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Abstract
Remote teleoperation of robotic manipulators requires a ro-

bust machine vision system in order to perform accurate move-
ments in the navigated environment. Even though a 3D CAD
model is available, the dimensions and poses of its components
are subject to change due to extreme conditions. Integration of
a stereoscopic camera into the control chain enables more pre-
cise object detection, pose-estimation, and tracking. However,
the conventional stereoscopic pose-estimation methods still lack
robustness and accuracy in the presence of harsh environmental
conditions, such as high levels of radiation, deficient illumination,
shiny metallic surfaces, etc. In this paper we investigate the abil-
ity of a specifically tuned iterative closest point (ICP) algorithm to
operate in the aforementioned environments and suggest algorith-
mic improvements. We demonstrate that the proposed algorithm
outperforms current state-of-the-art methods in both robustness
and accuracy. The experiments are performed with a real robotic
manipulator prototype and a stereoscopic machine vision system.

Introduction
Computer Aided Teleoperation (CAT) usually implies sev-

eral different aspects or tools within the robotic operation chain.

The main goal of the teleoperation in our application is to per-

form maintenance and tool manipulations with several kinds of

objects inside a radioactive fusion reactor, where human presence

is prohibited.1

In order to perform operations during the reactor mainte-

nance break, a robotic manipulator must insert different tools in-

side several mounting holes for the different pre-defined reactor

components. Even though the 3D CAD models of the components

to be manipulated are known with high accuracy in advance, these

elements are subject to small drifts in their poses, which have six

degrees of freedom, and material deformation due to extreme heat

and magnetic loads during machine operation. For precise and re-

liable teleoperation, the environment dimensions and poses have

to be estimated accurately and converted into the robot’s world

coordinates [1]. Once that relation, that is, the rigid-body trans-

formation is found, operations such as tool pickup, insertion, turn-

ing, retraction, and putting down can be made semi-automatic.

The problem of pose estimation, however, remains challeng-

ing, due to the harsh environment within the chamber. Radiation
tolerant cameras are the only sensors capable of working in the

chamber, and no stationary equipment is allowed. Apart from the

1The nuclear-fusion reactor, constructed within the ITER project
(http://www.iter.org).

low resolution and grayscale output of these cameras, other limi-

tations connected to the environment are also present, including a

high level of image noise due to the radiation; deficient illumina-

tion of the scene due to constraints on available light sources; non-

Lambertian reflectance of shiny metallic surfaces and objects, etc.

All these are difficulties that make any vision-based object detec-

tion and pose-estimation system problematic.

A previous study on pose-estimation CAT systems based on

the 3D template matching algorithms showed significant limita-

tions of the monocular approach [2]. In our application [3], we

use a stereoscopic camera mounted to the last joint of a robot

manipulator as a sensing tool to perform vision tasks, object de-

tection, and pose-estimation. The same camera system can also

be used by the operator, for instance when inspecting objects or

the robot itself.

A stereoscopic camera system can reconstruct the geometry

of a 3D scene based on stereo correspondences. Subsequently, it

generates a depth map in the form of a grayscale image describing

the geometry. We utilize this property in order to recover a 3D
point cloud representation of a scene, then try various iterative
closest point (ICP) alignment approaches [4, 5] in order to detect

and finally recover the pose of a target object.

Problems and Limitations
Current ICP methods are limited by the use scenario. Depth

maps and point clouds generated by a stereoscopic camera sys-

tem are significantly degraded due to various factors of the oper-

ating environment, and thus only a small portion of points can be

trusted. For instance, the depth of shiny surfaces usually cannot

be well estimated due to violation of the Lambertian reflectance

model. High levels of noise can also result in false matches within

textureless areas, and low-resolution grayscale imagery signifi-

cantly limits the discriminative power of the stereo-matching al-

gorithms. All these difficulties result in systematically erroneous

depth values (outliers), which significantly disorient conventional

general-purpose ICP methods.

Strong luminance gradients are the only features in the stereo

images that can be trusted for their error-free behaviour. In the

textureless and smooth scenes, strong image gradients usually

correspond to object boundaries or significant changes in the sur-

face (e.g., slope). In contrast to other robust image features, such

as scale-invariant features (SIFT) [6] or speeded-up robust fea-

tures (SURF) [7], image gradients are much denser and tolerate

image noise.

Nevertheless, using the object boundaries as matching prim-

itives can also limit the selection of the underlying ICP method.
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As the surface normals generally cannot be estimated at borders

and object edges, only point-to-point minimization is possible.

