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Abstract
A scenario of domain adaptation (DA) in machine learning

occurs when training and test data are drawn from some popula-
tion with different distributions. In steganalysis, this scenario can
arise when images used for training and testing come from dif-
ferent cameras, especially in blind detection. Although there has
been some work in this area, it is still not clear that one can de-
sign a feasible detection scheme for all devices from one camera
model. In this research, Spatial Rich Models (SRM) and ensemble
classifiers have been applied for feature extraction and classifica-
tion, respectively. After carefully collecting images from several
camera models from mobile phones, with at least two devices for
each model, we identify two measurable factors that affect detec-
tion: ISO speed and exposure time. This allows us to adapt the
classifier from one device to a different one of the same model,
even when images from the two devices are significantly different
in visual appearance, by choosing specific training data. Our ex-
periments show that a well-trained stego detector based on data
from one source shows more adaptability to new target data if
the training images have similar distributions of ISO speed and
exposure time as the target images.

Motivation
Digital image steganalysis is the analysis of image data to

discover if hidden content is contained within the image. To clas-
sify an image as cover (no hidden content, or innocent) or stego
(with hidden content), many machine learning (ML) feature se-
lection methods and classification algorithms, such as [1, 2, 3, 4],
have been developed. The evaluation of such ML detectors are
typically based on the empirical errors from the experiments on
a given database, in which the training samples and the test sam-
ples are assumed to have the same sources. However, the rapid
development in digital mobile devices brings new challenges to
the steganalysis community. Individuals are more likely to take
pictures using their mobile phones, and there are many different
kinds of mobile phones and camera apps. Moreover, there are
many stego apps that allow users to embed secret messages into
images conveniently. Creating a stego image is much easier than
ten years ago. Therefore, it is very necessary to extend stego de-
tection experiments from several fixed cameras to a broader range
of image sources.

To explore the possibility of identifying a stego image from
(practically) unlimited sources, it is unlikely to maintain the as-
sumption that the target device is still included in the training
database. Some previous work, such as [5], defines this as the
cover-source mismatch problem, and shows that in the worst case,
no matter what adjustments are made to the ML algorithm, no
improvement is seen without including the source data. Note that
the paper [5] only discusses cases where the target camera models

are not contained in the training database. It is still not clear that
with knowledge of the camera model, one can successfully detect
stego images from other cameras in this same model by training
on one device from that particular camera model. We note here
that, even after limiting to one single camera model, this problem
is not trivial, since the images from the target devices are very
likely to have different properties than the images in the train-
ing database. Applying a well-trained classifier directly to new
data may bring unacceptably high errors. This is a typical do-
main adaptation problem, which aims at transferring the knowl-
edge from a source domain to a different test domain.

Numerous progress has been made in domain adaptation and
transfer learning through the past years. The formal definition of
domain adaptation and its relationship to transfer learning are well
explained in [6, 7, 8]. Domain adaptation has been widely applied
in many fields, including speech recognition and face recognition
[9, 10]. If we introduce the terms of domain adaptation into the
context of steganalysis, then images collected by one device and
labeled as “ cover ” or “ stego ” in the training database form a
sample from one source domain, and unlabeled images collected
by another, distinct device for testing is a sample from the tar-
get domain. In fact, readers will learn from our experiments de-
scribed below that, if the data collection for two such devices pro-
duces data that are independent from each other, with regards to
certain factors, that a classifier that successfully separates covers
from stegos in the source domain, may fail to classify the stego
images for the target device, even under the condition that the tar-
get camera is the same model as the training source. Thus, a very
natural question is, what kind of factors can be used to describe
the similarity between the source domain and the target domain.

Many factors, including the complexity of the scene con-
tents, the saturation level of images, and the noise level of images,
affect the empirical error rate of detecting stego images. Some
previous work, such as [11, 12, 13], has already shown that noise
levels affect the performance of an image classifier. To study if
noise is also a factor which can separate the target domain from
the source, we look for measurable variables that can represent the
noise level of a image, rather than computed noise values. Since
all computations of noise values in an image have their shortcom-
ings, we chose to focus on having an indirect measure of the noise
in an image that is part of the camera system. ISO speed and ex-
posure time are the first two parameters we start with, as they have
strong correlation to the signal-to-noise ratio (SNR) of images in
auto-exposure mode [14].

