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Abstract

It is now well known that practical steganalysis using
machine learning techniques can be strongly biased by the
problem of Cover Source Mismatch. Such a phemomenon
usually occurs in machine learning when the training and
the testing sets are drawn from different sources, i.e. when
they do not share the same statistical properties. In the
field of steganalysis however, due to the small power of the
signal targeted by steganalysis methods, it can drastically
lower their performance.

This paper aims to define through practical experi-
ments what is a source in steganalysis. By assuming
that two cover datasets coming from a common source
should provide comparable performances in steganalysis, it
is shown that the definition of a source is more related
with the processing pipeline of the RAW images than with
the sensor or the acquisition setup of the pictures. In or-
der to measure the discrepancy between sources, this pa-
per introduces the concept of consistency between sources,
that quantifies how much two sources are subject to Cover
Source Mismatch. We show that by adopting "training de-
sign”, we can increase the consistency between the training
set and the testing set. To measure how much image pro-
cessing operation may help the steganographers this paper
also introduces the intrinsic difficulty of a source.

It is observed that some processes such as JPEG quan-
tization tables or the development pipeline can dramatically
increase or decrease the performance of steganalysis meth-
ods and that other parameters such as the ISO sensitivity
or the sensor model have minor impact on the performance.

Introduction

The security of steganography algorithms as well as
the benchmark of steganalysis schemes is usually evalu-
ated on the well-known BOSSBase [1] generated following
a unique processing pipeline. This setting has indisputable
advantages for both steganography — allowing the compari-
son between steganographic schemes, choosing parameters
of embedding scheme to maximize efficiency [16] — and ste-
ganalysis — designing of features sets [6, 17] and study-
ing the impact of several parameters on detectability [21].
However, this methodology that uses the same dataset,
with limited diversity, and that processes all raw images
using exactly the same processing pipeline has several im-
portant limitations. Indeed, such an experimental frame-
work seems quite far from a real-life environment where
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images come from many different camera models with a
possible wide range of acquisition setups (e.g. different
sensors, different ISO sensitivity or ISO speed, ...) and are
subject to different processing pipelines.

This paper shows how these discrepancies impact on
the phenomenon of cover-source mismatch (CSM) which
can be loosely defined by the fact that if the training and
testing sets do not come from the same source, steganalysis
then undergoes a strong loss in accuracy.

To the best of our knowledge, very few works (see
for instances [2, 14, 11, 12]) have tried to characterize the
sources of the CSM, quantify their impact and address it.
Note that those works mostly focus on the image acquisi-
tion settings such as the camera model and the ISO sensi-
tivity. A notable prior work, however, is [21] in which the
authors show that for spatial domain image steganography,
cropping or resizing significantly changes the performance
of steganalysis methods. Although CSM has only been
studied in a handful of prior works, this problem is funda-
mental to address the larger problem of real-life scenarios,
as already acknowledged in [10], and will be beneficial both
for the steganalyst and the steganographer. The former
must understand which acquisition or processing parame-
ters have the largest impacts on classification accuracy, the
latter must understand those parameters to choose images
for which the hidden message will be harder to detect.

Contents of the Paper

We recall first the outline of the paper:

e Section “Experimental Setup” defines the classifica-
tion setup and the studied parameter that can possi-
bly impact the mismatch.

e Section “Steganalysis on Real-Life Image Bases” mo-
tivates our study by presenting steganalysis results on
databases coming from different sensors, at different
resolutions, or at different ISO sensitivity.

e Section “Training Design” studies the impact of dif-
ferent parameters such as the JPEG Quality Factor,
the camera sensor, the processing software, processing
algorithms, ISO Sensitivity or possible color adjust-
ments.

e Section “Co-occurrence Analysis of Different Devel-
opment Settings” attempts to give a statistical ra-
tional on the problem of CSM by looking at the co-
occurence of neighboring pixels after distinct develop-
ment pipelines.



e Finally section “Conclusion” lists the parameters that
have either minor or major impacts on the mismatch.