More advanced point-to-plane [8] or generalized plane-to-plane
[9] minimization approaches cannot be utilized.

The recently proposed edge-point ICP method [4] is capable

of operating within this type of constraints. The method success-

fully works when the estimated point cloud contains few outliers

and when a good initialization point is provided. From the al-

gorithmic point of view, outliers are not only wrongly estimated

depth values, but also points that have no corresponding points in

the target (model) point cloud, or vice-versa.

Another substantial property of depth-from-stereo methods

is the generation of content-dependent occlusion artifacts in their

output. Occlusion hole-prediction methods exist, but they all rely

on high-quality depth of the neighboring zones and use some

guessing mechanisms, which is not allowed in precise alignment

tasks. During the preparation of reference point clouds, based on

the supplied CAD models, such artifacts are usually not taken into

account, as it is not possible to predict from which viewpoint the

object will be captured. Thus, large numbers of reference points

may become outliers, with no corresponding point in the esti-

mated cloud. Depending on the number of mismatched points,

performance of the ICP alignment can be seriously degraded.

Contributions
In this paper we propose an efficient method to increase the

robustness and the accuracy of the ICP alignment in which tar-

get point clouds are estimated using stereoscopic capture in the

harsh industrial environments. We use the approximate planarity
assumption in order to recover good initialization points for the

ICP algorithm and illustrate its suitability for successful conver-

gence. In contrast to conventional methods, we also use dynami-

cally sampled reference point clouds, especially targeted to each

particular stereo-observation. We model artifacts appearing in the

depth-from-stereo methods in order to minimize the number of

outliers in the reference clouds and thus increase final alignment

accuracy.

Prior Art
Depth-from-Stereo

Estimation of the scene geometry from a binocular camera

setup is usually called stereo-matching or the depth-from-stereo
problem. Even though this field is already well developed, and

many advanced techniques are available, in our problem we not

only required estimating the depth but also correctly manipulat-

ing the depth values, projecting them back to the 3D space with

real-world coordinates. Therefore, conventional stereo-matching

methods, based on stereo-image rectification [10], might under-

perform due to the introduction of artificial camera transforms and

excessive image interpolation steps. Moreover, a deviation from

geometrically parallel camera configuration is possible (e.g., the

camera optical axes might be crossed), thus introducing substan-

tial image deformation in rectification-based methods.

Instead, plane-sweeping depth estimation methods, using

calibrated camera parameters, allow direct processing of the cap-

tured imagery [11]. Figure 1 illustrates the depth-estimation

method, based on the plane-sweeping principle. In this method,

the entire observable scene is divided into a number of fronto-

parallel planes (hypothesizes), where stereo correspondences

might be found. Such hypothesizes can be selected for example

by selecting the possible depth range (i.e., minimum and maxi-

mum possible depth values) and number of layers, which controls

the trade-off between fidelity and computational complexity of

the method.
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Figure 1. Illustration of the plane-sweeping principle of the
depth-from-stereo estimation methods

For every hypothetical depth z j , one can project a pixel

(u1,v1) from a reference camera to a 3D space, using pre-

calibrated camera matrix C1:

X j =C−1
1 ẋ1, (1)

where ẋ1 is the homogeneous projective coordinate of a current

pixel ẋ1 = (u1 · z j,v1 · z j,z j,1)
T , X j is the resulting point coordi-

nate in a 3D space; and j = 1, ..,N where N is the selected number

of layers.

Every obtained 3D point X j can be further projected onto the

sensor plate of a second camera using a similar equation:

ẋ2 =C2X j (2)

where ẋ2 is a projective pixel position in a second camera image

plane, and the actual pixel coordinates can be recovered as:

u2 =
ẋ2.x
ẋ2.z

, v2 =
ẋ2.y
ẋ2.z

(3)

Similarly to conventional rectification-based methods [10],

one can construct a 3D cost volume, in which pixel dissimilarities

are calculated between the original pixel in the reference camera

and the corresponding pixel in the second one:

C(u,v, j) = ‖I1(u1,v1)− I2(u2,v2)‖, (4)

where I1 and I2 denote the first and second images, respectively,

and because the (u2,v2) coordinates are not necessarily integers,

the corresponding sampling should be performed for instance

with bilinear interpolation.

