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Abstract 

Particular motions are important to play sports with high 
performance. The particular motions are mastered by learning 
motions, and visual information is considered to be effective for 
understanding and learning motions. In recent years, HMD with 
VR has been introduced as a new tool for learning motions with 
visual information. An advantage of the HMD-based motion 
learning method is that it enables learners to switch their 
observation view. Here, this research investigates basic view 
characteristics of observing and reproducing particular dynamic 
motions, which would be necessary to develop some methods for 
switching observation view properly. An experiment was 
conducted in order to study the basic view characteristics. As for 
the observation view factor, we prepared two factor levels, one 
was the front mirror view, and the other the rear camera view. In 
the experiment, a subject recognized and reproduced some 
reference dynamic motions on real time with each of the two views. 
The experimental results revealed that the reproduction 
performance with the rear camera view was significantly better 
than that with the front mirror view in the case of the depth-
directional motions, compared with the other case of the depth-
uncorrelated motions. It should be noted that the difference in the 
motion reproduction may become crucial for learners in particular 
as the motion velocity increases. It is supposed that the 
observation with the front mirror view requires some mental 
transformation operation when the learners reproduce motions. In 
selecting the observation view, it is required to minimize the 
mental transformation operation. The requirement is expected to 
be satisfied with the rear camera view, provided that occlusions 
are not crucial for learners to observe reference motions. 

Introduction  
 Mastering some particular motions such as those in ball 
games, martial arts, and dances is quite important to play them 
with high performance. To acquire motion skills, we have learned 
motions by observing and imitating expert motions through videos 
and photos. Many researchers have studied such kind of vision-
based motion learning method and demonstrated that visual 
information is effective to understand and learn motions. 

In recent years, the vision-based motion learning methods 
have been changed as a result of technological progress of virtual 
reality (VR) technologies: the progress replaced the conventional 
device such as videos and photos with head mount displays 
(HMDs) to provide visual information.  

For example, Bailenson et al. compared the VR-based motion 
learning method with the conventional video-based one. Then, it 
was proved that learners acquired more immersive feeling and 
recognized reference motions more accurately with the VR method 
than with the conventional one [1]. Roosink et al. demonstrated 
that VR has a potential for motion learning from the standpoint of 
the recognition accuracy [2]. Thus, it is considered that the HMD-

based motion learning method with VR is superior to the 
conventional ones from the following points. 
 
1. Interactivity 
 The sensors built in HMDs detect their wearer's movements, 
and the movement information can be transmitted to the motion 
learning system as feedback signals. Then, the wearer is able to get 
visual information on which the movements are reflected. 
2. Immersivity 
 HMDs provide binocular stereopsis to their wearer. The 
feature encourages the wearer to recognize particular motions 
better: in particular, it is supposed to be effective when the wearer 
focuses on depth-directional motions, which are generally difficult 
to be recognized through conventional videos. 
 3. View switching 
 It is difficult to change view angle of reference motions on 
videos, although applying a proper view for motions is 
considerably crucial. While, HMDs enable the wearer to switch 
their view to observe reference motions. 
 

Among the three advantages of VR on motion learning, this 
research focuses on the third feature of view switching. The reason 
is that it is quite a difficult task to master motions in the case that 
the motions are composed of instantaneously successive postures 
and just a few duration time is given to observe each of the 
postures. In the case, applying a proper observation view is 
particularly important to get learners easier to recognize the 
dynamic motions. Also, the proper views differ depending on 
many factors such as postures and movements of the reference, the 
level of proficiency of the learners, etc. Based on these features, it 
is supposed that implementation of view-switching is a key 
function to develop the HMD-based motion learning methods with 
VR in the future. Here, this research investigates basic view 
characteristics of observing and reproducing particular motions 
that would be necessary to develop a view-switching function. 

Observation view 
 

Classification 
 In this chapter, two specific learner’s views for observing 
reference motions presented by an avatar are introduced. 
 
1. Rear camera view 
 Ordinarily, we observe the motions of another person, i.e., an 
avatar in the situation of this paper, at a frontal position about 
them: it is called the front camera view in the followings. On the 
contrary, the rear camera view is a specific view with which 
learners directly observe avatar’s reference motions at a rear 
position (Fig. 1 (a)). This view allows learners to observe reference 
motions in the same coordinate system as the learner-centered one: 
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it means that, different from the front camera view, neither the 
right-and-left inversion nor the front-and-back inversion does not 
occur, and the learner does not need to perform mental 
transformations.  However, it has a disadvantage that learners 
suffer difficulties when observing reference limb parts occluded by 
their trunk. 
 