In short, the goal of this paper is to explore domain adapta-
tion problems in a more practical steganalysis setting. We outline
our work in the following steps: 1. Under what conditions can do-
main adaptation be introduced into a more practical steganalysis
framework? 2. How can we detect stego images from many var-
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ious cameras, by training with image data from limited sources?
3. How well do the factors of ISO and exposure time work in cre-
ating an adaptive classifier that works on unseen devices from the
same model? To answer the above questions, we construct our
own dataset and design a series of well-controlled experiments
using our data.

Preparation of experiments
The particular choice of image dataset plays a crucial role in

any research field involving image processing and machine learn-
ing. To run experiments for domain adaptation in steganalysis,
image data from various sources with rich and varied proper-
ties are very much in demand. In addition, to analyze certain
factors, we require that images are collected through a series of
well-controlled procedures. There are several image datasets uti-
lized by the image forensics communities. These include BOSS-
base [15], constructed for steganalysis; RAISE [16], designed for
image forgery; and the Dresden Image Database [17], created
for digital image forensics. Unfortunately, none of above image
databases is designed for the study of domain adaptation prob-
lems. Therefore, we create a database expressly for our purposes,
which we describe next.

Devices
With the development of the mobile Internet, the built-in

cameras in cell phones are very commonly used to take photos
on a daily basis. Mobile phones are preferred to individual digital
still cameras for many reasons, including lighter weight and readi-
ness to capture pictures; improved quality of mobile phone cam-
eras is also leading the general public away from the use of digital
still cameras. Therefore, unlike other benchmarking databases for
image forensics, in which images were collected solely by digital
still cameras, we choose mobile phones as the devices for our im-
age data collection. The widespread use of mobile phones and the
cameras associated with them not only allows us to collect images
from a variety of sources, but also gives us a great opportunity to
test the performance of stego detection algorithms on image data
collected by a large number of devices.

The initial data collection for our database, called StegoDB,
utilized six iPhones purchased for our lab representing three dif-
ferent phone models: two devices of the iPhone 6s model, two de-
vices of the iPhone 6sPlus model, and two devices of the iPhone7
model. Table 1 lists some technical specifications of the camera
system for these devices. In order to run experimental tests on
different devices using the same camera model, we acquired two
devices from the same model, and label the individual devices as
indicated in the first column in Table 1.

Data Collection
After iOS 10 was announced, software engineers were able

to develop third-party camera apps that allow a user to shoot pho-

Table 1. Camera Specification.
Device Rear Camera MegaPixel Image Size Aperture Image Stabilization
iPhone6s-1

Sony Exmor RS IMX315 12 4032×3024 f/2.2 Digital
iPhone6s-2
iPhone6sPlus-1

Sony Exmor RS IMX315 12 4032×3024 f/2.2 Digital and Optical
iPhone6sPlus-2
iPhone7-1

2nd-generation Sony Exmor RS 12 4032×3024 f/1.8 Digital and Optical
iPhone7-2

Figure 1. A set of 10 sample images.

tos in a manual mode and save them in raw formats. After in-
vestigating a few such apps, we chose the app “ProCam” [18] to
collect data for our experiments. This app allows more convenient
selection of ISO setting and exposure time, and enables us to save
the raw image in .dng or .tiff formats. With ProCam installed, all
six lab iPhones were assigned to different student photographers
to take photos. To better control the variability of lighting con-
ditions, we required all images to be taken indoors. More than
20 student photographers were recruited, with each photographer
checking out a single device at a time to collect his or her in-
door photos. A photographer was required to take photos using a
specific procedure. The procedure stated that a set of 10 individ-
ual photographs were to be acquired while the camera was hand-
pointed to a specific scene of the photographer’s choice, using 10
different exposure settings: one at the camera’s auto-exposure set-
ting, and the remaining nine with all combinations of three ISO
speeds: 100, 200, 1000, and three exposure times: 1/10 seconds,
1/50 seconds, and 1/200 seconds. The scene remained fixed for
the 10 photos of such a set. All original images were saved in
.tiff format by the app. In Figure 1, we display a sample of a
set of 10 images. A minimum number of 150 sets of 10 images
were collected for each iPhone, resulting in at least 1500 original
photographs over the required range of exposure settings for each
device.

