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Abstract
In this work we present a psychometric, visual search-based

study analyzing the perceptual appearance uniformity of 3D
printed materials. A 3D printer’s quality, precision, and capacity
to produce smooth surfaces directly affects the perceived unifor-
mity of its outputs. This work represents the first steps towards
building a perceptual model of uniformity for 3D printing. Such a
model will greatly assist in advancing the quality of 3D printers,
especially as they become capable of creating complex, spatially-
varying appearances.

We demonstrate the effectiveness of applying visual search
to appearance perception problems by analyzing 288 appearance
variations formed from the combination of 18 printed surfaces,
8 virtual transformations of those surfaces, and two illumination
conditions. The virtual transformations allowed us to explore the
impact of bumpiness, glossiness, and spatially-varying color on
perceived uniformity. Significant effects were found to be caused
by several of these dimensions. Additionally, the measured psy-
chophysical data is a valuable contribution to the general study
of the perception of spatially-varying appearances.

Introduction
Appearance uniformity is a perceptual measure of a

material’s apparent spatial homogeneity, and it can depend on
how the material is illuminated and from where it is viewed. Of-
ten in product design the goal is to achieve uniformity for indi-
vidual components, such as a plastic panel or a casing. Unifor-
mity can intentionally be reduced by adding patterns and texture,
but it can also be diminished naturally by scratches, scrapes, and
other forms of wear-and-tear. It is possible to define material uni-
formity in terms of physical attributes, like the measured height
profile or color distribution of the surface. However, in this work
we approach uniformity as a perceptual quantity, acknowledging
that certain conditions can alleviate or expose non-uniformities
in a material. Given the limits of our visual system, some non-
uniformities captured by a physical measurement may not be vis-
ibly noticeable or significant. Focusing on perceived appearance
uniformity has advantages, because, compared to physical mea-
surements, it represents a less stringent threshold for quality con-
trol and evaluation.

Uniformity is of particular interest to us because of how it
plays a role in developing quality 3D printing devices. However,
we contend that uniformity is a useful benchmark for any print-
ing task, whether it is in two or three dimensions. Outputting a
smooth surface with homogeneous color requires the device to
have high precision and consistency. The printing of colored pat-
terns or surface texture can in fact mask issues concerning the
quality of the output.

While most consumer color paper printers are able to achieve

Figure 1. Comparison between a printed appearance (left)–highlighting its

non-uniformities–and the computed ideal uniform (right).

satisfiable levels of uniformity across a page, 3D printing is in
the unique position of controlling the third dimension. Control
over both macroscopic surface curves and mesoscale bumps and
texture present new challenges in measuring and quantifying ef-
fects on appearance uniformity. Current 3D printers have not yet
reached a comparable quality level to their 2D counterparts, and
frequently introduce unintentional non-uniformities. This work
seeks to quantify the perceptual dissimilarities in color, surface,
and other appearance non-uniformities that can occur in 3D print-
ing. While there are tools available to measure specific physical
quantities related to printed appearance, there is not a perceptual
metric that combines the effects of spatially-varying color, tex-
ture, and gloss.

Thus, we sought to collect psychometric evaluations of a rep-
resentative sampling of printed materials. We define appearance
uniformity as the perceptually linear dissimilarity between a
material’s appearance and that of a constructed, ideally uniform
appearance. A constructed ideal would match the material’s in-
tended color, glossiness, and other appearance behaviors but lack
the spatial variations across these attributes that produced visi-
ble non-uniformities. An example of a printed appearance and
its computed ideal are shown in Figure 1. As the dissimilarity
tends towards zero, the original material approaches full unifor-
mity. Defined in this manner, appearance uniformity becomes a
specific instance of the more general appearance similarity prob-
lem.

Even though a computational model for the general sim-
ilarity problem does not exist yet, quantifying the perceived
appearance uniformity has multiple immediate applications to
the field of 3D printing. Uniformity measurements can provide
guidance to non-appearance experts who are otherwise advanc-
ing 3D print technology. Comparing measurements across multi-
ple printed units can be used for quality control and quantifying
the reproducibility of a 3D printer. Currently, it is common for
3D printed objects to feature a single color, or disparate regions

IS&T International Symposium on Electronic Imaging 2018
Material Appearance 2018 209-1

https://doi.org/10.2352/ISSN.2470-1173.2018.8.MAAP-209
© 2018, Society for Imaging Science and Technology



of solid colors. Much as color science helped ensure the best
color match between a photo on a monitor and its printed result,
appearance uniformity can be used to match a digital design to the
solid, colored output.

Our work is a first step towards addressing this problem, so
while we do not develop a predictive model for uniformity in
this paper, we demonstrate how to efficiently measure uniformity
and we are able to report observed qualitative effects on printed
uniformity. We focus instead on collecting a large set of per-
ceptual judgments to learn more about this subset of the general
appearance space.