2. Front mirror view 

The front mirror view is another view with which learner can 
see horizontally inverted reference motions in a frontal position 
(Fig. 1 (b)). This view has learners observe reference motions in 
the mental mirror-transformed coordinate system: although the 
front-and-back inversion as in the front camera view is remained, 
the right-and-left inversion is removed. It, in most cases, enables 
learners to observe reference motions without any occlusions of 
limb parts behind their trunk as in the front camera view. Fraser et 
al. adopted this view for their proposed motion learning system, 
YouMove [3]. 
 
 While the front camera is usually applied to videos and 
movies for motion learning. We, however, consider that the rear 
camera is superior to the front camera on a situation that learners 
are trying to master motions except that body parts were not 
occluded by other ones. This is based on an assumption that the 
front camera involves the front-and-back inversion. These 
inversions could impose some mental transformations on learners 
to recognize the moving direction. That's why, it is predicted that 
observation with the front mirror view requires more time to 
recognize and reproduce presented motions than the rear camera. 
 
 

 
 
 

Figure 1. View classification  

Experiment 
 An experiment was conducted in order to investigate the 
performance differences of motion recognition and reproduction in 
relation to the observation views in VR environments. As the 
observation view factor, the front mirror view and the rear camera 
were prepared as explained in the preceding section. One subject 
participated in the experiment as a learner: an HMD, controller and 
tracker were equipped with them. The learner was able to observe 
an avatar as a reference through the HMD. The subject was 
instructed to recognize and reproduce the reference motions in real 
time. The reproduced motions were measured and evaluated to 
compare the performances between the two views. 
 

Reference motions 

 Some right hand strokes were selected as reference motions. 
For deciding the reference motions, a moving area of the right 
hand was set, considering the motion range limitation of the 
subject’s arm. The x-coordinate of the left- side boundary of the 
area was set at the same value as that of the learner's shoulder 
position in order to avoid the occlusion of the right hand behind the 
avatar's head and trunk (Fig. 2). 
 The reference motions were comprised of six strokes. The 
minimum-jerk straight-line trajectories were employed: it is 
assumed to be the most general model representing human 
motions. That is, each of the stroke motion trajectory, 𝑃"(𝑡) was 
generated by the following equations. 

 
 (1) 

 
 

(2) 
 
 

(3) 
 
 

(4) 
 
 

Let us denote the start position and end position on the 𝑖'( stroke 
by 𝑃)'*+'_- and 𝑃./0_- as in the followings. 

 
(5) 

 
(6) 

 
 
The next stroke’s start position, 𝑃)'*+'_(-12), is identical with 
𝑃./0_- . The start position of the 1)'  stroke and the end point of 
each stroke were randomly given inside the moving area. The 
variable, ℎ)'+56., is a constant to give the right hand height: 1.4 
[m] was set as ℎ)'+56.  from the ground in this experiment. The 
variable, 𝜏, is a parameter to give the instantaneous position at the 
elapsed time, t, from which the reference started to perform the 
current stroke and is defined as follows. 

 
 (7) 

 
 

 (8) 
 

 
Where 𝑇- is the duration time to perform the 𝑖'( stroke motion, and 
𝜈- is the average speed on the 𝑖'( stroke. Six levels of speeds were 
employed; they were 0.1, 0.2, 0.3, 0.4, 0.5 and 0.6 [m /sec]. 
 

Experimental device and software 
 To constitute a VR environment, HTC Vive HMD was 
adopted. It has SteamVR tracking, G-sensor, gyroscopes and 
proximity sensors, so that they measure wearer's head motions, and  
enhance wearer's immersivity by feedbacking the motions for 
displaying stereo images. The HMD display provides the 
resolution of 1080 × 1200 pixel image, the refresh rate of 90 Hz 
and the field of view of 110 degrees. Also, the learner wore a Vive 
tracker on their right wrist and held a Vive controller in his left 

(b) Front mirror view (a) Rear camera view 

𝑃:(𝑡) = (𝑥:(𝑡), 𝑦:(𝑡), 𝑧:(𝑡)), 

𝑥:(𝑡) 	=		
𝑥)'*+'_- + B𝑥./0_- − 	𝑥)'*+'_-D ∙ (6𝜏G − 15𝜏I + 10𝜏K), 

𝑦:(𝑡) 	= 	ℎ)'+56. , 

𝑧:(𝑡) 	=		
𝑧)'*+'_- + B𝑧./0_- − 	𝑧)'*+'_-D ∙ (6𝜏G − 15𝜏I + 10𝜏K). 

