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Abstract
Traditional quality estimators evaluate an image’s resem-

blance to a reference image. However, quality estimators are not
well suited to the similar but somewhat different task of utility es-
timation, where an image is judged instead by how useful it would
be in terms of extracting information about image content. While
full-reference image utility metrics have been developed which
outperform quality estimators for the utility-prediction task, as-
suming the existence of a high-quality reference image is not
always realistic. The Oxford Visual Geometry Group’s (VGG)
deep convolutional neural network (CNN) [1], designed for ob-
ject recognition, is modified and adapted to the task of utility es-
timation. This network achieves no-reference utility estimation
performance near the full-reference state of the art, with a Pear-
son correlation of 0.946 with subjective utility scores of the CU-
Nantes database and root mean square error of 12.3. Other no-
reference techniques adapted from the quality domain yield infe-
rior performance. The CNN also generalizes better to distortion
types outside of the training set, and is easily updated to include
new types of distortion. Early stages of the network apply trans-
formations similar to those of previously developed full-reference
utility estimation algorithms.

Introduction
The concept of image utility was developed by Rouse et al.

[2], and is different from the related concept of image quality.
The goal of image quality estimation is to accurately estimate
an image’s perceptual similarity to a reference image. However,
humans are adept at looking “through” visible distortions to ex-
tract information about image content. An image’s utility refers
to the success of the information extraction process, and effec-
tively measures the potential of an image to communicate visual
information. Additionally, images of low quality can still be quite
useful to an observer, supporting the independence of quality and
utility. For example, firefighters may use thermal imagery to as-
sess risk and devise a plan of action before entering a burning
building, and surveillance video can be of low quality yet still
communicate necessary information to law enforcement [3, 4].

Image utility estimation has not been as active an area of re-
search as image quality estimation, and the differences between
human observers’ perception of utility and quality are still being
explored. Rouse et al. developed the CU-Nantes image utility
database, consisting of a number of reference images and dis-
torted versions of those references along with associated subjec-
tive utility and quality ratings, to aid utility estimation research
[2]. Comparing utility and quality scores of the same set of im-
ages, it was observed that image pairs may be of the same quality
and different utility, or vice versa, indicating a weak relationship

between quality and utility, and supporting the development of
algorithms designed to estimate utility. The first purpose-built
utility estimator, Natural Image Contour Evaluation (NICE), was
developed using this database [5]. Measuring the disruption to im-
age contours, NICE estimates perceived image utility better than
many quality estimation algorithms.

To overcome discrepancies between the multi-scale integra-
tive nature of the human visual system (HVS) and the single
scale structure of NICE, Multi-Scale Difference of Gaussian Util-
ity (MS-DGU) was developed [6]. MS-DGU attempts to emu-
late aspects of the HVS’s multi-scale processing, and produces
utility estimates more strongly correlated with subjective ratings
than NICE, with approximately 25% lower root mean square error
(RMSE). However, both NICE and MS-DGU are full-reference
algorithms, meaning in order to estimate an image’s utility, an
undistorted reference version of that image is required. This re-
quirement is limiting, and in many applications could preclude an
algorithm’s use.

There has been a great deal of effort in recent years to de-
velop accurate no-reference quality estimators, which require no
additional information to estimate the quality of an input image.
This paper represents the first step of a similar effort to develop
no-reference utility estimators. A deep convolutional neural net-
work (CNN) architecture originally developed by the Visual Ge-
ometry Group (VGG) at Oxford [1] is adapted to estimate im-
age utility. Its performance is compared to several no-reference
quality estimators applied to the utility estimation problem. The
CNN outperforms other no-reference estimators, providing no-
reference utility estimates with accuracy between that of NICE
and MS-DGU.

The paper is organized as follows: previous work in both
utility and quality estimation is reviewed, and the architecture of
the neural network developed and applied in this work presented.
The utility estimation performance of the network and other rel-
evant algorithms is then evaluated, followed by concluding com-
ments.

Related Work
This section briefly summarizes previously developed utility

estimation and no-reference quality estimation algorithms.