Experimental Setup

Throughout this paper we follow a classic supervised
classification setting, composed of training and testing sets
where each cover image is paired with its stego-image.
Both training and testing set are composed of 5000 random
images from their corresponding image base. More specif-
ically we use the low complexity linear classifier defined in
[4] with five fold cross-validation to estimate the regular-
ization parameter. We choose this classifier over the well-
known ensemble [13] for its low computational costs which
allows us to speed up the classification without — accord-
ing to the results given in [4, 3] — loosing in terms of ste-
ganalysis accuracy. Experiments are conducted on images
compressed using the JPEG standard and two well-known
embedding schemes have been used, namely NSF5 [7] a
rather old non-adaptive steganographic algorithm, and the
content-adaptive scheme J-UNIWARD [9]. For feature ex-
traction, the DCTR [8] algorithm has been used.

Measure of Cover-Source Mismatch

To be able to quantify the impact of Cover-Source Mis-
match (CSM), one first needs a definition of a source. We
will define a priori a source as two sets of parameters used
to generate a natural image :

Acquisition parameters This encompasses all parame-
ters fixed during the acquisition of the raw image by a
camera, e.g. camera model, ISO, sensor size, etc. ...

Processing parameters This encompasses the whole
processing pipeline after the image has been taken,
e.g. demosaicing algorithms, resampling, cropping,
processing software, JPEG compression, etc. ...

We will refine those definitions in Section "Training
Design" to the sole parameters which have an impact on
steganalysis accuracy.

Once a source has been defined, two important prop-
erties related to the image bases must be introduced:

e The probability of error given that the training and
testing sets both come from the same source, this is
defined as the intrinsic difficulty of the image base.
The steganographer will for example seek for sources
with the highest intrinsic difficulty.

e The probability of error given that the training and
testing sets each comes from a different source, this
is defined as the inconsistency, or source mismatch,
between training and testing sets. A high inconsis-
tency inducing an important mismatch between the
two databases, the steganalyst will consequently try
to generate a training database providing a low incon-
sistency with the given testing image.

Dataset # \ Camera Model | Fixed Dimension \ ISO ‘

1 Nikon D90 — —

2 Nikon D90 — 200

3 Nikon D90 4288 x 2848 200

4 — 5184 x 3456 —

5 — — 500

6 — — 1600
Table 1.  Summary of selected subset of the FlickRBase. Every

database also had a Quality Factor (QF) fixed to 99

Note that the probability of error is measured using the
most used minimal total probability of error under equal
priors Pg = min(Ppra + Pyp)/2.

Steganalysis on Real-Life Image Bases

To understand the necessity of a finer characterization
of the CSM phenomenon, one must first confront classical
steganalysis techniques to real life databases, that is image
bases which have the following properties :

1. They contain images with numerous different acquisi-
tion parameters (sensors, ISO, exposition, etc. ...).

2. Each image has potentially followed a specific process-
ing pipeline (specific compression parameters, pro-
cessing steps, image editing software, etc. ...).

3. The processing history is a priori unknown.

To that end, we used the FlickRBase [20] which con-
tains 1.3 millions images downloaded from FlickR in their
original quality (this ensures that no further compression
was applied after uploading, which would normalize the
image base). Acquisition parameters were associated to
each image using their EXIF datal.

From this image base, we constructed several
databases consisting of 10 000 images with one or more
fixed acquisition parameters, they are summarized in Table
1. Images were then losslessly center-cropped to get images
of size 512 x 512 using the command jpegtan7 to ensure
that the 8 x 8 block structure of jpeg files is preserved. Each
base was then classified with the methodology exposed in
the previous Section, images being embedded using NSF5
with payload 0.1 bpnzac. Some results obtained with a
few fixed parameters are presented in Table 2. Note that,
for readability, only a handful of results are presented here;
very similar results were obtained with much more datasets
with various sets of fixed parameters (camera model, ISO
sensitivity, shutter speed, sensor size, aperture, etc. ...).

We can immediately observe that the intrinsic diffi-
culty is far from the BOSSbase baseline® despite fixing sev-
eral acquisition parameters usually associated to the causes

Yahoo Flickr Creative Commons 100M (YFCC100M) is
available freely at https://webscope.sandbox.yahoo.com; note
that this dataset is hosted on the Amazon Web Services plat-
form, which requires a free Amazon Web Services login for ac-
cess.

2The command-line program jpegtran is part of libjpeg library
which can be found at http://ijg.org.