The visual search paradigm was employed to efficiently and
directly measure perceived dissimilarities across a wide range of
3D printed appearances. The task presents a target appearance
amongst a field of distracting appearances, and the time to find
the target indicates the similarity between the target and distrac-
tors. This avoids the need for describing perceptual scales to the
subjects or performing forced-choice comparisons for all combi-
nations of appearances. This efficiency enabled us to collect per-
ceived dissimilarities for 288 appearances that varied across color,
pattern, glossiness, bumpy texture, and lighting environment. We
made use of X-Rite’s TAC7 material scanner1 to digitize accu-
rate representations of printed surfaces. We then constructed ap-
propriate ideals and made additional variations with controlled
appearance transformations. To the best of our knowledge, this
represents the first application of the visual search task to the per-
ception of appearance, and it demonstrates an exciting combina-
tion of psychophysics, 3D printing, and material scanning.

In the next section we present background literature across
the range of topics that intersect this work. Following that, we
describe both the physical prints and virtual appearance stimuli
used in our psychophysical study, and we provide the details of
our visual search study. We conclude with analysis of the col-
lected measurements, demonstrating that a consistent perceptual
response was provided by all subjects, and we discuss some of
the more obvious variable effects and what this implies for 3D
printing appearance in the future.

Background
This work lies at the intersection of a number of fields. While

it is motivated by additive manufacturing and 3D printing, the fo-
cus on appearance requires color science, computer graphics (the
study of material modeling and simulation), and psychophysics
(understanding the visual system and human subjects research).
All of these topics are introduced in the following sections.

3D printing
A range of additive manufacturing techniques have been de-

veloped over the last few decades, such as fused deposition mod-
eling (FDM), selective laser sintering (SLS), and most recently
multi-jet fusion (MJF). Additional approaches have been devel-
oped that work with metals and ceramics, broadening the range
of materials usable with 3D printing. 3D printing has already rev-
olutionized industrial part manufacturing and prototyping, where
the emphasis is on function, durability, and fast turnaround. It
has also become prominent with hobbyists and artists, and will
eventually be useful for consumer products. In these domains, the

1https://www.xrite.com/categories/appearance/tac7

appearance of the 3D printed object becomes paramount.
To that end, researchers have been advancing the appearance

capabilities of 3D printers. A relatively simple extension to FDM
printers is to make it two-toned [12, 24], allowing a printed object
to have separately colored regions or even intermediate colors via
half-toning. Full color 3D printing, where each voxel element can
independently be colored, further improves upon the realism of
the printed object [4], although this is currently limited to diffuse
color only.

As 3D printing is used for more professional, consumer or
appearance-oriented products, it will be necessary to improve
print quality. Combining knowledge of human perception with
additive manufacturing has led to noticeable improvements in vi-
sual quality. Stair-stepping, or the visible layering of material
planes, in the object is a common objectionable defect. Wang’s
work [29] uses a perceptual saliency model to control the reso-
lution of the printer to minimize the stair steps in complex areas
while still minimizing the overall print time. It is also possible to
separate an object into multiple parts and orient them so that each
parts’ local structure better aligns with the printer’s coordinate
system [28], which can improve surface quality and smoothness.

Eventually printers will have the capability to print materials
that exhibit a broad range of reflectance profiles. The future of 3D
printing represents a way to print and manufacture full spatially-
varying materials on arbitrary and curved surfaces. Reaching that
point requires a thorough understanding of how to model physical
materials that artists, designers, and engineers would like to print.

Material modeling
An opaque material can reasonably be described with a

spatially-varying bidirectional reflectance distribution function
(SVBRDF) [16]. An SVBRDF is a two dimensional map of pa-
rameters to a homogeneous BRDF, of which there are numer-
ous definitions that seek to describe how light is reflected by a
material [2, 5, 30]. At a high level, an SVBRDF describes the
bumpiness, color, and roughness over the surface of an object.
However, these parameters exist in an arbitrary or physically-
aligned space, which makes it difficult for artists to pick values
that simulate realistic materials.

Material scanning helps address this difficulty, and in many
ways is the inverse of 3D printing: it creates a digital model of a
physical object. Scanning is directly relevant to the future of 3D
printing. Scanned materials will form libraries from which de-
signers can make selections. Printed objects can subsequently be
scanned to evaluate how accurate the print is compared to the orig-
inal digital model. An object manufactured by some other process
can be scanned so that multiple copies can later be printed.

Measured BRDFs have been acquired for homogeneous ma-
terials [11, 15], where it is assumed that the entire surface can be
represented by a single function. Spatially-varying materials can
be scanned with a myriad of techniques that combine multiple
calibrated lights and cameras to solve for BRDF parameters. Ex-
amples of this include spatial gonioreflectometry [16], linear light
scanning [10], and spherical harmonic scanning [26]. More re-
cent work has focused on simplifying the scanning process by us-
ing a handheld mobile device [7, 25]. X-Rite, has built the TAC7
Scanner (Total Appearance Capture) that integrates much of the
research into an easy-to-use black box device. We have made use
of the TAC7 to help prepare the stimuli used in our experiments.
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Appearance perception
Material scanning captures and records a physical descrip-

tion of a material and object, while 3D printing exports a phys-
ical description. There is a perceptual disconnect between the
scanned model, printed object, and what a person perceives in
both cases. The field of color science has studied a similar prob-
lem for diffuse color on two dimensional surfaces, mapping from
the physical spectrum to perceptual dimensions [34]. Appearance
and its perception involves much more than just an object’s color,
combining attributes such as glossiness [21, 31], lighting envi-
ronment [9], and shape [27]. For the most part, these have been
studied as independent effects but other research has looked into
how they interact: gloss and color [6]; gloss and texture [14, 20];
and brightness and texture [13].