Utility Estimation
Two purpose-built utility estimation algorithms have been

previously proposed. Natural Image Contour Evaluation (NICE)
was first proposed in 2009 by Rouse et al. [5]. NICE is based
upon the hypothesis that image utility is a function of observers’
ability to recognize objects, and that this ability is directly related
to the degradation of image contours. As such, NICE operates by
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Figure 1: Network Architecture. Layer names follow the convention of [1]: for example, a Conv3-32 layer consists of 32 3x3 convolution
kernels for each of its inputs, and an FC-128 layer contains 128 fully connected neurons.

comparing contours between reference and test images at a single
scale. Contours are identified by the dilated output of an edge de-
tector, and predicted utility is a function of the Hamming distance
between those test and reference contours.

In contrast, Multi-Scale Difference of Gaussian Utility (MS-
DGU) operates across multiple scales, and is based on the hypoth-
esis that disruption to coarse image structures impairs the ability
of the human visual system to build object representations [6]. It
decomposes test and reference images by passing them through a
difference of Gaussian (DoG) bandpass filter bank, and compares
the location of extrema in the decompositions. The use of DoG
filters as opposed to a traditional edge detector results in a focus
on corners and blobs, as compared to the edge-based approach of
NICE. MS-DGU outperforms all other estimators for both utility
and quality when evaluated on the CU-Nantes dataset.

No-Reference Image Quality Estimation
While both utility estimators described above require undis-

torted reference images, many algorithms for no-reference image
quality estimation (NR-IQA) have been proposed. These typically
consist of a feature extraction operation, followed by the applica-
tion of a learned model to relate those features to quality labels.
Most algorithms employ perceptually based features, designed to
capture natural scene statistics (NSS) properties of images. A rep-
resentative sampling of NR-IQA algorithms was chosen for appli-
cation to the CU-Nantes utility database.

The blind/referenceless image spatial quality evaluator
(BRISQUE) applies support vector regression (SVR) to lumi-
nance coefficients of mean-subtracted and divisively normal-
ized images [7]. The Natural Image Quality Estimator extends
BRISQUE, modeling the distribution of BRISQUE coefficients
in undistorted natural images and predicting quality by evaluat-
ing the degree to which distorted images deviate from the model
[8]. NIQE is less sensitive to types of distortion not present in the
training set than BRISQUE.

Liu et al. utilize statistics of gradient features, then feed
those statistics into an Adaboosting neural network with two hid-
den layers [9]. This approach yields the highest demonstrated
performance among algorithms based on “hand-crafted” features
when evaluated on the LIVE database.

Recently, techniques have been proposed which learn both
relevant features and models using convolutional neural networks
(CNNs). Kang et al. proposed the first such method for NR-IQA,
employing a relatively simple network with one 7×7×50 convo-
lutional layer, two pooling layers, and two fully connected layers
[10]. This approach matches the performance of those based on
explicitly designed perceptual features for NR-IQA.

Bosse et al. proposed an adaptation of the VGG deep neural
network originally designed for the Imagenet Large Scale Visual
Recognition Challenge (ILSVRC) [11, 1, 12]. The application
of a deeper, more sophisticated network to the problem results in
performance comparable to the best full-reference estimators on
the LIVE dataset. A modified and simplified extension of this
method is proposed below for no-reference utility estimation.

Utility Estimation with a Convolutional Neural
Network

Deep convolutional neural networks (CNNs) have proven to
be highly discriminative and accurate tools in classification ap-
plications such as image and action recognition, with most of
the best-known models developed for the ImageNet Large Scale
Visual Recognition Competition (ILSVRC) [12]. This section
presents a network architecture derived from the VGG model pre-
sented by Simonyan et al. for ILSVRC 2014 [1] and an adaptation
presented by Bosse et al. for quality estimation [11]. The VGG
approach is to build very deep networks using only very small
convolution kernels, approximating larger kernel extents by stack-
ing 3×3 convolution layers. This technique increases network
depth and nonlinearity and allows similar convolutional coverage
to a shallower network with larger kernels while having fewer pa-
rameters. The VGG network employs 3×3 convolution kernels
and 2×2 pooling operations.

Bosse et al. applied a modified 12-layer VGG network struc-
ture to the problem of no-reference quality estimation [11] with
excellent results. The method involved extensive data augmen-
tation to overcome limitations of small datasets such as LIVE
and CU-Nantes. One of the key differences between the qual-
ity or utility estimation task and the object recognition task is
that the ILSVRC dataset contains approximately 500,000 images,
while the CU-Nantes utility dataset (described in the next sec-
tion) contains only 235. Due to the small number of images avail-
able for training and testing, data augmentation is required. The
small extent of the convolution kernels in the VGG network topol-
ogy makes it straightforward to train the network on small image
patches instead of full images. By training the network on many
small patches of the original database images and changing those
patches for each round of training, the likelihood the network will
learn to recognize features specific to the training images is signif-
icantly reduced. This method also has the advantage of generat-
ing many more training samples per epoch than related techniques
such as random shifts, where an epoch is defined as the number of
iterations required for each image in the training set to be passed
through the network one time.