3See [8, Fig.6] which claims Pg of about 20% for a Quality
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of cover-source mismatch phenomenon (sensor, ISO, orig-
inal image dimensions). This consequently implies that
acquisition parameters are not sufficient to define a source.
The fact that images coming from such platforms as FlickR
are always heavily processed can, however, lead us to the
idea that it is the diversity of processing pipelines that is
the main culprit behind the high intrinsic difficulty of such
databases. Indeed if each image composing an image base
followed a different processing pipeline, then image proper-
ties when split between training and testing base will tend
to be quite different.

To explore this idea and motivate the next section,
we repeat the previous experiment except that instead of
cropping the images, we downsample them to a size of
512 x 512 using the Lanczos filter of convert. Intuitively,
since we take images in their original sizes, resizing them
to 512 x 512 will have a huge impact on the image prop-
erties and on pixel distributions such that past processing
will be negligible compared to the downsampling. This
way, we normalize the processing parameters of each im-
age base. The results in terms of steganalysis accuracy
with the same datasets as those used presented in Table 3
using images resizing are summarized in Table 3.

l Train\ Test H 1 ‘ 2 ‘ 3 ‘ 4 ‘ 5 ‘ 6 ‘
1 0.34 | 0.34 | 0.34 | 0.39 | 0.35 0.35
2 0.34 | 033 | 0.34 | 0.37 | 0.34 | 0.34
3 0.35 | 0.35 | 0.31 | 0.36 | 0.34 | 0.35
4 0.39 | 0.37 | 040 | 0.34 | 0.35 0.36
5 0.34 | 0.34 | 0.35 0.34 | 0.32 | 0.33
6 0.35 | 0.35 0.37 | 0.34 | 0.33 | 0.33

Table 2. Intrinsic difficulty and consistence of cropped 512 x

512 image bases for different acquisition parameters. We show
that classification accuracy is not significantly increased by simply
fixing acquisition parameters for real-life image databases.

[Train\Test[| 1 [ 2 | 3 | 4 | 5 | 6 |
1 0.14 | 0.14 0.14 0.14 0.14 0.15

2 0.15 | 0.13 | 0.15 0.13 0.14 0.14

3 0.13 0.14 | 0.15 | 0.14 0.14 0.14
4 0.14 0.13 0.15 | 0.11 | 0.13 0.14

5 0.14 015 0.14 0.14 | 0.13 | 0.15

6 0.15 0.14 0.14 0.14 0.15 | 0.14
Table 3. CSM matrix of downsampled 512 x 512 images with a

fixed acquisition parameter downloaded from Flickr.

From the significant drop in Pg from Table 2 Table 3
we can infer that the processing pipeline has a huge impact.

This section showed that current good practices are
far from sufficient to allow accurate steganalysis in a su-
pervised setting. Fixing acquisition parameters such as the
sensor, ISO and dimension of the image does not give a sat-
isfying jump in accuracy. However, it is clear from the dif-
ference in intrinsic difficulty between cropped and resized
images, that the way an image is processed has a far bigger
impact on the way the stego noise will be distributed in the

Factor (QF) of 75 and slightly below 15% for QF 95 on BOSS-
base using DCTR features set.
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image. Thus it is not sufficient to define a source as the
acquisition parameters ; processing parameters must also
be taken into account in this definition.

The following sections will try to demonstrate that not
only these processing parameters have an impact, but also
that the impact of the acquisition parameters are negligible
compared to those of the processing parameters.

Training Design

A supervised classification problem always relies on at
least three assumptions regarding the relationship between
the training and testing base :

1. The marginal distributions of features extracted from
the training and testing sets are close.

2. The conditional distributions of those features given
the distribution of each class (here cover and stego)
of the training and testing sets are close.

3. The marginal distributions of each class of the training
and testing sets are close.

In a real life setting of steganalysis with highly diverse con-
tent, image processing tools and camera models, none of
those assumptions are accurate. To be able to use the clas-
sical supervised classification setting in such a steganalysis
context one must design a methodology to ensure that, for
a set of inspected digital images, an ad-hoc training set
is able to verify these conditions. In this work, we will
only deal with the first two assumptions which are directly
related to the problem of cover-source mismatch. The pro-
posed methodology is based on the fact that the stegan-
alyst can have access to the RAW images that generates
the training set. Thus, the steganalyst’s problem is then
to do training design, i.e. to find a methodology for
designing a suitable subset of the training set such as to
maximize accuracy of the classification of the testing set
given a knowledge of the images properties (sensor, ISO,
JPEG QF, etc...) and given partial or total knowledge
about the processing pipeline history.