𝑃)'*+'_- = 	 (𝑥)'*+'_-, ℎ)'+56., 𝑧)'*+'_-), 
 
𝑃./0_- = 	 B𝑥./L_M, ℎ)'+56., 𝑧./L_MD. 
 

𝑇- = 	
N(𝑥./0_- 	− 	𝑥)'*+'_-)O +	 (𝑧./0_- 	− 	𝑧)'*+'_-)O

𝜈-
. 

𝜏 = 	
𝑡
𝑇-
, 
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hand. The tracker was used for measuring learner's hand motions 
in the experiment, and the controller was for learner's signaling 
completion of their specific experimental operations.  
The software for the experiment was developed using Unity game 
engine. The experimental software was executed on a Windows 
desktop PC, and transmitted images to the HMD connected to the 
PC. 
 

 
Figure 2. Movable area: The reference motions were presented as the 
reference’s right hand moved inside the above blue-colored area. And the 
reference motions were comprised of some stroke motions. As an example, 
the start position and the end position of each stroke are shown, randomly 
given inside the blue-colored area. 

 
Figure 3. Experimental device: HTC Vive head mount display, tracker and 
controller were used in the experiment. 

Experimental procedure 
 At the beginning of the experiment, the learner put on the 
experimental devices. Then, the learner was to see a reference with 
each observation view. The information board showed the 
reference's right hand position and the learner's actual right hand 
position as 3-dimensional coordinate values. Here, the learner was 
asked to do experimental trials: each of the trials was composed of 
following experimental steps. 
Step 1: Initial position matching 
 The learner saw the reference avatar who was static and was 
keeping a particular posture. Also, the learner was able to see the 
reference's right hand position and the learner's actual right hand 
position as 3-dimensional coordinate values. Then, the learner 
reproduced the static posture by matching the coordinate values. 
This step realized the accurate initial position matching of the 
reference avatar’s and learner's right hand. 
Step 2: Recognition and reproduction of reference 
motions 
 After finishing the initial position matching step, the learner 
pulled and held a trigger of the Vive controller on the learner left 
hand at their arbitrary timing. Then, the 3-dimensional coordinate 
values became invisible and the motion recognition and 
reproduction procedures started. That is, the reference began to 
move their right hand and the learner also started to recognize and 
reproduce the presented motions as early as possible. 
Step 3: End of recognition and reproduction 
 When the reference finished reproducing reference motions, it 
stopped its right hand movement at the end position of the motions. 
As soon as the learner observed the finish of the reference motions 
and completed motion reproduction, the learner stopped pulling the 
trigger. Thus, the recognition and reproduction were finished. 
 The learner experienced 54 trials for each of the two 
observation views. 
 

Evaluation methods 
 While the learner kept pulling the trigger of the controller, the 
learner's right hand position and the reference's right hand position 
were recorded. Using the time-series data on both positions, the 
reproduction accuracy and the time delay were evaluated. Here, the 
latter was defined as a phase error, and the former as a position 
error. 
 
Phase error 
 Phase error represents the delay time of the learner motion 
from the reference motion. The phase error, 𝐸R(*)., is calculated 
by the following equations. 