Appearance perception can also be studied in terms of a dis-
tance or similarity metric between two materials. While there are
metrics designed for homogeneous BRDFs [22], there is currently
no such general perceptual model for the range of appearances
representable by 3D printing. Once such a metric is developed, it
can be used in quality control for 3D printing, for design and pre-
diction in the printing pipeline, and as a tool to be used by engi-
neers developing printers who themselves may not be appearance
experts. This work does not seek to provide such a model, and ex-
ploring appearance uniformity is a simpler subset of the problem
of general appearance similarity. Our work does represent initial
steps towards a solution and presents results that are immediately
valuable for evaluating current 3D print quality.

Visual search
Without an appearance model that could be applied di-

rectly to the problem of measuring appearance uniformity for
3D printing, we sought to directly measure human judgments of
perceptual dissimilarity between a non-uniform appearance and
its corresponding idealized, uniform representation. The visual
search [8, 32] study paradigm is an effective and rapid way of
measuring perceptual dissimilarity. The study task presents a tar-
get and a field of distractors to the subject and measures their
reaction time to find the target. The target and the distractors can
vary along a single perceived dimension, or across multiple di-
mensions [17], such as size, contrast, or frequency. The premise
is that the more similar the target is to the distractors, the longer it
takes for the subject to identify it. Arun [1] showed that the recip-
rocal of response time is actually a better value to use as a measure
of dissimilarity. While visual search has been widely used in the
psychophysics community to learn more about the visual system
using comparably primitive stimuli, this work is to our knowledge
the first that applies visual search to appearance similarity.

Experiment
We define the appearance uniformity of a printed material as

inversely related to the perceptual dissimilarity to a correspond-
ing idealized, uniform material. Thus, appearance uniformity is
mapped to a perceptual similarity problem. As the perceived dis-
tance between the material’s appearance and its ideal approaches
zero, it becomes more and more uniform. The only caveat is that
for a given material, its uniform, ideal variant must be defined.
Often this will be the desired, digital model that was printed but
it can also be defined after printing by using a material scanner
and filtering or smoothing the reflectance model parameter maps
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Figure 2. Tile orientation and example SVBRDF maps for diffuse color and

surface normal (in pseudo color).

produced by the device. This is useful when characterizing a 3D
printer or if a printer is not capable of producing an ideal material
sample.

For the purposes of this experiment we consider three broad
appearance attributes and how they can independently deviate
from a uniform ideal:

• bumpiness – the just-visible, mesoscale height profile of the
surface, which deviates from a perfectly smooth surface.

• color – spatial changes in the diffuse scattering of the
material, such as hue or lightness, deviating from a solid
color.

• glossiness – changes to the microscopic roughness that af-
fects specular scattering of the material.

These attributes represent the primary sources of appearance
variation with the 3D printer technology and material substrate
available to us. We will explore how modifications to the spa-
tial distributions of these attributes in printed materials impact
appearance uniformity judgments. The creation of the appearance
images used for stimuli in our experiments are described in the
next section. The psychometric task to collect the appearance dis-
similarity judgments of the 3D printed materials is specified in the
subsequent section.

Stimuli design
To take advantage of computer-driven study protocols, the

stimuli images used in this experiment are simulated images. The
materials are based on BRDF scans of actual 3D printed surfaces,
along with digital modifications to create a controlled range of
parameter changes. To get realistic base material definitions, we
printed 1cm×1cm tiles arranged at different orientations with re-
spect to the Z-axis of the printer. While more orientations were
tested, tiles oriented at 0◦, 10◦, and 45◦ were found to span the
range of patterns and non-uniformities formed by the 3D printer
that was used. Figure 2 shows the print configuration for these
three angles and example SVBRDF maps corresponding to the
print results.

Tiles were printed in several colors–cyan, green, and purple–
to explore how the intended color affects perceived uniformity
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Figure 3. All printed variations, scanned and applied to the blob shape used for the stimuli in the visual search task.

and to include non-uniformities caused by the inking process.
Additional physical variants were created by post-processing the
printed tiles to smooth and coat them. The post-processing is
one example of finishing processes that might be applied to a
3D print. This process can also cause substantial changes to the
appearance of the object, such as reducing bumpiness, increas-
ing glossiness, and reducing visible non-uniformities. Overall,
18 physical printed materials were made from the combination of
three print orientations, three colors, and either including or omit-
ting post-processing. Renderings from measurements of all of the
printed variations are shown in Figure 3.

After printing the 18 tile variants, the samples were scanned
using X-Rite’s TAC7 device, producing SVBRDF parameter
maps in the Ward [30] model for each. These SVBRDFs are what
were used in the simulations shown in Figure 3, 1, and 4. From
those images it is clear that non-uniformities, in both the diffuse
color and the surface bumpiness, exist in the printed tiles.