In other words, the idea is to split the training base
into training sub-bases coming from a fixed source and to
associate to each sub-base a training base which would best
approximate our two assumptions of interest.

For this method to work, one first needs a definition
of a source. A good definition of a source would specify
those parameters which are the biggest source of incon-
sistency (as defined in the Introduction) between training
and testing base. The intrinsic difficulty would then de-
fine a lower bound on the accuracy given a specific setting
(stego-algorithm, classifier, features).

The main hypothesis of this work is that the most ef-
fective steganalysis in our setting is achieved by training
the classifier on training set which has followed the same
processing pipeline as the testing set. Rephrasing using
the aforementioned defined assumption on which super-
vised learning relies, we hypothesize that a source is well
approximated by a specific processing pipeline and that the



l H Radius | Amount H \ Radius | Amount | Damping | Itérations H Luminance
UsM1 1 300 RL1 0.75 75 20 30 DEN1 30
USM2 25 300 RL2 1.5 100 0 50 DEN2 40
USM3 0.5 550 RL3 25 100 0 50 DEN3 55
USM4 0.5 800 RL4 2.5 100 0 70 DEN4 70
USM5 3 1000 DEN5 90

Table 4.
default value.

loss in consistency incurred by not specifying the acquisi-
tion parameters is negligible.

To test for this hypothesis, we propose the following
methodology :

1. A training set with RAW images taken with poten-
tially several different sensors is selected.

2. A testing set with RAW images taken with a unique
sensor not present in the training set is selected.

3. From both of these sets, 2N new sets are generated
using N different processing pipelines in such a way
that each new set follows a single processing pipeline
and that each new training set follows the same pro-
cessing pipeline as another testing set.

For our experiments, the training set will be the BOSS-
Base with images taken with an M9 Digital Camera re-
moved and the testing set will be the M9Base which con-
tains images taken only with a M9 Digital Camera at fixed
ISO. After processing, every image is then converted to
JPEG with a quality factor of 99 and, finally, losslessly cen-
ter cropped with dimensions 512 x 512 using jpegtran. Note
that we choose to fix the quality factor, or more precisely
the quantization matrix, because this must be available in
order to make the file usable. Therefore, since this param-
eter is known and, though it has an important impact on
accuracy of steganalysis, it can hardly be a cause of source
mismatch in practice. Similarly, the choice of cropping the
images, instead of resizing, is justified from preliminary re-
sults on to FlickR base that studied the impact of various
parameters on cover source mismatch. Indeed, eventually
resizing the image by a important factor (typically to ob-
tain images of size 512 x 512) largely reduces the impact of
other processing.

The rest of this section will study the impact of two
common acquisition parameters, namely the camera model
and the ISO setting, coupled with the impact of processing
parameters in an increasing level of detail. Two raw im-
ages datasets are used, the well-known BOSSbase which is
made of 10 000 images from 7 camera models and an ad-
hoc dataset that contain only images from a single camera
model, namely the Leica M9, for which image has been cap-
tured fix few different values of ISO sensitivity parameter;
this dataset is referred to as the M9Base.

Impact of Processing Softwares

The highest level of choice for processing parameters
is the processing software. It will usually define the demo-
saicing algorithm, the white balance, the gamma correc-

Parameters of the different RawTherappe 5.3 developpement settings studied. Parameters not specified were left to their

tion as well as the JPEG compression parameters (chroma
subsampling, quantification matrix, etc.). In addition an
image editing software may use specific algorithms for the
most common processing tools such as sharpening and de-
noising.