In this manner, a total of more than 10,000 original images
with the native image dimensions (roughly 4000 × 3000 pixels)
were collected, representing 1000 different indoor scenes with the
six iPhones. To increase our sample size of cover images, we ex-
tracted five subimages of dimension 512 × 512 from each orig-
inal color image, and saved them as grayscale images, as shown
in Figure 2. This produced a minimum of 750 images of size
512 × 512 that we designated as cover images for each phone for
each of the 10 exposure settings. Some devices had more images
available, providing an excess of 2000 cover images.

Figure 2. Extracting five grayscale subimages from a color image.
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A sample size of two iPhone devices of the same model is not
sufficient to discuss the performance of a well-trained steganalysis
classifier applied to other devices from the same camera model.
Thus, we performed another experiment to collect images from
a large number of different devices of the same model. Select-
ing the iPhone7, we recruited more than 50 iPhone7 devices from
volunteers (52 to be precise), and from each of the 52 devices, col-
lected 40 original raw images under the 10 exposure settings, us-
ing the same procedure described above for our lab iPhones. With
more than 2000 original images and 10,000 smaller cover images
from 50 different iPhone7 devices, we are able to study the perfor-
mance of a steganalysis classifier trained by images from a single
device and tested on data with more than 50 different origins.

Creation of Stego Images
For our experiments, we implemented three spatial do-

main embedding algorithms, using the associated code avail-
able on Dr. Jessica Fridrich’s website: “Wavelet Obtained
Weights”(WOW) [19], “Spatial version of the Universal Wavelet
Relative Distortion”(S-UNIWARD) [20], and “Minimizing the
power of the most Powerful Detector”(MiPOD)[21]. Stego im-
ages were generated from the cover images using these algo-
rithms. We fix the embedding payload rate at 0.1 bits per pixel
(bpp), and leave all other parameters at the default settings, since
the goal of this paper is not concerned with the security of the
embedding algorithms, but simply to compare the relative effect
of our experiments using state-of-the-art embedding algorithms.

Steganalysis Method
Many machine learning algorithms have proven to be the

workhorse of steganalysis. Classic ML requires feature extrac-
tion, an ML algorithm, and large amounts of data. In the follow-
ing experiments, the Spatial Rich Model (SRM) [2], with 34,641
features is used as the feature set. The Fisher Linear Discriminant
(FLD) ensemble classifier [4] is implemented for the classifica-
tion of stego images. We chose this ML procedure because this
combination has been identified by the steganography community
as being one of the top-ranked ML steganalysis algorithms. The
performance of classifiers is evaluated by the average error on test
data. That is, if we let PMD denote the percentage of misdetections
and PFA the percentage of false alarms, then for a dataset consti-
tuting 50% cover images and 50% stego images, the average error
rate PE for the detection is defined as

PE =
1
2
(PMD +PFA). (1)

Discussion of Experimental Design
A discussion of the statistics involved in our experiments is

informative. The design of our experiments was approached to
produce meaningful results. We attempted to fix as many of the
variables as reasonably possible and then vary only one or two, to
observe the results and how they varied when the factors were var-
ied. Thus, for each phone, budget limitations kept our purchase to
two phones of one model. We chose to use the same camera app
on all phones, and fix all settings in the app for each photo taken,
excepting the two factors of ISO and exposure time that were var-
ied. The operating systems of the phones and the app version
were kept the same during the initial photo collection, although
they were later updated due to security reasons. Unfortunately,
the 50 phones from volunteers had a variety of different operating
systems which did not match our labs’ iPhones data. The choice
of ISO and exposure settings were selected carefully to cover as
broad a range as possible, yet still produce mostly visibly identi-
fiable photos for one scene, thus emulating most photographs that
might be taken by people (see Figure 1 for an example). The num-
ber 700 for the number of images was chosen as a compromise
between the number of samples needed to produce statistically
significant results (more is typically better) and the computation
time required to process each image, including feature extraction,
and the associated classifiers. The feature extraction was the most
computationally expensive. Some initial experiments using sev-
eral thousands of images did produce results with lower detection
error, but, with limited resources for computation purposes, we
decided ultimately to use 700 images across most of our experi-
ments. We decided that at least 30 volunteer phones would suffice,
but more was better and ultimately we collected from 52 iPhone7
devices.