Ideal uniform materials corresponding to the 18 tiles were
created by filtering the diffuse color map and mesoscale height
map. The ideal diffuse color map was calculated by reducing the
Weber contrast by a factor of 10. Weber contrast is measured as
the relative difference between a pixel’s luminance and the back-
ground luminance, which we took as the median lightness of the
diffuse color map. The ideal height profile was computed by scal-
ing the scanned heights by 0.1. These transformations created
SVBRDFs that are almost homogeneous, but still contain sub-
tle non-uniformities that improve realism. The previously shown
Figure 1 demonstrates a side-by-side comparison of a scanned
material and its constructed ideal. It is clear that the ideal has im-
proved uniformity but still exhibits an overall similar appearance
to the original.

Having scanned the 18 materials with the TAC7 device,
we used the SVBRDF measurements to create similar materials
with known variations in the parameters. Using the same filters
that were applied to create the ideal materials, seven additional
materials were generated for each of the original scans. Non-
uniformities were increased along the three appearance attributes

of interest in different amounts and combinations: increasing dif-
fuse contrast, bumpiness, and glossiness. Figure 4 describes the
attribute modifications for the seven variations, with respect to an
original, and shows an example for each. These variations pre-
serve the stochastic and structural patterns that were produced by
the 3D printer. It would not have been possible to use a current
generation 3D printer to preserve such patterns while also accu-
rately modifying the desired parameters. The varied materials for
each original allows us to explore how the three appearance at-
tributes interact and impact appearance uniformity.

While the original physical tiles were more-or-less two di-
mensional, all generated materials were rendered to a blob ge-
ometry that was originally designed to have a range of surface
curvature, highlight the environment’s lighting, and otherwise not
resemble a real world object that might bias the subject [19]. This
geometry is what’s shown in Figures 1, 3, and 4. Although shape
does influence appearance, we did not evaluate multiple geome-
tries due to the already sizable parameter space being consid-
ered. However it has been shown in the literature that for realistic
material visualizations blob like objects are preferable to simpler
objects like spheres.

However, we did introduce an additional stimuli variable to
consider the illumination conditions when viewing the material.
For each of the materials, images were rendered in two differ-
ent conditions. First, a diffuse, ambient lighting condition based
on a D65 light booth intended to simulate the appearance of the
object when placed under an actual booth (shown in Figure 5.
When rendered, the D65 white point was adapted to be white.
Second, a single spotlight source is used without any other ambi-
ent lighting, which represents a more extreme environment. The
spotlight was also chromatically adapted to be the white point of
the scene. All images were tonemapped to a low dynamic range.
Figure 6 demonstrates the differences in appearance caused by the
two lighting environments when applied to the same material.

To summarize, the combinations of three print orientations,
three colors, and two post-processing options defined 18 phys-
ically printed materials. The 18 materials were scanned using
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Computed ideal Variation 1 (original) Variation 2
B = 0.1 C = 0.1 G = 1 B = 1 C = 1 G = 1 B = 0.1 C = 1 G = 1

Variation 3 Variation 4 Variation 5
B = 1.5 C = 1 G = 1 B = 2 C = 1 G = 1 B = 1 C = 1 G = 2

Variation 6 Variation 7 Variation 8
B = 1 C = 2 G = 1 B = 1 C = 3 G = 1 B = 2 C = 3 G = 2

Figure 4. Computed ideal, original, and virtual variations for an example material, along with the specification of each virtual change. The examples are based

on the post-processed purple tile printed at 10◦. The appearance attribute changes are specified by the values in B (bumpiness), C (color), and G (glossiness)

fields.

Figure 5. Panoramic tone-mapped representation of the D65 light booth

environment.

X-Rite’s TAC7 to get a Ward SVBRDF for each. Filtering the
original SVBRDFs produced 18 corresponding ideal materials.
Including the original scan, 8 SVBRDF variations were paired
with each of the computed ideals. With two illumination con-
ditions, this produces 36 ideal appearance images and 288 non-
uniform appearance images. While there are material and illumi-

Figure 6. Comparison between the two lighting conditions’ effects on the

appearance of a printed cyan material. Left: D65; right: spotlight.

nation changes, all images use the same geometry and are ren-
dered from the same point of view. The psychophysics task to
measure the perceived dissimilarity between every non-uniform
appearance image and its corresponding ideal is described below.
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Figure 7. Screenshot of the visual search task. The jittering changes with each presentation. The left example has a uniform target in the bottom left corner.

The right example as a non-uniform target along the right edge.

Visual search task
We measured the appearance uniformity of the 288 non-

uniform images by measuring the perceived dissimilarity to their
matching ideal images. The perceived dissimilarity was measured
using the visual search paradigm [8]. Arun’s recent work [1]
showed that the reciprocal of response time in a visual search
task behaves like the linear perceptual distance between the tar-
get and distractor items. Using a task inspired by Pramod et al.’s
work with object silhouettes and visual search [23], we applied
the search task to the appearance simulations described above.
For our purposes, the target and distractor images are a specified
non-uniform appearance image and its paired ideal image.