Table 5 provides results obtained using default settings

with three different image editing softwares, namely Photo-
shop Lightroom (LR), a commercial high-end software for
raw images editing and developed by Adobe, RawTherapee
(RT) an open-source competitor of LR that allows both
converting and processing raw images and deraw (DC) an
open source command-line program which provides only
basic processing tools. Note that RawTherapee is based
on dcraw for raw images conversion only.
A fourth dataset is included in Table 5 because LR uses
custom JPEG quantization matrix (quality factor); we
therefore choose to add a dataset referred to as LR-
standardQF which is made of raw images converted to un-
compressed TIFF format using LR and then compressed
with standard QF using imagemagick convert’s tool?.

| Train \Test  [[ LRstandardQF [ LR [ RT | DC |
LR-standardQF 0.234 0.457 0.263 0.229
LR 0.459 0.229 0.474 0.450
RT 0.247 0.455 0.251 0.221
DC 0.284 0.450 0.301 | 0.255

Table 5. Intrinsic difficulty and consistence of images bases

for different processing softwares.
training base while each column corresponds to a testing base.
The training base is the BOSSbase with M9 images removed,
the testing base is the M9Base-1SO01250

Each row corresponds to a

| Train \Test [[LR-standardQF| LR [ RT | DC |
LR-standardQF -0.004 -0.001 | 0.002 | 0.005
LR -0.003 -0.003 | -0.001 | 0.002
RT -0.004 -0.008 | -0.002 | -0.001
DC -0.001 -0.000 | -0.001 | 0.005

Table 6. Difference in Pr between training on the BOSSBase

with M9 images removed and training on the same base as the
testing set (here M9Base-1SO1250) a negative results means a
better classification when training on the BOSSBase while a pos-
itive result means better classification when training on the same
base as the testing set.

4The open-source software Imagemagick, including convert
command-line tools, can be obtained at www.imagemagick.org.
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Before presenting and commenting on the results,
it is crucial to note that most steganography algorithms
for JPEG compressed images embed a payload measured
in bits per non-zero AC coefficients (bpnzac). However,
the processing pipeline in general can heavily modifies
the content details of a picture and, hence, the resulting
number of non-zero AC coeflicients. In order to conduct
a fair comparison, we have thus chosen not to fix the
embedding rate but instead to fix the length of the hidden
data and to adjust the payload, in bpnzac, provided to
the embedding scheme matches the message length. The
payload is set to 10 322 bits or 1.26 Kilo-Bytes for nsF5,
this corresponds to the payload of 0.04 bpac (Bits Per AC
coeflicients). We will report similar results in the final
version of this paper for J-UNIWARD with embedded
message length of 154 024 bits, or 15.75 Kilo-Bytes,
corresponding to 0.6 bpac for J-UNIWARD. However, due
to a much higher computation time for J-UNIWARD, the
results reported corresponding to a payload of 0.5 bpnzac.

Results provided in Table 5 give two important lessons
which can be summarized below:

e The most important parameter defining a source is
first and foremost the quantification table used during
the JPEG compression. Indeed when training on base
with a different quantification than the testing base
(e.g. LR/DC) we can see that the Py always deviates
by more than 20% from the intrinsic difficulty of the
testing base.

e The inconsistency due to mismatched software alone
is more subtle as it ranges from 0.4% (training on RT
/ testing on LR-standardQF) to roughly 5% (train-
ing on DC / testing on RT or LR-standardQF). How-
ever this amount is rather important as compared to
the intrinsic difficulty which ranges from 23.4% (LR-
standardQF) to 25.5% (DC).

e Fach software has relatively close intrinsic difficulties,
even with a non-standard quantification matrix. This
means that the choice of software has only a negligible
impact on the difficulty of an image when using all
default parameters.