After appropriate cost aggregation [11], the depth map can

be recovered by using the so-called winner-takes-all approach:

Z1(u,v) = z ĵ, ĵ = argmin
j

C̃(u,v, j), (5)

where C̃(·) denotes the aggregated cost volume.

The coordinates of the point cloud in the reference camera

can now be reconstructed using the same equation as in (1), re-

placing z ĵ with the estimated value.
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ICP Methods
Since the first invention of the ICP method [12], many up-

dates have been proposed [5, 4, 13]. One of the directions for

improvements has been reducing the influence of outliers on the

global error. Thus, many widely accepted techniques remove too

many point correspondences while calculating global error [5]. A

number of linearized methods were suggested using SVD [14],

quaternions [15], and dual quaternions [16] for minimizing the

error metric with a closed-form solution. High quality of the

sensed (input) point cloud is an essential requirement for conven-

tional ICP algorithms. A relatively moderate fraction of outlying

points in the input cloud can significantly degrade performance

of the method, thus preventing its usage for real-world applica-

tions. This is an important aspect for point clouds estimated via

stereoscopic camera in harsh environments. As the passive vision

systems (including depth-from-stereo methods) usually fail in the

presence of textureless or shiny (i.e., non-Lambertian) surfaces,

their depth maps become corrupted with a high number of false

estimates. Consequently, input point clouds could be contami-

nated with outliers, thus preventing use of the technique for pose

estimation tasks.

Edge-point ICP [4] uses an additional type of filtering step,

where points not connected to a strong image gradient are re-

moved from the point cloud. Even though this operation can sig-

nificantly reduce the number of available points in the cloud, their

discriminative power significantly improves, thus resulting in bet-

ter performance, especially in cases when textureless areas domi-

nate the scenes.

HandEye Calibration and World Coordinates
The object pose in terms of camera coordinates has to be

transformed into robot world coordinates, for which hand-eye

calibration [17] is needed. Figure 2 indicates the relationship

between the robot end-effector, the camera, and the object in the

world coordinates with the formula:

P = R ·X ·A (6)

where P is the required pose of an object, A is the estimated

alignment in the camera coordinate space, X is the eye-hand

transformation matrix, and R is the current position of the robot

hand/wrist.

Object

Robotic
Manipulator

End Effector 
(Hand)

Camera 
(Eye)

Robot Base
P

A R
X

Figure 2. Hand-eye calibration and world coordinates

Sampling of CAD Models
Sampling of CAD models is usually done once during algo-

rithm development and all estimated points in the point cloud are

matched against this reference cloud.

An example of sampling of CAD models is provided in Fig-

ure 3, which shows a sensed point cloud before alignment.

(a)

(c)

(b)

(d)

Figure 3. Sampling of CAD model: (a) given image, (b) raw
depth, (c) depth after L2R, and (d) depth after sampling

Proposed Method

Typical industrial environments, which are also considered

in our application, usually contain many planar surfaces. Such

surfaces are easier to manufacture and they are more convenient

when constructing large-scale structures. Target objects can also

be considered as having at least one major planar surface, facing

the stereoscopic sensor. Even though a strict planarity constraint

may not be fully satisfied due to obstacles and other features on

the object surface, often we can still rely on the approximate pla-
narity of the surfaces. In our method, we propose imposing such

constraints in order to estimate a good initialization point for the

alignment algorithm and to avoid point mismatches due to occlu-

sion artifacts.

The point cloud estimated from a scene can be analyzed for

the presence of plane structures. This can be done, for instance,

using the random sample consensus (RANSAC) [18] plane-fitting

method. General plane-fitting methods in 3D point clouds usually

utilize a generalized plane equation:

ax+by+ cz+b = aT x̂ = 0, (7)

where a = [a,b,c,d]T is the vector of plane parameters to esti-

mate, and x̂= [x,y,z,1]T is the homogenous point coordinate from

the cloud.

A conventional way to perform the analysis is to select three

random points from the cloud, fit the plane parameters and esti-

mate the number of other points that belong to the same plane with

some kind of tolerance. The process is repeated multiple times,

and the plane equation containing the largest number of inliers is

considered the largest plane found in the scene.

As the point cloud estimated with the stereo-camera setup

usually does not capture highly slanted or parallel-to-the-optical

axis planes, we can utilize a relaxed plane equation:

z = ax+by+ c = aT
s x̂s. (8)

Following a similar RANSAC methodology, the matrix of

three selected points X and the vector of corresponding depth val-

ues z can be utilized to recover the plane parameters using the
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Moore-Penrose pseudo-inverse:

X =

⎛
⎜⎜⎜⎝

x1 y1 1

x2 y2 1
...