The visual search task consisted of multiple trials, each pre-
senting a 4× 4 grid of appearance images. The positions of the
16 images were jittered to prevent features in the rows or columns
from aligning. One of the 16 images would be the target, in a ran-
domized location in the grid, and the remaining 15 images would
be the corresponding distractor image. For a given presentation of
the jittered grid, the target image and distractor would be a non-
uniform appearance and its ideal, or vice-versa. It has been shown
in past visual search research that if a target A is shown amongst
a distractor B, the reaction time does not necessarily equal that
of searching for B in a field of A’s. To determine if this was true
for our appearance stimuli, each presentation randomly selected
the ideal or non-uniform image as the target. Figure 7 shows an
example screenshot of the visual search task, implemented using
the PsychToolbox [3].

After the jittered grid was shown to a subject, they searched
as quickly as possible for the target appearance image, described
to them as the “odd one out”. A vertical red line was rendered
with the grid to divide the field into two halves. Once the target
appearance image was found, the subject specified the side of the
red line that contained the target. This was done using a keyboard
press, Z for the left side and M for the right. Specifying only
the side of the target’s position kept the time cost of the input

action as low as possible for the subject. While the subject still
had to identify the target, if they were also expected to select the
exact grid position via mouse, it would have been challenging to
separate reaction time into the search time and selection time.

The non-uniform appearance images were shuffled indepen-
dently for each subject. Additionally, each appearance image was
repeated multiple times until the subject correctly identified the
target three times. The repeated trials were inserted at random
amongst the remaining trials. Picking the wrong side resulted in
an audio tone being played and advancing to the next trial. If
a subject failed to identify the target three times after five total
presentations of that appearance, it was skipped so that the ex-
periment could terminate (this did not occur in practice). Subjects
were given up to 10 seconds to find the target amongst the distrac-
tors and make their decision. Reaching the time limit was treated
the same as picking the incorrect side.

Study setup
Using the protocol described above, the task was performed

in a dark room, with the interface presented on a 31.5 inch HP
DreamColor Z32X UHD display. The display had a resolution of
3840× 2160 pixels. The display was set to a factory calibration
of the sRGB color space and all stimuli images were presented
in sRGB. Each of the sixteen appearance images in a search field
occupied an approximate viewing angle of 3.1◦.

In order to reduce the duration of the experiment, the 288
non-uniform appearance variations were split into three blocks
based on the orientation of the original tiles in the printer.
The orientation was used as a between-subjects variable, while
the remaining variables of color, post-processing, lighting, and
SVBRDF modifications were within-subject. 21 volunteers with
normal or corrected-normal vision participated, with 7 subjects
assigned to each of the 0◦, 10◦, and 45◦ blocks. 8 subjects were
female, with the remaining 13 male; subjects’ ages ranged from
18 to 59 years old. Given the between-subjects split, each subject
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Symbol Definition
A A non-uniform appearance image.

A The set of 288 appearances evaluated in
this study.

I(A)
The ideal appearance corresponding to
the non-uniform appearance, A.

S(A) The set of subjects that evaluated the
appearance, A.

r(i)s
The ith measured reaction time for the
subject’s motor skills task.

t(i)A,s
The ith measured response time from the
subject, s ∈ S(A), for the appearance, A.

d
A perceived non-uniformity value, which
can annotated similarly to t.

Figure 8. Notation for the raw inputs and outputs of the visual search task.

provided their perceived dissimilarity scores for 96 of the non-
uniform appearances. Subjects on average completed the entire
experiment in under 40 minutes and were always able to reach
three successful target identifications for their assigned 96 appear-
ances.

As part of the training, a motor-speed measurement task was
performed. Using the same controls as the actual visual search
task, subjects would pick the side of the screen that a circle would
randomly appear on. The perceptual aspect of such a task is min-
imal, so the response time is dominated by the subject’s reaction
time and the time to press the physical key. This can be used
to calculate the search time for the actual visual search task by
subtracting the subject’s minimum circle response time from their
appearance response times. The results of this collected data are
presented in the next section.

Results
Using the notation defined in Figure 8, response times t were

repeatedly collected for each appearance in A and its matching
ideal in I(A). For a given appearance, A, and specific subject,
s ∈ S(A), we write their ith non-uniformity measurement for A
as d(i)

A,s. Each appearance in A was evaluated by seven subjects a
total of three correct times, therefore |S(A)|= 7 and i ∈ {1,2,3}.
We formally defined the non-uniformity as the perceived distance
or dissimilarity between A and I(A), i.e. d = |A− I(A)|.

It is worth noting that as d approaches 0, the appearance
becomes more uniform and a value of 0 implies that a printed
material appears perceptually indistinguishable to its ideal. Based
on the work of Arun [1] and Pramod et al. [23], we can calculate
the non-uniformity measurement, d, with respect to a subject(s),
appearance(A), and specific presentation(i):

d(i)
A,s = |A− I(A)|

=
1

t(i)A,s− rs

(1)

where rs is a subject’s fastest reaction time:

rs = min
i

r(i)s

Before Correction After Correction

Figure 9. The median, normalized dissimilarity score by position in the

4×4 visual search field. The solid black circle represents the case where the

target was the uniform appearance; the red circle visualizes that the target

was the non-uniform appearance image.