e The camera model does not seem to be a relevant pa-
rameter to characterize a source. Indeed, the absence
of the M9 Camera from the training base does not
prevent a rather low intrinsic difficulty for any of the
image base. In order to confirm the negligible impact
of the camera model on the definition of a source, Ta-
ble 6 shows the difference in terms of steganalysis ac-
curacy when trained on BOSSbase without the image
from Leica M9 camera as compared to the results ob-
tained when both training and testing are carried out
on images from M9Base with the same ISO sensitiv-
ity. The loss of accuracy shows a negligible impact of
both camera model and ISO sensitivity since the loss
of accuracy with the same QF ranges from —0.8% to
40.5% for some cases in which the accuracy actually
improves when trained on BOSSbase (when testing
set has been edited with dcraw for instance).
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Impact of Common Image Processing Algorithms
The comparison between image editing software only
gives a coarse-grain view since, in all softwares, many pro-
cessing algorithms can be tuned manually (for instance,
the most important being the gamma correction, denoising,
sharpening, and color adjustment). To study the impact of
all those image processing algorithms individually we pro-
pose to choose one image editing software and to modify
the parameters for the aforementioned various image pro-
cessing algorithms. For each setting we then measure the
intrinsic difficulty as well as the consistency between dif-
ferent datasets.
We choose RawTherapee (RT) as the image editing soft-
ware because it is open source, which means that we ex-
actly know the algorithms used and their parameters, and
because it offers a wide range of parameters for each im-
age processing algorithm. In the present paper we only
present the results with the most influential and the com-
mon image processing tools, namely denoising, sharpening,
and color adjustment. To measure the impact of the pro-
cessing algorithms on both intrinsic difficulty and incon-
sistency, we present the results obtained by generating 15
different processing pipelines using:

e default settings, here we let the software automati-
cally sets the processing pipeline, referred to as Auto-
Levels (AL);

e Unsharp mask (USM), which is an image sharpening
method, with 5 different parameters for “radius” and
“amount”;

e Richardson—Lucy (RL), a deconvolution image sharp-
ening technique using a Gaussian Point-Spread Func-
tion (PSF), with 4 different parameters;

e Denoising (DEN), the noise reduction tool based
on both wavelet decomposition and median filtering,
with 5 different parameters.

The results in terms of steganalysis accuracy for all the
image processing algorithms are summarized in Tables 10
— 15. For all those tables, each row corresponds to a spe-
cific dataset used for training and each column corresponds
to the dataset used for testing. The training set is always
obtained using RAW developed BOSSbase images, with-
out the images from the camera model Leica M9, while
the testing is always carried using RAW developed images
from the M9Base.

First, Table 10 presents the results obtained when test-
ing images with ISO sensitivity 160 using nsF5 embedding
scheme. We summarize below the most important points
that can be concluded from those results:

e It is always optimal (within 1%) to train and test on
bases with the same development setting. That is,
setting the same processing pipeline for the training
and testing bases seems to be a sufficient (but by no
means necessary) condition to get the best accuracy
given a classification setting.

e Some development settings impact highly the intrinsic
difficulty of the base; see for instance Unsharp mask,
USM, for which Pg ranges from 31.5% to 39%, with-
out source mismatch in Table 10 or Denoising (DEN)



for which intrinsic difficulty can be modified by a fac-
tor of about 10%.

e However the inconsistency between other datasets
subject to the same type of processing is in general
rather small.

e More generally, the inconsistency between all datasets
heavily depends on the type of processing: this can
be observed by observing Pp obtained when using
each dataset for testing (on the column of Tables).
While Unsharp mask (USM) and RL deconvolution
seem both slightly sensitive to the training set — with
standard deviation of Pg in the range 4 ~ 5%—, the
denoising may be much more subjected to inconsis-
tency and it seems very sensitive to the training set
with standard deviation of Pg up to 15%.

Table 11 shows the difference in Pr, when the training
is carried out over images from the M9Base with ISO sensi-
tivity 160, the dataset used for testing, as compared to the
results obtained when training uses images from BOSS-
Base, as reported in Table 10. Once again we see that
training on a base which contains the same camera model
does not seem to help classification accuracy. Indeed the
difference in Pg is, on average, —2%, meaning that it is on
average more efficient to train on the BOSSBase with M9
image removed in this setting. While this might be due
to semantic content differences, we can at least conclude
that the camera model has a very weak impact on CSM
compared to processing parameters. Note, however, that
when there is no source mismatch in terms of processing
pipeline, i.e. the diagonal of Tables 10 and 11, the intrinsic
difficulty is slightly reduced by using the same raw images
in almost all the cases. This, however, brings a rather small
improvement for steganalysis as Pp is reduced in average
by roughly 0.8% and at most by at most roughly 1.8%.