 
(9) 

 
 

(10) 
 
 

(11) 
 
 
 

(12) 
 

 

𝐸R(*). = 	 𝑇) 	 ∙ 	 𝚥0̂.U*V 

𝚥0̂.U*V = 	 𝑎𝑟𝑔𝑚𝑖𝑛\]^_`a b𝐸c_R5)
O + 	𝐸d_R5)Oe 

𝐸c_R5) = 	f
∑ (𝑥:

\	1	\]^_`a 	− 	𝑥"
\ )O/

\hi

𝑛
 

𝐸d_R5) = 	f
∑ (𝑧:

\	1	\]^_`a 	− 	𝑧"
\)O/

\hi

𝑛
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Where 𝑇)  is the sampling time of each record, 𝚥0.U*V  is an 
estimated gap index that represents the learner position delay from 
the reference. The variables, 𝐸c_R5)  and 𝐸d_R5) , are horizontal-
directional and depth-directional RMSE between the learner and 
reference positions, respectively. They are calculated using the 
sampled data (𝑗 = 0, 1, … , 𝑛) in a stroke. The variables, 𝑥:

\ and 𝑧:
\, 

are the 𝑗'( learner’s x- and z-coordinate in a stroke.  The variables, 
𝑥"
\  and 𝑧"

\ , are the 𝑗'( reference x- and z-coordinate in a stroke. 
 
 

(a) The measured x positional trajectories of the learner and reference 

(b) The adjusted x positional trajectories of the learner and reference 

Figure 4. An operation of trajectory adjustment: (a) shows the measured x 
positional trajectories that were recorded from Vive tracker. (b) shows the 
adjusted x positional trajectories. In the adjustment operation, the learner x 
positional trajectories in (a) was shifted to minimize 𝐸c_R5) and 𝐸d_R5). 
Consequently, the time delay of the learner motion from the reference one is 
cancelled. 

Position error 
 Position error totally represents the differences between the 
learner's and reference's right hand position in a stroke. Here, since 
the position error is separated into x- and z-position error, it is 
expected that the recognition and reproduction characteristics are 
different depending on the reference motion directions. By the 
condition of 𝑗0.U*V = 	 𝚥0.U*V, the ill-effect of the time delay on the 
RMSEs between the learner and reference positions were removed,  

and they were denoted by 𝐸c_R5)|m]^_`a  and 𝐸d_R5)|	m]^_`a  : with, and 
are shown in Fig. 4. 

 

 Experimental results 
The evaluation values were calculated by using the learner's 

and reference's right hand positions. Also, in order to judge 
whether the evaluation values are different depending on the 
observation views or not, a t-test was applied to the experimental 
data. 
 

Phase error 
 The mean values of phase error with the front mirror view and 
the rear camera view were 393 and 308 [ms], respectively. The t-
test reveals a significant difference (t = 2.50, p = 0.013 < 0.05). It 
is assumed to arise from the fact that the front-and-back inversion 
occurs in the front mirror view while not in the rear camera view. 
 

 
Figure 5. Mean phase errors (error bar: standard error) 

 

x-position error 
 The mean values of the optimized x-position error in the front 
mirror view and the rear camera view were 0.029 and 0.027 [m], 
respectively. The t-test reveals no significant difference (t = 1.68, p 
= 0.093). It means that there is no difference on reproduction 
accuracies between the front mirror view and the rear camera view. 
 

z-position error 
 The mean values of the optimized z-position error in the front 
mirror view and the rear camera view were 0.043 and 0.031 [m], 
respectively. The t-test reveals a significant difference (t = 5.60, p 
= 4.53×10-8 < 0.001). It means that the reproduction accuracy in 
the rear camera view is significantly better than that in the front 
mirror view. 
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Figure 6. Mean x-position errors (error bar: standard error) 

 
Figure 7. Mean z-position errors (error bar: standard error) 

 

Conclusion 
 The experimental results show a possibility that the motion 
recognition with the front mirror view causes significant time-
delay and the accuracy decreases of reproducing the reference 
motions compared to the rear camera view. It seemed to be caused 
by the front-and-back inversion while the learner was recognizing 
and reproducing the reference's motions with the front mirror view. 
The results suggest that the rear camera is effective in some 
situations. It is assumed that, when the learner observing the 
reference motions, non-necessity of any mental rotations is 
important to recognize and reproduce them immediately and 
accurately. 
 The learners are not able to observe some body parts with just 
one observation view, when the body parts being occluded behind 
other parts. At the case, switching the observation view provide a 
solution, it seems to have an advantage on motion learning 
methods with VR systems. In particular, the rear camera is better 
than the ordinary front camera view as long as any body parts are 
not occluded. In the future, the authors continue to examine the 
multi-view characteristics by psychophysical experiments with 
enough large sample size, i.e., enough number of subjects.  
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