We define a subject’s aggregate measurement as:

dA,s = median
i

d(i)
A,s (2)

and the final non-uniformity value for an appearance as:

dA = median
s∈S(A)

dA,s (3)

Justifications for aggregating over a subject’s repeated trials
(Equation 2), and aggregating between subject’s measurements
(Equation 3) are presented in the next two subsections. Finally,
main and interaction effects visible in all of the computed dA
scores are explored in the last subsection.

Eccentricity correction
Eccentricity, in this context, refers to the search target’s dis-

tance from the center of the screen. Given that the target was in
one of sixteen positions in a 4× 4 grid, there were two levels of
possible eccentricity. The target was either in the central four po-
sitions or in the outer twelve. It is reasonable to expect that it may
take longer to find the target in the outer ring because there are
more grid cells to consider and they are farther from the center
focus point.

To better understand this, we plotted the median dissimilarity
value d after linearly normalizing away the effects of subject, print
angle, color, surface finish, material variation, and lighting envi-
ronment. In effect, this is removing the impact of every directly
controlled experimental variable. However, given how the study
was set up, the target could either be the uniform ideal appearance
or the non-uniform appearance. These two states were normalized
and corrected for separately.

The median normalized dissimilarity per grid position is
shown on the left of Figure 9. If the eccentricity had no impact
on the response times then the size of the circles would be ap-
proximately the same. However, it is clear that there is a systemic
decrease in the radius of the outer circles, for both target types.
Since the size of the circle correlates to dissimilarity, the smaller
circle implies a higher response time, matching our hypothesis.

For all subsequent analysis, we remove the eccentricity bias
from trial responses in the outer ring by linearly shifting their nor-
malized dissimilarities to match the inner ring. The corrected me-
dians are shown in Figure 9 (right), demonstrating that the ef-
fects of position have substantially been reduced. After this shift,
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Figure 10. Dissimilarity scores for appearances, where each axis corre-

sponds to a different target condition. Each data point represents a subject’s

appearance judgment when viewing the appearance under both target con-

ditions. The confidence bounds represent slopes for the 95% confidence

interval.

all normalized dissimilarities have the effects of the experimen-
tal variables restored by undoing the original linear normaliza-
tions. With the bias removed, the specific position of the target
appearance is irrelevant for the subsequent analysis.

Reciprocity
Past visual search literature has documented that the mea-

sured response time does not always respect reciprocity, i.e. the
response time for finding A amongst B does not equal that of find-
ing B in A. For example it is easier to find a mirrored letter in a
field of regularly oriented letters than it is to find the regular in
the field of mirrored letters [33]. Using the notation introduced
above, this would mean that d = |A− I(A)| does not necessarily
equal d′ = | I(A)−A|. To determine if that was the case, subjects
were given tasks that randomly chose between finding the ideal or
the non-uniform appearance.

Figure 10 plots the dissimilarity scores for each appearance,
where the X axis represents the appearance’s non-uniformity
when the target was the ideal appearance, and the Y axis is the
appearance’s non-uniformity when the target was the non-uniform
appearance. Each black marker represents a subject’s evaluation
of an appearance under both conditions; if a subject only viewed
an appearance in either target condition it was excluded from the
plot. Barring the outliers above the linear fit, there is reasonable
consistency in dissimilarity measurements for the two target con-
ditions.

A robust fit yields a linear model, d′ = md +b, between the
two conditions, where m = 0.8094 and b = 0.4734 (R2 = 0.6528).
If the two target choices did not affect the response time, the
model would be expected to have m = 1 and b = 0. The constant
shift in dissimilarity is, however, consistent with Arun’s analysis
for conditions that do not exhibit perfect reciprocity. Following
the same approach as above for removing the eccentricity bias, re-
sponse dissimilarity scores when the target was the non-uniform
appearance are adjusted so that the post-correction correlation be-
tween the two target options is 1.

We justify the removal of the eccentricity and reciprocity bi-
ases as aligning different perceptually linear spaces. Each combi-
nation of eccentricity level and target choice represent perceptual

judgments in a slightly different space. However, by applying
linear transformations to them, they can be aligned so that the
effects of the other experimental variables can be evaluated with
more robustness. All subsequent analysis of the measured values
has eccentricity and reciprocity corrected for.

Subject consistency
As stated earlier, for each appearance, A, there were three

presentations evaluated successfully by seven subjects. Ordering
effects and consistency of a subjects’ response can be measured
with a repeated measures ANOVA for each stimuli. 4 of 288 stim-
uli (when considering all three print orientations) have a p-value
< 0.05. The remaining images cannot reject the null hypothesis
that there was no substantial change from the repetitions. This
suggests subjects were self-consistent when viewing the stimuli
multiple times and, for the remainder of the results section, we use
the median response time of a subject’s repeated trials to calculate
their personal dissimilarity score per appearance (see Equation 2).