Next, Tables 12 and 13 present the very same re-

sults as those presented in Tables 10 and 11 only using
J-UNIWARD with payload 0.5 bpnzac instead of nsF5 at
payload 0.04 bpac. Though the embedding payload is
much higher, the accuracy of steganalysis is greatly re-
duced since J-UNIWARD is the current state-of-the-art of
adaptive embedding scheme, while on the opposite nsF5 is
a non-adaptive scheme based on the F'5 algorithm proposed
in [18] in 2001. We note from Table 12 that the conclu-
sion drawn from the results using nsF5 remains valid for
J-UNIWARD especially on the impact of all the image pro-
cessing algorithms on both intrinsic difficulty as well as on
the inconsistency of datasets generated using different pro-
cessing methods.
Similarly, we note from Table 13 that the conclusion from
the comparison of results obtained by training on BOSS-
Base or on the same M9Base also remains valid ; the fact
of picking the same camera model does not impact the in-
consistency between image processing operations and only
slightly (by at most 1.5%) the intrinsic difficulty.

Impact of I1SO Sensitivity
Eventually, we propose to conduct the same experi-
ment but modifying the ISO sensitivity of images used in

the testing set from M9Base. The goal is obviously to
measure how much the ISO sensitivity improves both in-
trinsic difficulty and inconsistency between different pro-
cessing algorithms. Note that the ISO sensitivity corre-
sponds, roughly speaking, to a signal gain; the higher the
ISO sensitivity, the higher the noise standard deviation of
pixels, and hence, of DCT coefficients.

To study the impact of ISO sensitivity, Tables 14 and 15
present the very same results as those presented in Ta-
bles 10 and 11 only changing the testing sets by images
from the M9Base with ISO set to 1250, instead of 160.
The comparison of those tables allows drawing the main
following conclusions:

e First, and most important, moving from ISO 160 to
ISO 1250 does not seems to have a strong impact nei-
ther on the intrinsic difficulty nor on the inconsistency
between processing algorithms. Indeed the difference
in terms of steganalysis Pg is around 0.5%.

e However this general results can vary according to the
processing algorithms ; in general, when using Un-
sharp mask sharpening technique, the difficulty is in-
creased with ISO of about 2 ~ 4%.

e The source mismatch, or inconsistency, between im-
age processing settings is mostly not impacted by ISO
sensitivity. Indeed, almost every inconsistency score
differ by less than 1% between the testing on the
M9Base-160 and on the M9Base-1250, the only ex-
ception being between DEN5 and RL development
settings where the difference in inconsistency between
ISO can reach 5%.

e The intrinsic difficulty is almost always slightly in-
creased with the ISO; in average by 1.5% and up to
4.5% for the Unsharp mask algorithms. This seems
rather natural since using a strong sharpening pro-
cessing on noisy images tends to increase more the
noise present in the image.

Impact of Color Adjustement

Finally, we propose to study the impact of the “color
adjustments”. More precisely, we refer to color adjustment
to denote all the processing operations aiming at improv-
ing the visual quality of colors by modifying, pixel-wise,
the mapping between pixels value before and after process-
ing ; typical examples of “color adjustments” processing
includes highlight reconstruction, contrast enhancements,
saturation modification, shadow and high exposition com-
pensation, etc. We have used the Auto-Level tool
throughout the preceding section which tunes the exposure
parameters for each image, actually randomizing those pa-
rameters. A natural question is whether fixing the color
adjustment parameters for an entire base lowers the in-
trinsic difficulty of the given base while not introducing
inconsistency at the same time.

To answer this question we chose 6 different images
from the BOSSBase and used RT’s Auto-Level tool to get

5Those processing are referred to as “exposure correction”
under RawTherapee software ; we, however, use the term “color
adjustments” to avoid confusion with “exposure compensation”.
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(c) Image 18

X <

(a) Ima‘ge# 16

(b) Image# 17

Figure 1.

the color adjustment parameters of each specific image.
For visualization, those images are presented in Figure 1.
Those images have been manually selected because of their
very different luminance histograms resulting in the setting
of widely different parameters for color adjustment or color
adjustment.

We then generated 6 databases by applying the specific
color adjustment parameters to the entire BOSSBase, with
all the other processing algorithms set to their default val-
ues. The Results are summarized in Table 7.

