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Abstract 
Interactive RGB Transparency is an open source tool 

dedicated to the visualization of transparency effects in digital color 

images. Transparency effect can be rendered as a binary color 

mixing between foreground and background layers, which can be 

uniformly colored layers or downloaded images, while the 

transparency rate can be modified interactively from perfectly 

transparent to perfectly opaque. The tool also allows the inverse 

operation, by removing transparency effects in an image. While 

most common softwares render transparency effects by additive 

color mixing (eventually subtractive color mixing), Interactive RGB 

Transparency proposes three different approaches: i) defining new 

color mixing laws varying continuously from additive to subtractive 

color mixing, ii) defining color mixing as a generalized average 

between the colors of the layers, iii) considering a translucent 

scattering layer whose thickness can be modified. 

1. Introduction 
In contrast with color, transparency is a visual appearance attribute 

of second order, perceived by analyzing the color transformation of 

a scene in background by an object in front of it. Transparency is 

physically based on the capacity of the object to transmit light from 

the background without scattering it, therefore to transmit a rather 

sharp image of the scene even though its colors are modified. 

However, physical transparency is neither a sufficient nor a 

necessary condition for perceptual transparency. It is possible to 

create transparence illusions in still images, by coloring some areas 

in such manner that they will be perceived as forming a transparent 

object in front of a background. The artist Josef Albers, known as a 

student and professor at Bauhaus, studied the perception of 

juxtaposed colors and showed, in his book Interaction of color [1], 

how to create in practice the illusion of transparency by using only 

a set of opaque painted papers. In a more formal way, Metelli [2] 

states that the transparency illusion is generated under several 

conditions. Among them, the colorimetric changes between the 

surfaces represented with and without transparency must be 

coherently interpreted as transparency by the brain [3]. The color 

transparency can be studied as a binary color mixing between 

foreground and background layers. The colorimetric coherence is 

possible if the same mixing law is applied for all points of the 

foreground layer assumed to be transparent.  

Many softwares including color features (text, image processing, 

presentation, drawing, etc.) enable transparency effects. But most of 

them render transparency by additive color mixing law, i.e., by 

linear combination of the RGB values of the different layers or 

images, which is very restrictive. It actually renders what physically 

occurs when a partially pierced opaque surface, like a mesh, is seen 

in front of a scene (Figure 1, on the left). But it cannot generate other 

transparency effects such as a scene viewed through a colored filter 

(Figure 1, on the right). 

  

Figure 1. Illustration of additive transparency with an advertisement poster 
printed on net curtain (on the left), and of subtractive transparency with a 
stack of blue transparent acetate sheets on a photograph (on the right). 

In order to widen the range of translucency effects that can be 

rendered, we developed an open source tool, Interactive RGB 

Transparency, dedicated to the display of transparency effects in 

digital color images by offering different translucency computation 

methods. The background and foreground can each one be either a 

uniform color or any downloaded image, while the transparency rate 

and transparency type can be modified interactively thanks to 

various adjustable parameters. The inverse operation is also enabled, 

i.e., a transparency effect can be removed from a given image.  

The tool relies on three different concepts regarding transparency, 

illustrated in Figure 2: 

- From additive to subtractive transparency  

In color images, transparency effect is rendered by combining the 

RGB values of the superimposed layers. The combination relies on 

color mixing laws presented in Ref. [4], forming a continuous set of 

laws between the purely additive law (“additive transparency”) and 

the purely subtractive law (“subtractive transparency”), tuned 

thanks to an adjustable parameter.  

- Transparency as a generalized f-mean 

Transparency can be described as a weighted mean between the 

RGB values of the superimposed layers. While the purely additive 

and purely subtractive transparencies correspond to the arithmetic 

and geometric mean respectively, we propose a generalization by 

the use of a weighted generalized f-mean including the arithmetic 

and geometric means but also the harmonic and quadratic means, as 

well as the Kubelka-Munk function. 