We use Cronbach’s α to evaluate the consistency between
the seven subjects in each of the print angle stimuli blocks. While
not a statistic, it is a measure of internal consistency between a set
of abstract items and repeated evaluations of said items. A subject
is considered to be an item and each appearance dissimilarity
measurement is a sample of the item’s behavior, so that inter-
subject consistency is determined by α . Each between-subjects
block is evaluated separately: α0 = 0.9221, α10 = 0.9062, and
α45 = 0.9120. A score greater than 0.9 has generally been
considered as excellent consistency in past psychophysical re-
search, while values greater than 0.7 represent reasonable inter-
consistency.

Given this, we assume that subjects have high inter-person
consistency, which implies that people are making similar per-
ceptual decisions. Thus, we can combine all subject evaluations
for an appearance to get a better estimate of its perceived dissimi-
larity. This was shown in Equation 3 as the median of the subject
measurements. The aggregate scores, dA, are used in the next
subsection to explore the impact of the independent variables in
our study. A breakdown of the dissimilarities for all variables is
included at the end of the paper in Figure 16.

Analysis
The main effects of the manipulated variables on the dA

values for every A ∈ A are shown in Figure 11. Each bar in
a variable’s chart corresponds to the average dA for all appear-
ances matching the particular variable’s value. Error bars repre-
sent the standard error within that set. There was a fifth inde-
pendent variable that was between subjects, for the tile orienta-
tion when the material was printed. Additionally, there were four
within-subjects independent variables that modified a stimuli’s
appearance: printed color, post-processing treatment, lighting
environment, and synthetic SVBRDF variations. Additionally,
because subjects provided perceptually linear scales, dA scores
across the different appearances and subject blocks can be exam-
ined without additional rescaling or normalization.

From these summaries, it is clear that many of the variables
had noticeable effects on the perceived appearance uniformity. Of
particular significance to 3D printing, the three printed tile orien-
tations had significant changes to their aggregated dissimilarity
scores. The 10◦ orientation, with its regular striations, had the
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Figure 11. Main effects of the four within-subjects and one between-subjects independent variables. Dissimilarity values are averaged over the other variables,

error bars represent standard error.

worst uniformity, which is not surprising. Even though the 0◦

and 45◦ orientations featured similar, stochastic non-uniformities,
their effects on dissimilarities differed. Thus, orientation with re-
spect to the printer’s Z axis can play a role in the perceived unifor-
mity, at least when printing a flat tile. When 3D printers produce
more complex objects composed of multiple surface orientations,
it has yet to be seen if perceived uniformity will behave in the
same manner.

It does not appear as though the base diffuse color signifi-
cantly changed the measured dissimilarity scores. This is not to
say that color does not impact uniformity judgments, but that it is
more likely that the 3D printer we utilized had reasonable color
printing capabilities over the 1cm× 1cm printed region. The ef-
fects of surface post-processing, lighting, and SVBRDF manipu-
lations are examined below.

Interaction effects
The main effect of post-processing the printed tiles yielded

significant improvements in the perceived uniformity. Once
again, this is not a surprising discovery since the post-processing
resulted in smoother and more color-saturated surfaces. In the
left side of Figure 12, we break down how the post-processing
changes were affected by the SVBRDF variations. Of particular
note are how the dissimilarities changed between the two finish
conditions for variations 3, 4, and 5. These three variations rep-
resent the intermediate levels of SVBRDF changes: variations 3
and 4 are progressive bumpiness increases, and variation 5 is a
change to glossiness.

In the print-only condition, which has a higher base level
bumpiness compared to the post-processed condition, the two
bumpy variations do not have significantly different dissimilar-
ities. This suggests that non-uniformity due to bumpiness may
reach a threshold. Under the post-processed condition, variation
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Figure 12. Interaction effects between the SVBRDF modifications and

surface post-processing.

3 and 4 both increase relative to the original but also maintain
an almost linear trend with each other, having not yet reached that
bumpiness threshold. Consistent with past literature on mesoscale
rough surfaces’ effects on glossiness [20], the bumpier print-only
condition has less of a change due to glossiness increase com-
pared to the post-processed variant.

Lighting, however, had the opposite effect from what was
anticipated. The spotlighting appeared to improve perceived uni-
formity, but we had expected its directional component would
highlight bumps and cast more shadows, reducing the uniformity.
From Figure 12 (right), it can be seen that the spotlight condition
consistently improved the perceived uniformity of an appearance
image. Comparing the two bumpiness variations, 3 and 4, we see
that the general lighting from the D65 light booth makes it hard
to distinguish the changes in mesoscale height. This makes sense
since light from additional directions will fill out otherwise shad-
owed regions. The spotlight condition demonstrates the expected
trend between variations 3 and 4. However, due to the overall up-
set of our lighting hypothesis, we explore it in more detail below.