Each grayscale image is represented as a collection of N
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(a) Patch Size = 16×16
Iteration ×10
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(b) Patch Size = 32×32
Iteration ×10
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(c) Patch Size = 64×64

Figure 2: Effect of varying patch size on patchwise training error and test error. A patch size of 32 is found to be optimal, consistent with
the observations of [10] and [11].

32×32 pixel randomly sampled patches, where N = 32, with new
patches sampled each time an image is passed to the network.
Each patch is labeled with the parent image’s associated subjec-
tive utility score l. During training, a patch-wise Mean Average
Error (MAE) objective is minimized over the patches taken from
each parent image, while during testing the error is calculated for
each image by taking the mean predicted patch utility:

Epatchwise =
1
N
∗

N

∑
p=1
|yp− lp| Etest = |(

1
N
∗

N

∑
p=1

yp)− l| (1)

where yp and lp represent the predicted and ground truth util-
ity of patch p, respectively, and lp = l. To predict the utility of an
unlabeled image, the predicted utility of N patches randomly sam-
pled from the image are averaged. While more complex weight-
ing schemes were pursued in [11], simple patch-wise averaging
was found to yield the best performance for globally uniform
distortions, and tests on the CU-Nantes database confirmed this
observation. The network was trained using the Adam solver,
with a base learning rate α = 0.0001, β1 = 0.9, β2 = 0.999, and
ε = 1×10−8 [13]. While [11] uses color image patches, the CU-
Nantes utility database contains grayscale images only. Tests on
the LIVE image quality database reveal that the impact of color
channel information is minimal, with the omission of color result-
ing in performance loss of less than 1%.

The network architecture is shown in Figure 1. This VGG-
based network consists of two stacks of three 3×3 convolution
layers, with each stack followed by a 2×2 max pooling layer, then
one stack of two 3×3 convolutional layers followed by another
2×2 max pooling layer. The network depth was chosen based
on the finding that very low frequency image features are not im-
portant to the recognition of image utility [2, 6]. The inclusion
of two max pooling operations allows for the recognition of im-
age content over a range of spatial frequencies similar to that of
MS-DGU, and experimental results confirmed that the addition
of a fourth or fifth convolution stack did not significantly improve
performance.

The top of the network consists of one fully connected layer
with 128 neurons, sized to match the number of filters of the last
convolution layer, followed by a 1-D fully connected layer, with
the 1-D output representing the predicted utility of an input im-
age patch. All convolutional and fully connected layers are ac-
tivated through rectified linear unit (ReLu) activation functions,

and dropout is applied to the first fully connected layer with a ra-
tio of 0.5 to help prevent overfitting. Compared to the architecture
of Bosse et al., this network omits two convolution stacks consist-
ing of two layers each with 256 and 512 filters, respectively. As
a result, the network has approximately one tenth the number of
parameters. At the same time, this network has a larger filter ex-
tent in the first two convolution stacks with the inclusion of an
extra layer in each stack, allowing for greater sensitivity to lower
frequency content in shallow network layers.

Figure 2 shows the result of varying patch size. Test error
decreases when increasing the patch size from 16×16 to 32×32.
With a patch size of 32×32, training and test error converge to a
similar point. With a patch size of 64×64, test error converges to
approximately the same level as with 32×32 patches, while train-
ing error is lower, indicating overfitting. Additionally, reducing
N to 16 results in significantly higher error (not shown). Experi-
mental results suggest that a patch size of 32×32 is optimal, with
at least N = 32.

Performance Evaluation
The CNN described above was implemented using the Caffe

framework [14] on a machine with an Intel Core i7 processor and
NVIDIA GTX 970 graphics card. Training was conducted for
1000 epochs. A batch size of four images was used, correspond-
ing to 128 patches when N = 32. Batch sizes of anywhere from
two to eight work equally well. At the completion of each epoch,
a new set of N randomly sampled patches was generated for each
image. On this system, each epoch takes approximately 1 second.