Experiments on Auto-Exposure Images using
Six Lab iPhones

We start our first experiments on image data collected in
auto-exposure mode for the six lab iPhone devices. For each
device, the original auto-exposure photos consist of more than
150 different scenes. For each embedding method, cropping each
original photo into 5 smaller gray images generates 750 cover-
stego pairs as the sample size (for the distribution of images) for
each device. SRM and ensemble classifiers are applied for fea-
ture extraction and classification, respectively. For each device,
700 cover-stego pairs are randomly selected first, and are used
to generate a stego classifier for that particular device. Before ap-
plying a classier generated by images from one device to the other
five image datasets with different sources, we record the ten-fold

Table 2. Average Cross-Device Detection Error Rate, based on Image Data taken in Auto-Exposure Mode using Embedding Method
MiPOD.

Training: iPhone6s-1 iPhone6s-2 iPhone6sPlus-1 iPhone6sPlus-2 iPhone7-1 iPhone7-2
Target:
iPhone6s-1 14.8%(CV) 17.5% 25.3% 20.1% 37.4% 42.8%
iPhone6s-2 14.9% 13.7%(CV) 33.1% 28.0% 31.3% 41.1%
iPhone6sPlus-1 23.0% 23.2% 13.9%(CV) 12.1% 47.3% 42.7%
iPhone6sPlus-2 22.0% 23.4% 15.1% 11.6%(CV) 46.7% 42.5%
iPhone7-1 46.3% 43.1% 36.4% 31.2% 22.2%(CV) 39.3%
iPhone7-2 48.3% 41.7% 40.6% 36.9% 44.3% 21.8%(CV)
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Figure 3. 2D Histogram of ISO and exposure time for original photos taken in auto-exposure mode.

cross-validation (CV) error of classifying the stego images from
the same device, and view it as a baseline of detecting stego im-
ages from the target device. The result of cross-device testing on
the embedding algorithm MiPOD is provided in Table 2. We omit
the error table of cross-device experiment for embedding algo-
rithms WOW and S-UNIWARD, since they have almost the same
trend as presented in Table 2.

As we can see from Table 2, for every targeted dataset in the
experiment, the lowest error occurs when the training images are
drawn from the same phone models as used for the test data. This
is not a surprise, as mentioned earlier, some previous work on the
cover-source model mismatch problem reveals that if the target
data are collected by camera models that are not included in the
training database, a high error rate occurs [5]. The relatively low
error rates of 20%-30% in the cross-camera-model experiments
on iPhone6s and iPhone6sPlus (Table 2) is consistent with the
fact that the rear cameras on the iPhone6s and the iPhone6sPlus
are similar (Table 1).

If we focus on the case when the training data and testing
data are from the same camera models, the results are even more
interesting. As Table 2 shows, applying a well-trained classifier
based on data from one iPhone6s to the image data collected by
the other iPhone6s, produces an error rate almost as low as the re-
spective CV errors, and a similar case holds for the iPhone6sPlus
phones. However, this is not the case for iPhone7 devices, where
the cross-device errors are significantly higher than the CV error.
Considering the good quality control of iPhones, we are more in-
clined to believe that there are some other factors related to the
image noise that affects the results of the cross-testing.

The connection between the noise and the exposure settings
is a well-known phenomenon in photography (see, for example,
[22]). Thus, we analyze the meta data of our original images
(which, although can be easily changed, we know are authenti-
cated as we took the photos), and then display our discovery in
Figure 3, in which the two-variable histogram of ISO speed and
exposure time is plotted as a 3D graph for every phone model. In
Figure 3, image data from the two iPhone6s’ share most of the set-
tings of ISO speed and exposure time with each other, and a sim-
ilar case holds for the plot for the two iPhone6sPlus’. However,
in the case of the iPhone7 devices, the settings of auto-exposure
images from iPhone7-1 and iPhone7-2 barely intercept. Since the
auto-exposure program usually adjusts setting parameters based
on the lighting condition, it is fair to view the images collected
by the device iPhone7-1 as having properties quite a bit differ-
ent from the images taken by the device iPhone7-2. One possible
explanation is that the student photographers for iPhone7-1 have

very different hobbies in scene contents or light conditions than
the student photographers for iPhone7-2. That is the reason why
we need to introduce the domain adaption method in steganaly-
sis, and even when we limit the source of data to a single camera
model, such as iPhone7, a well-trained classifier is not always
adaptive.