...
...

xn yn 1

⎞
⎟⎟⎟⎠ ,z =

⎛
⎜⎜⎜⎝

z1

z2

...

zn

⎞
⎟⎟⎟⎠ (9)

as = z ·XT (XXT )−1 (10)

Here, n = 3 for the initial plane estimation and can be arbitrary

during the plane refinement stage, when plane parameters are es-

timated using all the found inliers. Inliers can be selected using

pre-defined threshold value θ , as points whose distance to plane

is lower than a threshold |axi +byi + c− zi|< θ .

The parameter θ can also control the expected proximity of

an object surface to a plane model. For objects with dominating

planarity, θ can be reduced to account only for possible depth

estimation errors, while for objects containing many bumps or

cavities, larger values of θ can be beneficial.

When the CAD model is aligned with its major plane (i.e.,

model origin and X-Y coordinates belong to it), the obtained

plane parameters can directly be used to estimate good initial-

ization of the rotation matrix. Two of the Euler angles can be

estimated as:

βx = tan−1b, (11)

βy =−tan−1a, (12)

where βx and βy are Euler angles around X and Y axes, respec-

tively.

Rotation around the Z axis cannot be estimated by such a

coarse method; however, the generic assumption of vertical cam-

era orientation can still be used to provide meaningful initializa-

tion. As a guess for an initial translation, we use the median-

centroid of a point cloud. This assumption may introduce certain

limitations of the method, particularly when a significant part of

the surrounding scene is also visible to the stereo camera setup.

Advanced CAD Model Sampling
Apart from the transform matrix, we also propose a method

to reduce the number of mismatches in the point cloud estimated

by using the depth-from-stereo method. As the rotational compo-

nent in the true underlying transformation can be arbitrarily large,

projective distortions appearing in the sensed images may be sig-

nificant. We use dynamic CAD model re-sampling as a mecha-

nism to reduce possible outliers in the model point cloud, hence

improving the accuracy of the final alignment.

In conventional ICP methods, the model point cloud is usu-

ally statically defined and re-used every time a new observation

is made. In practical cases, however, excessive numbers of mis-

matched points prevents this use.

We use heuristics in order to remove possible outliers from

the reference cloud. For instance, a left-to-right correspondence

check rendering is done with the transform found in the initial

alignment step. We render images for both the reference and sec-

ondary camera (with the same configuration as in the stereoscopic

setup). This allows us to apply the same left-to-right correspon-

dence check as in the estimated depth. We use rendered images

of a CAD model to find strong edges in the scene and prepare a

point cloud according to the same process as for the source point

cloud. Applying these heuristics, the reference cloud contains the

same amount of occlusion and similar results with regard to the

edge properties as the source cloud.

For efficient processing, we propose the following scheme.

Figure 4 shows the procedure per frame.

CAD 
Model

Model Re-
positioning

Reference 
Point Cloud

Stereo 
Images

Source Point 
Cloud

Depth 
Estimation

Robust 
Sampling

ICP 
Alignment

Estimated 
Pose (R,T)

Robust 
Sampling

Pre-
alignment

Initial 
Pose

Figure 4. Flowchart of proposed ICP implementation

Standard edge-point ICP initializes its model point cloud by

sampling only once, which is not robust in the case of a stereo-

scopic camera. Thus, in our proposed ICP (new blocks within

the dashline), we render our CAD model such that it shows ap-

proximately what the camera is seeing. The model point cloud is

estimated every time using the pre-alignment, and we sample the

CAD model relative to our initial estimated alignment.

1100
-400

-200

-400

0

200

400

600

1000-200 0 900200 400800

Figure 5. Comparison of sampled point cloud; Red, sensed;
Green, standard ICP; Blue, proposed ICP

As we can see in Figure 5, the blue point cloud has a better

initialization point than the green one, which helps to overcome

the issues with local minima.

Experiments
In order to validate the proposed method, we run two sets of

experiments, based on photographs of two target objects, namely

a CLS mockup and a knuckle, illustrated in Figure 6. The CLS

mockup is made of steel, from laser-cut sheet material welded to-

gether with high precision, while knuckle was mainly 3D printed

with a fused deposition modeling (FDM) printer, sanded, and then

painted with shiny metallic paint; the manufacturing accuracy is

thus lower for the knuckle. Surrounding elements in the knuckle

were made with precise steel-cutting approaches. Overall, both

target objects well represent the expected reflectivity and texture-

less properties of the application, as well as corresponding to an

underlying CAD model with tolerances up to 0.2 mm.