Estimator performance is evaluated using the CU-Nantes
utility database, created by Rouse et al. [2]. Paired com-
parison experiments were conducted to collect subjective utility
and scores for a variety of images. The database consists of 9
grayscale reference images (scenes) and 235 distorted versions of
those references. All images are 512×512 pixels. Five types of
distortion are represented: JPEG Compression, Blocking (DCT
DC coefficient quantization), JPEG2000 compression using Dy-
namic Contrast Quantization [15], texture smoothing (TS, soft
thresholding of Haar wavelet coefficients), and texture smooth-
ing with high-pass filtering (TS+HPF). Some of these images are
so distorted that they are below the human recognition threshold;
in other words, their content is unrecognizable. A utility score
of zero corresponds to the recognition threshold, below which an
image is not useful as a substitute for the reference scene. An
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(a) Reference (b) JPEG – Utility = 9.58,
Quality = 1.72

(c) TS – Utility = 12.3, Quality
= 1.96

(d) TS+HPF – Utility = 8.35,
Quality = 1.56

Figure 3: [6] Reference image airplane and low-utility represen-
tations. Subjective utility on interval [0,100] (from not useful to
a perfect substitute). Subjective quality scores on interval [1,5]
(higher is better).

image with a utility score of 100 is visually identical to the ref-
erence, and scores above 100 represent an image which is more
useful than the reference.

Fig. 3 depicts a reference image distorted by several pro-
cesses, such that the resulting images are of low utility but above
the recognition threshold.

Following the convention of [2, 6], unrecognizable images,
with utility less than -15, are not included when testing the perfor-
mance of utility estimation algorithms. In this case, they also are
not included in the training set, reducing the number of images

Table 1: Performance of various estimators as utility estimators.
Full-reference estimators above horizontal divider, no-reference
estimators below. VGG-CNN refers to the VGG-based network
presented in this paper. Shown: Spearman’s ρ , Kendall’s τ , Pear-
son’s r, root mean square error (RMSE), outlier ratio (OR). †
Quality estimators, but used to estimate utility. * Full-reference
estimators.

Utility Estimator ρ τ r RMSE OR

PSNR †* .520 .422 .414 34.1 .859
VIF †* [16] .959 .821 .943 12.4 .583
NICE* [2] .937 .785 .935 13.3 .460
MS-DGU* [6] .966 .838 .967 9.5 .436
NIQE [8] .928 .752 .892 16.95 .638
OG-IQA [9] .901 .712 .905 16.0 .650
Kang-CNN [10] .934 .766 .928 15.46 .632
BRISQUE [7] .931 .766 .934 13.5 .558
VGG-CNN .942 .779 .946 12.3 .549

to 163. The database is split into training and test sets using a
leave one out methodology. The nine scenes are split nine times.
In each split, one scene is left out for testing, and a network is
trained on the other eight. A different scene is left out in each
split, so each image in the dataset is tested once. The predicted
utility scores and ground truth labels from each split are then con-
catenated to calculate overall network performance.

The results of tests on the CU-Nantes database are shown
in Table 1 for several full-reference and no-reference estimators,
where algorithms above the horizontal line are full-reference and
those below are no-reference. Three correlation metrics are re-
ported: Pearson linear correlation and Kendall and Spearman rank
correlation. It has been shown that an affine transformation is suf-
ficient to map objective utility estimates to the range of subjective
values contained in the CU-Nantes database, and all three corre-
lation measures are applicable [2, 6]. Also reported are two ac-
curacy statistics: RMSE and outlier ratio (OR). The outlier ratio
represents the proportion of estimates which are outside two stan-
dard deviations of the mean opinion score. A higher OR indicates
lower reliability of an estimator as compared to human observers.
Estimators not already described include PSNR, presented purely
due to its ubiquity, and Visual Information Fidelity, which was
designed as a quality estimator, but was found to outperform
other quality estimators when applied to the task of utility esti-
mation [16, 2]. The network described in this paper is shown in
bold as VGG-CNN, and matches or outperforms VIF and NICE,
both well-performing full-reference estimators. Though it cannot
match the accuracy of MS-DGU, it predicts utility better than all
other no-reference techniques tested, and is potentially useful for
many more applications than a full-reference algorithm. While it
takes time to train a neural network, once the network is trained
the speed of utility prediction for a given image is comparable to
other methods.