- Translucency by a scattering layer 

The prediction of the color appearance due to a translucent layer 

placed in front of a background requires taking into account the 

multiple reflections between the scattering layer and the 

background. The description of the scattering layer is defined by the 

reflectance images for the corresponding layers with infinite 

thickness (opaque foreground layer) and with unit thickness. The 

unit thickness layer reflectance is described as the combination of 

the opaque foreground layer and an achromatic component. The 

transparency rate is adjusted by the relative thickness of the layer. 
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Figure 2. First window after launching the software: the user must choose 
between three approaches.  

The software interface is shortly described in Section 2. Some 

generalities about color mixing are presented in Section 3 and a 

detailed description of the three approaches in Section 4. In Section 

5, the inverse transparency principles are given.  

2. Software interface 
Interactive RGB Trasmparency is an open source software that can 

be freely downloaded [5]. 

Figure 2 shows the first window after launching the software. The 

user can choose one of the three approaches to render transparency. 

For each approach, similar visualization window is displayed, as 

presented in Figure 3.  

 

 

Figure 3. Visualization window: for a given transparency law, the user can 
choose the background, the foreground and the transparency rate.  

For a given transparency law, the user can choose the background 

and the foreground layers, each one being either a uniform color 

layer or a downloaded image. The transparency rate can be also 

modified interactively from 0% for an opaque foreground to 100% 

where the foreground disappears. The result is displayed for the 

selected foreground image or color on a contrast card, juxtaposition 

of a perfectly black and a perfectly white background. The contrast 

cards are traditionally used in the ink and painting formulation 

industry, in particular to control the minimum layer thickness 

needed to obtain the opacity. All possible settings offered by the 

software are described in details in the user manual. 

3. Generalities on color mixing laws 
Transparency can be considered as a binary color mixing between 

the foreground layer (labeling subscript f) and the background layer 

(subscript g). A color is defined here as a reflectance spectrum  x 
satisfying  

 0 1     visible rangex     (1) 

The number of wavebands depends on the measurement system. At 

least 3 wavebands in the visible range are needed to define colors 

but it may be larger, or much larger in the cases of multi- and hyper-

spectral systems. All color mixing laws presented in this article can 

be applied with any number of spectral bands, but we focus here on 

classical computing systems where 24-bit colors are stored as 3 

integers X R,G,B  between 0 and 255. They are then considered 

as the reflectance for three distinct wavelengths or spectral bands. 

To ensure the property given by Eq. (1), the reduced coordinates 

x r,g,b  are calculated as follows: 

2

253 255

255

X
x


  (2) 

The color transparency exists if the same function h is applied to 

every point of the transparent foreground layer, and every 

wavelength: 

 f gx h x ,x ,c  (3) 

where xf, xg and x are the foreground, background and resulting 

reflectances respectively. The transparency rate c can vary from 0 

for an opaque foreground to 1 in absence of foreground. Therefore, 

the resulting reflectance x varies from xf for 0c   to xg for 1c  . 

We restrict the study to functions h varying as a monotonous 

function of the transparency rate c, thus avoiding that one 

reflectance value can be obtained from different transparency rates, 

which would induce confusion in the transparency perception.  

Figure 4 presents the flowchart explaining the binary color mixing 

computation in the case of RGB values. 

 

As a typical example, the additive transparency corresponds to a 

scene seen through a partially pierced surface, the holes occupying 

a fraction c of the foreground image. The additive mixing law is a 

linear combination between the foreground and background 

reflectances: 

 1 f gx c x cx    (4) 
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Figure 4. Flowchart for the color mixing calculation from RGB images applied 
to each pixel of the images. 

The subtractive transparency corresponds to a scene seen through a 

colored glass. The purely subtractive mixing law consists in a 

weighted geometric mean of the foreground and background 

reflectances: 

1 c c

f gx x x  (5) 

It is worth noting that if xf or xg is zero, the resulting reflectance x 

would be equal to zero for any transparency rate. This discontinuity 

may yield an aberrant color for the subtractive mixing. That is the 

reason why we restrict the reflectance values to be strictly positive. 