In order to obtain a comprehensive set of experimental data,

we gathered a significant number of stereo-images using different

camera offsets, orientations and different illumination conditions.

Overall, 31 stereo-pairs per target object were acquired using the

calibrated stereo camera setup. Camera positions were selected

such that for the closest (to the object) camera position, the target

object barely fit in the camera view, while for the position further

away from the target objects, it occupies just a small fraction of
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the image, representing a wide range of distances. Figure 6 shows

two of the acquired images.

(b)(a)

Figure 6. Sample images of (a) “CLS-mockup” and (b)
“knuckle” objects used in the experiments.

The main goal of our experiment was to estimate the robust-

ness, reliability, and accuracy of the proposed method as well as

to compare it with competing approaches. In order to estimate

robustness, for every acquired stereo-pair we independently ran

the alignment algorithm 30 times and measured the number of

false pose estimates, that is, when the aligned object completely

disagrees with the acquired data.

This can be done in semi-automatic mode, in which the soft-

ware asks the operator to confirm whether current alignment was

successful. Figure 7 shows two alignment results, where the CAD

model was projected to the camera space and rendered according

to the estimated object pose. Two images, the acquired and the

rendered one, are combined together in different color channels

and presented as a single RGB image, which we refer to as the

“augmented” image. Such representation can easily be evaluated

by the operator for correctness of alignment and thus be selected

as correct or not.

(a) (b)
Figure 7. Example of ICP alignment with augmented images: (a)
successful, (b) unsuccessful

The 31 observations of every stereo-pair provided a number

of pose estimates, including the relative rotation and the transla-

tion between the camera and the CLS mockup or knuckle. We

used semi-manually estimated positions as the threshold for se-

lection of correct estimates, or inliers. All inliers from these ob-

servations are averaged together in order to obtain the centroid of

the estimated points. Now, by measuring the Euclidean distance

between the centroid and every other estimate, one can obtain the

average displacement (deviation) for this particular stereo-pair.

While taking an estimated Z (depth) value as a reference variable,

one can plot a figure in which the horizontal axis represents depth

(Z-distance between camera and the object) and the vertical axis

shows the respective deviation value. Figure 8 and Figure 9 show

these graphs for a few different experiments.

As we can see, when the target object is too close to the

camera, it can no longer observe all the distinctive edges. This in-

dicates a general lower limit of the pose-estimation system where

too-close observations are not reliable. In addition, the images

show that both the CLS mockup and the knuckle achieve good

accuracy and stability within the middle range. This can be ex-

plained as fairly consistent behavior within the expected opera-

tional range. With the increase in distance, the repeatability error

grows but also becomes unstable, which could suggest the exis-

tence of an upper limit for the system. This limit, however, was

not reached during these sets of experiments.
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Figure 8. Number of outliers for CLS mockup and knuckle
datasets.
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(b). “Knuckle”
Figure 9. Position stability (repeatability) for CLS mockup and
knuckle datasets.

A similar procedure can be done for the rotational part of the

found transforms. We extract the rotation matrix from each es-

timated transform and convert them to a vector of Euler angles.

Then, the mean Euler angle value for one image is chosen as the

correct rotation, and the error in the rotations is expressed as the

difference between the mean Euler vector and the rest of the vec-

tors. In order to obtain a single variable out of all the observations,

we convert the angular error vectors to a list of combined errors,

taking the L2 norm of each vector. Then, the mean value of all

combined errors is taken to represent the integral error metric for

one particular image. The process is repeated for every image in

the dataset in order to obtain a closed curve.
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Figure 10. Angular stability (repeatability) for CLS mockup and
knuckle datasets.

Figure 10 exhibits similar performance of the method as in

Figure 9. The optimal range of the system is reached in the range
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of 65 to 100 cm, and the the overall integral angular error is on

the order of 0.02 to 0.05 rad.

Conclusion
The measurement of repeatability error demonstrates fairly

consistent behavior, even though the target object was imaged

from different perspectives. Overall, our proposed method has

shown more robustness and accuracy than the standard edge-point

ICP method in terms of the number of outliers and precision of

pose estimation. The results verify the effectiveness of the pro-

posed method.
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