained using our
well adjusted multi-line scan system equipped with an industry-
grade high quality optics and transport stage. Comparison be-
tween system with and without calibration shows clear superi-
ority of the calibrated case. The 3D model from our calibrated
setup not only contains much more valid measurements (775 791
vs. 222 415), but also does not show any signs of lens distortions
or other artifacts that are clearly visible in the uncalibrated point
cloud. Note that the difference between these two 3D models can
be as much as 0.5 mm after their mutual registration. For 3D
reconstruction in the uncalibrated case we have used known as-
sumed camera and lens parameters. The transport increment Tstep
for the given setup was 13.8 µm, which corresponds with the z-
resolution of 80.4 µm.

Conclusions and outlook
Our contribution presents two novelties: First, we propose a

new geometric calibration procedure and the implementation de-
tails for multi-line scan systems. An accurate calibration method
is a prerequisite for using the multi-line scan camera as an optical
3D measurement device and improves 3D reconstruction signif-

icantly. We propose doing so with the help of a projection to a
virtual sensor plane in combination with a subsampling scheme.
Secondly, we introduce a high precision dot pattern calibration
target fitted with the special 3-dot central element. As the tar-
get is made of out-of-the-shelf components, it can be adapted to
calibrate high magnification lenses. An accompanying detection
algorithm improves detection rate, stability and speed. In the fu-
ture, we would like to substitute the area-scan calibration preced-
ing the multi-linescan calibration with a method that does not re-
quire switching the modes of the camera as well as experimenting
with higher magnifications and resolutions in all directions.
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