In the condition (1), we also exclude the maximum value 1x   for 

other mixing laws presented hereafter. In practice, these extreme 

values are replaced by 1/255 and 254/255 by using the 

transformation (2).  

4. Three approaches 
By applying the generalities presented in the previous section, we 

develop three approaches (cf. Figure 2) in order to define color 

mixing law families. 

4.1. From subtractive to additive transparency  
In this first approach introduced in Ref. [4], two simple empirical 

models are proposed to create intermediate configurations between 

purely additive and purely subtractive color mixings. An additional 

parameter τ is introduced to tune the proportions of additive and 

subtractive mixings. The additive-subtractive law can be written as 

     11 1 c c

f g f gx c x cx x x        (6) 

while the subtractive-additive law is expressed as 

       1 1 1
1

c c

f g f gx c x cx x x
     

    (7) 

For both mixing laws [Eqs. (6) and (7)], the mixing parameter  
varies from 0 for the ideal subtractive mixing [Eq. (5)] to 1 for the 

ideal additive mixing [Eq. (4)]. Figure 5a-c shows examples for 

 = 0, 0.5 and 1.The subtractive law gives darker and often more 

saturated colors than the additive law. The contrast of the resulting 

image is also better with the subtractive law. 

 

 

Figure 5. Different transparency effects (transparency rate c = 0.5 ). 
(a) Additive mixing, (b) additive-subtractive mixing with τ = 0.5, (c) subtractive 
mixing, (d) weighted quadratic mean, (e) weighted harmonic mean, 
(f) weighted mean with Kubelka-Munk function. 

4.2. Transparency as a generalized f-mean  
The additive mixing law [Eq. (4)] and the subtractive mixing law 

[Eq. (5)] correspond to the weighted arithmetic and geometric 

means, respectively. We propose a generalization by the use of a 

weighted generalized f-means, defined as 

     1  1 f gx f c f x cf x    
   (8) 

where  f x  is a continuous and injective function for  0 1x , . 

The inversion of function f can be performed numerically or 

expressed analytically. We first propose the power function: 

    pf x x  (9) 

where p can take any real value. 

The weighted power mean includes as special cases the additive 

color mixing for 1p   (Figure 5a) as well as the subtractive color 
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mixing for 0p   (Figure 5c). For this latter case, it can be shown 

that    lnf x x . It also includes the weighted quadratic mean (also 

called root mean square) for 2p   (Figure 5d), or the weighted 

harmonic mean for 1p    (Figure 5e). Surprisingly, the empirical 

weighted harmonic mean seems to be a better solution than the 

subtractive mixing law in order to create transparency illusion of a 

scene viewed through a colored glass. This may be due to the very 

rough spectral sampling. With only three spectral bands, the 

geometric mean is not sufficient to precisely simulate the increase 

of color saturation. 

When p   or p  , equation (8) tends towards 

 min ,  f gx x x  or  max ,  f gx x x , respectively, for any 

transparency rate value  0 1c , . 

For 1p n , equation (8) can be written as 

  1/ 1/1 
n

n n

f gx c x cx      (10) 

Equation (10) corresponds to the Yule-Nielsen model [6], or its 

spectral version [7], in the particular case of two primaries 

(corresponding to the foreground and the background reflectances). 

This model is classically used to predict halftone colors produced by 

printing. From the additive mixing law (corresponding to 1n  ), the 

Yule-Nielsen model introduces the corrective parameter n to take 

empirically into account the lateral propagation of light within the 

paper bulk and the internal reflections at the paper-air interface. 

Whereas the typical values of n are found between 1 and some units, 

Lewandowski et al. [8] mention the possibility to extend the model 

for negative values of n. 

We also propose the following function family:  

 
 

 
1

p

q

x

x
f x 


 (11) 

with p and q can take any real value. 