Additional testing was done to measure the performance
degradation when each type of distortion from CU-Nantes was
excluded from the training set. These results are shown for
BRISQUE and the VGG-CNN in Table 2, with MS-DGU bro-
ken down by distortion type for comparison (note that MS-DGU
is not a trained estimator). The nine train and test splits were split
a second time by distortion type. The score for each distortion
represents the concatenated predictions of networks which were
trained on data not including that distortion type. The overall re-
sults (in the rightmost column) are generated by concatenating the
predictions for all splits. While overall performance is certainly
worse when the VGG-CNN is tested with distortions not present

Table 2: Pearson correlation of BRISQUE and VGG-CNN pre-
dictions with CU-Nantes ground truth scores when tested on dis-
tortion types not included during training. Also shown are results
for the same VGG-CNN model after additional fine-tuning (FT)
including each distortion type, and MS-DGU’s performance by
distortion type. J2K = JPEG 2000, TS = Texture Smoothing, and
TS+HPF = Texture Smooothing + High Pass Filter.

Ut. Estimator JPEG J2K TS TS+HPF All

MS-DGU [6] .975 .970 .973 .962 .967
BRISQUE [7] .820 .902 .941 .927 .821
VGG-CNN .903 .942 .930 .895 .872
VGG-CNN (FT) .953 .962 .943 .908 .942
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(a) Distorted Input Image (b) 32×32 Patch

(c) Network response to patch after third Conv3-32 layer

(d) Network response to patch after third Conv3-64 layer

Figure 4: Network response to one randomly sampled 32×32 patch from a JPEG distorted image. (c) and (d) show a sampling of filter
responses to the patch after the third Conv3-32 and third Conv3-64 layers, respectively. The first convolution stack clearly emphasizes
image contours, while the second stack appears to capture more complex relationships relating to image content around those contours.

in the training set, its performance degrades significantly less than
that of BRISQUE when tested on JPEG and JPEG 2000 distor-
tions. BRISQUE does a better job evaluating texture smoothed
images, but overall the VGG-CNN experiences less performance
degradation than BRISQUE. Both BRISQUE and the VGG-CNN
suffer when tested on high-pass-filtered images in comparison to
MS-DGU, indicating a sensitivity to unimportant low frequencies.

Furthermore, if a VGG-CNN model encounters previously
unseen types of distortion, those distortion types can then be in-
corporated into the training data and the model fine-tuned based
on new information, without having to retrain from scratch. Line
4 of Table 2 shows the result of retesting the models of Line 3
after 150 epochs of fine-tuning, where the network is initialized
with previously learned parameters at the start of training. Per-
formance returns nearly to the level of the network trained from
scratch on all distortion types (shown in Table 1). The VGG-CNN
approach is adaptable in the event system parameters change or
unexpected conditions are encountered.

Examining the first two convolution stacks of the network
provides some clues as to the type of features being learned. Fig-
ure 4 shows an undistorted input image, a randomly sampled
patch, and a sampling of filter responses from the first and sec-
ond convolution stacks. The network appears to emphasize image
contours and features of the surrounding image content, consis-
tent with early phases of previously developed full-reference util-

ity estimators.

Finally, Figure 5 shows the result of applying the network to
an image not included in the CU-Nantes database, using the same
distortions as those on which the network was trained. The re-
sults shown indicate that the presented neural network approach
is not scale invariant. The network’s lack of scale-invariance is
likely related to the contents of the CU-Nantes database; images
in the database are the same size, and were viewed at a fixed dis-
tance. Possible approaches to address this issue include training
the network with a more comprehensive database, which does not
currently exist, or pursuing additional pre-processing steps.

Conclusions
Utility can be predicted reliably without a reference image

by employing deep convolutional neural networks. The dCNN
model proposed generalizes to distortion types outside the train-
ing set with less performance loss than other no-reference ap-
proaches, and the models are easily adaptable to new types of
distortion with relatively little additional training. Additionally,
activations of the first few network layers are consistent with early
stages of specifically designed full-reference quality estimation
algorithms. These attributes, combined with the lack of a require-
ment of a reference image, render this approach more adaptable
to varying applications than other techniques.
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(a) Predicted Utility = 5.3 (b) Predicted Utility = 19.1 (c) Predicted Utility = 8.9
Figure 5: Size 2560×2048 image. (a) and (b) compressed with Jpeg2000 with a target bitrate of 0.01 and 0.05, respectively. (c)
compressed with JPEG with a quality factor of 3. If the images are resized to 640×512, matching the size of CU-Nantes database images,
predicted utilities are 32.9, 74.8, and 85.9, respectively.
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