A Domain Adaptation Solution to the Cross-
Device-Test Problem

In the previous experiment, a well-trained classifier based on
data from one iPhone7 fails to classify the target data collected
by the other iPhone7. In the language of domain adaptation, that
implies the image data from these two iPhone7 devices are from
two separate domains (of distribution). Figure 3 provides two pa-
rameters that separate these two image sets. One natural idea is
to view these two parameters, ISO speed and exposure time, as
factors that may represent the distribution domain of image data.
So, our second experiment is to redo the cross-device experiment
on images that have the same ISO speed and exposure time.

Figure 4. Boxplots of the error rates of the adaptive classifiers tested on

iPhone7-2 data v.s. the CV errors of ML classifiers on iPhone7-2 (red stars),

where adaptive classifiers are trained by image data from iPhone7-1 (Mi-

POD).

To that end, we first partition the images from all six iPhones
into nine subsets such that all images in the same set have the
same ISO speed and exposure time. Then for each subset and
the same embedding method, we randomly select 700 cover-stego
pairs of images taken by iPhone7-1, build a stego-detection clas-
sifier, and then test it on (a different set of) 700 pairs of images
from iPhone7-2. After performing this random experiment twenty
times, the errors for MiPOD at 10% embedding rate are plotted in
Figure 4, in which the CV errors (red stars) are plotted as the
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Table 3. Labels of 9 Sets of Different Exposure Settings.

ISO, Exposure Time: 100, 1/200 s 100, 1/50 s 100, 1/10 s 200, 1/200 s 200, 1/50 s 200, 1/10 s 1000, 1/200 s 1000, 1/50 s 1000, 1/10 s
Label: 1 2 3 4 5 6 7 8 9

baseline against which to evaluate the performance of our adap-
tive classifiers that are plotted as boxplots. Table 3 shows the
labels identifying the nine different exposure settings, which we
use to efficiently label the x-axis for Figure 4. The boxplots for
the other two embedding algorithms can be found in Figure 8. We
use the term adaptive classifier here to mean that the classifier is
trained on one set of data and tested on a set of data from a differ-
ent device or model of phone.

In Figure 4, when we fix the ISO speed and exposure times,
even the highest error rate generated by the adaptive classifier
tested on the iPhone7-2 data is still below 25% on average. Note
also that the boxplots of the errors made by the adaptive classifiers
follow the same trend as the CV errors across all nine exposure
settings. Moreover, for each setting, if we compare the value of
the CV error from the iPhone7-1 data to the range of the boxplots
of errors made by the adaptive classification, we discover that the
adaptive classifiers work almost as well as the ML classifier this
time, as compared to the data in Table 2. We omit the case when
the roles of the training source and test source are exchanged be-
tween our two iPhone7 devices, since the result is quite similar.
To give further experimental support to the results we see with
our iPhone7 devices, we run the same experiments on the pairs of
iPhone6s and iPhone6sPlus models. These results are provided in
Figure 9 and Figure 10. We remark that for those interested in the
relation between image noise and classification accuracy, the red
stars representing the CV errors in Figure 9 and Figure 10 are also
worth further study, but is not included in this paper.

Training an adaptive classifier on data from one camera de-
vice and one set of exposure settings, then testing on data from
a different device but the same camera model and same exposure
settings, can be viewed as a very restricted experiment, since it
can be argued that this scenario does not emulate practical situa-
tions, or even that these experiments are not interesting and have
obvious results. However, we contend that investigations of this
sort are necessary to explore the effect of specific data that is used
for training and testing steganalysis classifiers, which, in time,
may lead to better understanding of the entire steganography em-
bedding and detecting process. Access to creating this data al-
lowed us to pursue these experiments, whose results are not nec-
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Figure 5. Scatter plot of exposure time v.s. ISO, for images collected at

auto-exposure settings by iPhone7-1 and iPhone7-2.