The interest of this function is first that it includes as a special case 

the power function when 0q  . Moreover, the extreme reflectance 

values 0x   and 1x   have a symmetrical importance in 

expression (11). As the function is not analytically invertible in the 

general case, we focus on some particular values for p and q. The 

case 1p    and 2q    corresponds to the Kubelka-Munk function 

[9]. For an opaque scattering layer characterized by its absorption 

coefficient K and backscattering coefficient S, the Kubelka-Munk 

function relies the ratio K S  to the reflectance x of this layer: 

 
 

2

2 
1

KM

K
f x

x

S x



 (12) 

By introducing the function fKM in the general equation (8), we 

obtain: 

      1 1  KM KM f KM gx f c f x cf x    (13) 

The factor 2 in expression (12) has no influence in the relation (13) 

due to the compensation of a factor ½ in the inverse function. 

Expression (13) corresponds to a binary color mixing law called as 

the “one constant method”. This method is applied for color 

prediction in painting industries when the paint scattering is 

dominated by a single pigment, typically the white one [10]. Figure 

5f illustrates the application of this method for transparency illusion. 

The resulting image is not identical but close to those obtained with 

the weighted harmonic mean (Figure 5e). 

4.3. Translucency by a scattering layer 
All previous color mixing laws verify the following property: 

   f g g fx h x ,x ,c h x ,x , c  1  (14) 

Therefore, it is not possible to distinguish whose layer is the 

foreground or the background. Relation (14) is not valid with the 

third approach that we propose now by considering a scattering 

translucent layer on an opaque background. In this case, the layer 

thickness N is negatively proportional to the logarithm of the 

transparency rate c. An opaque foreground  0c   is obtained for 

an infinite thickness  N   while the absence of foreground 

 1c   corresponds to 0N  . 

For a sake of clarity, we change the notations. We use r (instead of 

x), rg (instead of xg) and r∞ (instead of xf) for the resulting 

background and foreground reflectances, respectively. The 

foreground reflectance r∞ namely corresponds to the reflectance for 

a layer with semi-infinite thickness. We also introduce r1 and t1, the 

reflectance and transmittance of a layer with unit thickness.  

We use a two-flux method as the one proposed by Kubelka in 1954 

[11]. It relies on compositions of layers, each one characterized its 

spectral reflectance and transmittance (assumed similar on both 

sides), and models the multiple reflections of diffuse light between 

them. This approach can be generalized to predict the reflectance rN 

and transmittance tN of a homogenous translucent layer of thickness 

N by considering it as the superposition of N identical sub-layers of 

unit thickness and defined by their reflectance r1 and transmittance 

t1 (Figure 6): 

 

 

         

1

1

1

1

1 1

2
1

1
1

1

2

1 1

N N

N

N N N

r a b
a b r

a b r

bt
t

a b a b r a b a b r

   
     

                

 
       

 (15) 

with  

2 2

1 1

1

1

2

r t
a

r

 
  and 2 1b a   

 

Figure 6. Homogenous translucent layer of thickness N described as the 
superposition of N identical sub-layers of unit thickness. Two-flux transfers for 
one unit thickness sub-layer defined by its reflectance r1 and transmittance t1. 
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The complete demonstration is given by Hébert et al. [12]. It is 

worth noting that Eq. (15) can be applied for any positive real value 

of N (and not only integer values). When many slices are stacked 

with each other, the stack reflectance reaches the invariant value r
for the opaque foreground layer (thickness N  ): 

r a b    (16) 

When the translucent layer of thickness N is on a background of 

reflectance rg, the resulting reflectance r can be obtained by 

applying the two-flux method again: 

2

1

g N

N

N g

r t
r r

r r
 


 (17) 

In contrast with the color mixing laws previously presented in this 

article, the two-flux method requires two spectral responses in order 

to completely characterize the scattering foreground layer. For 

example, rN and tN must be known to calculate the reflectance r 

according to Eq. (17). But, in order to have a similar configuration 

as the previous approaches, the user has to choose the opaque 

foreground reflectance r . Since it is probably easier to imagine the 

reflectance than the transmittance of the layer, the second spectral 

response is the unit thickness reflectance r1, assumed to be: 

1r r    (18) 

where α and β are independent of the spectral band. 