Reviews of the results for two different lighting environ-
ments used for the rendering of the blobs seem to indicate that
the dissimilarities for a spotlight source were smaller than for a
diffuse D65 lighting condition modeled after a light booth. At
first glance this seems counter intuitive. However, comparing the
lightness distributions of a blob, with a cyan material that was
printed at 0 degrees and rendered with the diffuse and spot il-
lumination (see Figure 13), it is obvious that the overall light-
ness was much higher for the D65 illumination. Observing non-
uniformities due to color or bumpiness is generally much harder
in darker, shadow areas, which are present for the blob rendered
with the spotlight. On the other hand, the lighter color distribution
of the D65 blob enables non-uniformities to be recognized quite
easily.

Figure 14 visualizes the probability density estimates for the
blobs under the two different light environments. The median

Figure 13. False color rendering of L* from the appearances in Figure 6.
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lightness value is 61 for D65, versus 42 for the spot illumination.
Furthermore the dynamic range for the D65 blob is much smaller
(34) than for the spot light (63). A higher dynamic range, which is
also nicely visible by comparing the cumulative distribution func-
tions of the two light environments always leads to images that
convey the impression of a 3D object much stronger than one with
lower dynamic range. Photographers like Ansel Adams used it for
striking photographs. The lower dynamic range image looks flat-
ter, and consequently the viewer perceives it more as 2D surface
on which spatial variations are easily discerned.

Examining the lightness distributions and using the second
order statistics of skewness, which has previously been related to
material appearance perception [18], it can be observed that the
values are quite different: the probability density estimate for the
point source has a higher absolute skewness (0.6) then the D65
probability density estimate (0.2). All of that indicates a higher
spatial variation (noisier or grainier image), which makes it harder
to perceive changes. This explains the differences concerning the
obtained perceived dissimilarities.

Moving forward and trying to evaluate the influence of dif-
ferent lighting environments it might be a good idea to at least
increase the intensity of the spot light so that the median values
are more similar. Adjusting the histograms of lightness distribu-
tions so that the dynamic ranges are closer might also be worth
considering. Having said that the question remains whether, after
all those changes, the resulting images are still perceived to be
under a realistic spot light illumination.

SVBRDF variation effects
The data visualized in Figure 15 is the same as in Fig-

ure 11, except that it breaks apart the SVBRDF variations based
on bumpiness, color contrast, and glossiness. Bumpiness, color
contrast and gloss can be seen as the axes of a 3D space, where
the ideal stimuli is placed at the origin. The different stimuli that
were used in the psychophysical tests were scaled from the orig-
inal material in each of the three axes (see Figure 4 for the steps
used). The centers of the circles in this figure represent those stim-
uli. For example bumpiness was varied by either a factor of 0.1, 1,
1.5 or 2. The color contrast of the stimuli varied by a scalar of 1, 2
or 3. Gloss varied only by a factor of 1 or 2. Only 2 samples had a
gloss that was 1 step away from the original. Those two samples
(variations 5 and 8) are indicated with a red border. The dissimi-
larities resulting from the psychophysical test are represented by
the size of the circles.

Changes in color contrast resulted in bigger dissimilarities
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Figure 15. Breakdown of bumpiness, color contrast, and gloss SVBRDF

variations. The red border indicates an increase in glossiness. The black ×××
represents the idealized variant.

than changes in roughness. This holds true for the chosen units.
Using a stimuli like variation 7 that already has a high color con-
trast and increasing both the bumpiness and the gloss doesn’t have
much impact on the perceived dissimilarity. The figure also shows
that just changing color contrast results in some dissimilarity, but
then gradually increasing the bumpiness increases the dissimilar-
ity further. In summary, this figure shows the type of SVBDRF
variations used in the visual search tasks and their corresponding
dissimilarities. Each SVBDRF variation axis can change unifor-
mity, and they can additively combine, although we have not yet
explored if this relationship is linear.

Conclusion
In this paper we have begun studying the perception of

appearance uniformity of 3D printed materials. Uniformity is
an important visual quality when 3D printing is used in art and
consumer products. We have defined appearance uniformity as a
subset of the appearance similarity problem. To our knowledge,
this is the first user study to apply the visual search task to study
appearance perception. Previously it has been used to explore
attention and more primitive visual phenomena such as contrast
gradients and object silhouettes. In our work, it has successfully
been used to model perceptual differences between appearances
with complex, spatially-varying materials, while remaining a sim-
ple and fast-paced task.

After analyzing the collected data, we have shown that the
reciprocal of response time in the visual search task remains a
consistent perceptual measure across subjects and material vari-
ations. We have identified a number of effects that influence
the appearance uniformity of a material. Orientation within the
printer bed was shown to be significant, which emphasizes the
need to include perceptual analysis of any algorithm for packing
and arranging objects in a printer. Post-processing the printed ob-
ject can greatly improve uniformity, which can be a useful addi-
tion to any printing process. We have also demonstrated that light-
ing and SVBRDF variations can interact in ways to emphasize or
hide non-uniformities. The perceptual uniformity measurements
for the real world materials stands as its own contribution to the
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study of general appearance similarities.
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Figure 16. All 288 independent variables and their corresponding median dissimilarity scores from the 7 subject measurements. Error bars represent standard

error within subject ratings.
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