essarily so predictable.
Since meta or EXIF information is easily manipulated, and

is not a reliable source of model information for a digital image,
we have the problem of the unknown domain for an unknown im-
age. In the context of domain adaptation, one method to solve
this problem for the unknown domain is to develop a combina-
tion of weighted classifiers based on the current knowledge. We
refer readers to the paper [7], for more rigorous details. Another
way to solve this problem is to draw the training data from a large
number of different sources such that the test domain is included
in the training domain.
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Figure 6. Performance of the adaptive classifiers, trained on three different

datasets, and tested on auto-exposure images from the two iPhone7 devices.

For the last problem, the auto-exposure images taken by our
two iPhone7 devices make a very good target source to try our
idea, although with only two phones. To view the distribution of
ISO and exposure time more clearly, we provide a scatter plot of
these two variables in Figure 5. As we can see from Figure 5 and
Figure 3, the auto-exposure images collected by iPhone7 devices
have most of their ISO speed values less than 200, and their ex-
posure times vary from 1/35 second to 1/5 second. Comparing
them to the range of the fixed exposure settings in Table 3, we
predict that we might see a fair performance of an adaptive clas-
sifier built by training from combinations of images from these
nine subsets and then testing on the auto-exposure image data.
We speculate this because the range of (ISO, exposure time) pairs
for the auto-exposure images falls within the range of the (ISO,
exposure time) pairs for the training data. Thus, we randomly
select 700 pairs of images from the union of the nine subsets of
fixed-exposure settings from one iPhone7, build a stego classifier
for embedding algorithm MiPOD as before, and then test it on
the auto-exposure images from the other iPhone7. This time the
CV error is generated by training on the auto-exposure images for
each target device. The result is presented in Figure 6. The CV
error in Figure 6 is indicated by the yellow bars (and is also given
in Table 2). In Figure 6, the new adaptive classifiers trained by
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images with nine different exposure parameters have fairly low
error rate when detecting the stego images from the other source,
and are comparable to the CV error. Noticing the fact that only
nine exposure settings in the (ISO, 1/exposure time) plane have
been used to develop this classifier, we predict that an even better
adaptive steganalysis classifier can be built by adding more train-
ing data from additional and different (ISO, exposure time) pairs,
which is part of our future work.

Experiments on Image Data with Rich Origins
All results and conclusions in previous sections involve only

two devices from the same camera model. In this section, we
select one camera model, which is the rear camera in iPhone7,
and recruit as many iPhone7 devices as possible from volunteers
during a time period of several months to conduct our next exper-
iments. The data collection is described above, in which a total
number of 2000 original photos and 10,000 cover images from
52 different iPhone7 devices are collected and processed. After
cleaning the data, we chose the images from one of our lab de-
vices, the iPhone7-1, to generate nine adaptive classifiers based on
a random sample of 700 cover-stego pairs of its images for each
of the nine different exposure settings, and then test each adaptive
classifier on 700 pairs of images from the 52 devices. The first
target subset of images is a random sample of 700 pairs of auto-
exposure images from the 52 iPhone7 devices. By training on 700
labeled pairs from iPhone7-1 with nine different settings, we build
the classifier based on the data from just one source. The result
is present in Table 4. Although there is a gap between the first
two error rates in Table 4, we still believe that the performance is
fair enough, especially considering that the test data are from 52
different devices and only nine exposure settings of training data
have been involved in the experiment.

Another explanation for the gap between the CV error and
the prediction error is that the data collected for both our lab
devices iPhone7-1 and iPhone7-2 was completed 10 months be-
fore the images were collected for the 52 iPhone7 devices, and
therefore the iOS versions are different, which may cause some
changes in the camera APIs. In addition, the training data from
iPhone7-1 are images taken from more than 200 scenes in differ-
ent buildings, but the images taken by the 52 iPhone7 devices are
collected in two different rooms with relatively fixed scenes.