The parameter β is the achromatic component of the unit thickness 

reflectance as often observed in case of surface scattering. As the 

reflectance r1 must satisfy condition (1), it induces some restrictions 

for the values of α and β: 

1
0

0 1

r

r






 


   




 

 (19) 

The software automatically ensures that conditions (19) are 

satisfied. Finally, the user chooses first r  and then both constants 

α and β. The reflectance r1 is calculated with the assumption (18) 

and the transmittance t1 is deduced by the relation: 

21

2

r
a

r






  and 

2

1 1 11 2t r r a    (20) 

The resulting reflectance r is finally calculated by applying equation 

(17) with relations (15). Figure 7 illustrates how the color haze due 

to scattering can be controlled with the parameters α and β. 

5. Inverse transparency 
We define the inverse transparency as the process that allows 

removing a transparency effect. In a formal way, it consists in 

calculating the background reflectance xg knowing the foreground 

reflectance xf for a given transparency rate c. Unfortunately, the 

additive-subtractive law (Eq. (6)) as well as the subtractive-additive 

law (Eq. (7)) cannot be easily inverted. However, for the generalized 

f-mean (Eq. (8)), the inversion is straightforward: 

 

Figure 7. Translucent unit thickness layer on a background [Eqs. (15)-(20)] 
with N = 1. (a) and (b) α = 0.6, β = 0; (c) α = 0, β = 0.3; (d) α = 0.3, β=0.15. 

     
1 

1 f

g

f x c f x
x f

c


  
 
 
 

 (21) 

The inverse transparency is of course possible if the foreground 

layer is not opaque  0c  .  

When considering a translucent scattering layer on an opaque 

background, the equation (17) must be inverted: 

 2

N
g

N N N

r r
r

t r r r




 
 (22) 

In the software, we propose two solutions. In the case of “inverse 

uniform transparency”, the operation is performed with the same 

transparency rate for all selected pixels. The pixels for which the 

calculated background reflectance does not satisfy condition (1) are 

invalid and can be highlighted in a color selected by the user in the 

settings. For the “inverse non-uniform transparency”, the operation 

is performed separately for each pixel. A parameter allows 

monitoring the removal of the foreground layer. The maximum 

removal corresponds to the limit before the pixel becomes invalid. 

An option allows visualizing the non-uniform removal part on a 

chosen background. Alternatively, the user can select zones and then 

the expected background color for these zones. The software 

computes the foreground color which, when applied to the average 

pixel color of the selected zones, ensures the best match with the 

color selected by the user. 

Figure 8 illustrates the virtual varnish removal obtained by inverse 

uniform transparency on a JPEG image of Mona Lisa. The 

subtractive color mixing law is used with a yellow foreground layer 

for the varnish. Even the resulting image seems to be realistic, one 

should remember that this is the result of an empirical operation. 

The prediction of a painting visual appearance after varnish removal 

is much more complex and strongly depends on the work of art [13]. 

(a) 

(b) 

(c) 

(d) 
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Figure 8. Illustration of a virtual varnish removal from a JPEG image 
(http://www.monalisa-davinci.com/images/Mona_Lisa.jpg), obtained by 
inversing the subtractive transparency law. 

6. Conclusion 
The software deals with RGB images but it could be directly 

generalized to multi- or hyper-spectral imaging. The transparency 

illusion is performed as a binary color mixing, but it can be also 

extended to mixing between any number of primaries or any number 

of translucent layers. One limitation is that the software does not 

simulate possible spatial modifications (blurring) of the image of the 

background due to a translucent layer. A spatial low-pass filter 

should be supplementary applied to mimic blurring. 

Interactive RGB Transparency can be freely downloaded [5]. 

Moreover, it is an open source software. Therefore, it offers the 

users to test and propose new color mixing laws to create 

transparency illusions. 
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