We also tested the performance of the adaptive classifiers for
each fixed (ISO, exposure time) combination in the dataset for the
52 sources. We trained nine distinct classifiers using 700 pairs of
image data from the iPhone7-1 device, and tested each classifier
on corresponding (ISO, exposure time) data from the 52 iPhone7
devices. We also tested an additional 700 pairs of iPhone7-1 im-
age data, and plot this next to the error rate for the 52 iPhone7
devices. The results are summarized as bar plots of the average

Table 4. Experimental Results of Detecting MiPOD on Auto-
Exposure Images from 52 iPhone7’s (sample size =700)

Training Source Test Error
Auto-Exposure Images from 52 iPhone7 devices 26.0% (CV)
Images with 9 exposure settings from iPhone7-1 32%
Auto-Exposure Images from iPhone7-1 41%

Figure 7. Performance of the steganalysis classifiers trained on 700 pairs of

images from iPhone7-1, and tested on images taken by 52 iPhone7 devices.

error rates for 52 iPhone7 devices in Figure 7. In Figure 7, it is
quite obvious that the average error rates for 52 iPhone7 devices
are noticeably higher than the errors testing on iPhone7-1 data
itself. But we have to point out that the test errors on iPhone7-
1 data are not the CV errors for the target (52 phones) datasets.
We computed the CV errors for the 52 phones, and found they
are very small due to the way we collected those images. There-
fore, considering the fact that greatest error for the (ISO, expo-
sure time) setting of (1000, 1/200) is around 30% for detecting
MiPOD with 10% spatial embedding for 52 targeted devices, one
can not deny that our proposed adaptive method has a decent per-
formance. However, by analyzing the meta data of the 52 iPhone7
devices, we noticed that the iOS versions for all phone are not
identical. This may also play an important role in contributing to
the errors, and to show a complete result with a fair sample size,
we leave this topic to a future experiment.

Conclusions and Future Work
In this paper, the experiments on auto-exposure images from

a pair of iPhone7 motivated us to explore domain adaptation to
steganalysis. Two main exposure parameters, ISO speed and ex-
posure time, which are well known for their relationship to the
noise of images, have been taken into account as factors for build-
ing adaptive classifiers. Our experimental results include a test
using 50 iPhone7 devices, and show that a well-trained stego de-
tector, trained using data from one device, has the ability to clas-
sify fairly competently on unseen target data from the same model
(but different devices) if the training images exhibit similar distri-
butions of ISO speed and exposure time as the target images. One
way to view the domain adaptation process here is that by chang-
ing the sampling procedure of the data, that is, changing which
population the data was sampled from and consequently used to
train the ML algorithm, a classifier is produced that is more rep-
resentative of the population of data that will be tested on.

We remark that all results we show here are limited to the
case when the training device and target device are from the same
camera model. For a target device whose model is different from
the training camera model, our preliminary experiments show the
performance of the adaptive classifiers can be very terrible in
some special cases, even when the target images share the exact
same ISO and exposure time parameters as the training images.
Considering the fact that the camera model identification prob-
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lem is still at the heart of research in image forensics and camera
model identification could be used as a first step in a steganog-
raphy detection procedure using our approach, the assumption of
having some knowledge of the target device is not very strong.
One direction of our future work is to apply the knowledge of
camera models to build a suitable stego image classifier for the
target data mixed with unknown camera models.

We implement only three spatial domain embedding algo-
rithms and apply the classical SRM for feature extraction. Thus,
another future work is to study the domain adaptation problem
for other steganography methods, especially for those embedding
algorithms working in the frequency domain.
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Figure 8. Boxplots of the error rates of the adaptive classifiers tested on iPhone7-2 data v.s. the CV errors of ML classifiers on iPhone7-2 (red stars), where

the adaptive classifiers are trained by image data from iPhone7-1 (S-Uniward and WOW).
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Figure 9. Boxplots of the error rates of the adaptive classifiers tested on iPhone6s-2 v.s. the CV errors of ML classifiers on iPhone6s-2 (red stars), for three

embedding algorithms, where the adaptive classifiers are trained by image data from iPhone6s-1 (MiPOD, S-Uniward and WOW).

Figure 10. Boxplots of the error rates of the adaptive classifiers tested on iPhone6sPlus-1 v.s. CV errors made by ML classifiers on iPhone6sPlus-1 (red stars),

for three embedding methods, where the adaptive classifiers are trained by image data from iPhone6sPlus-2 (MiPOD, S-Uniward and WOW).
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