We repeated the experiment by applying the same color ad-
justment (or color adjustments) parameters but also using
the Unsharp mask sharpening method with parameters de-
fined as for USMA4 ; this allows to study the effect or color
constant color adjustment and randomized adjustments on
a more difficult development settings and, hence, to get a
better sense of the interplay between two class of process-
ing parameters. The results obtained from this experiment
are summarized in Table 8.

| Train\Test || AL | 16 | 17 | 18 [7354[7420] 7483 ]

AL 0.224(0.243|0.202|0.213|0.213 | 0.204 | 0.231
16 0.225(0.260(0.217[0.219|0.226 | 0.219 | 0.245
17 0.229]0.239|0.208|0.215 | 0.220 | 0.203 | 0.241
18 0.230 [ 0.247|0.202 [0.239( 0.217 | 0.209 | 0.248
7354 0.225|0.234 | 0.206 | 0.205 |0.209| 0.200 | 0.225
7420 0.227(0.235|0.208 | 0.211 [ 0.215 |0.208 0.243
7483 0.22210.237(0.198 [ 0.209 | 0.219 | 0.208 |0.217
Table 7. Intrinsic difficulty and consistence of images bases for

different color adjustment parameters. Each row corresponds to
a training base while each column corresponds to a testing base.
Both training and testing base come from the BOSSBase. The
header names correspond to the name of the image where the
color adjustment parameters were taken.

The main conclusion on the impact of color adjust-
ments that can be deduced from Table 7 and 8 are sum-
marized below:

e In Table 7, we can note that fixing the color adjust-
ment parameters may have a noticeable effect on the
intrinsic difficulty, with a range of Pg of about 5%.

e Fixing the color adjustment parameters does not al-
ways lower the intrinsic difficulty, and may in fact
increase the difficulty by a non-negligible amount
(about 3.5% using settings from image # 16).
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(e) Image#+ 7420

(d) Image# 7354 (f) Image# 7483

The 6 images from BOSSbase on which the color adjustment parameters have been picked to set the constant toning on all the images..

Train\Test [[USM4] 16 | 17 [ 18 [7354[7420] 7483 |

usm4 0.310{0.332|0.302|0.311|0.310| 0.294 | 0.321
16 0.332 |0.373]0.307 | 0.342 | 0.325 | 0.320 | 0.357
17 0.333 |0.3230.297(0.311 | 0.322 | 0.292 | 0.355
18 0.341 |0.352(0.313 |0.350{ 0.323 | 0.310 | 0.350
7354 0.313 | 0.3240.295|0.310 |0.308| 0.293 | 0.319
7420 0.319 |0.331{0.300(0.312]0.313 {0.296| 0.321
7483 0.317 | 0.318 {0.300 | 0.307 | 0.309 [ 0.294 |0.310
Table 8. Intrinsic difficulty and consistence of images bases for

different color adjustment parameters with each base sharpened
using USM4. Each row corresponds to a training base while each
column corresponds to a testing base. Both training and testing
base come from the BOSSBase. The header names correspond
to the name of the image where the color adjustment parameters
were taken.

e Inconsistency is not greatly introduced between bases
not sharing the same exposure parameters as the dif-
ference from the intrinsic difficulty never exceed 3%.

e Interestingly, we note that some color adjustment set-

tings may have a beneficial effect when used in the

training phase (for instance, settings from image #

7483 improves classification with of # 16, # 17, # 18

with regard to their intrinsic difficulties) while hav-

ing a rather high inconsistency when used as a testing
base.

Generally speaking, a rather small inconsistency is ob-

served when trained on the dataset with toning auto-

matically set by the software.

Thus setting proper color adjustment parameters can
be a good strategy to lower the intrinsic difficulty of a dif-
ficult image base or, more realistically, to design a training
base to classify a specific image.

Co-occurrence Analysis of Different Develop-
ment Settings

In order to get a better interpretation of the inconsis-
tency between different development settings, we decided
to observe from a statistical point of view the impact of
the development pipeline on joint distribution of neigh-
boring pixels. By performing such an analysis we try to
recast the CSM problem into a more theoretical perspec-



tive in order to see if the inconsistencies highlighted in
the previous sections can be justified by the fact that the
joint-distributions of pixels are very different after different
development pipelines.

To do so we generated an artificial raw image in 14
bits coded DNG format, on this image each even column is
equal to 8192 and each odd column to 5461. Then, we
altered this image by adding Normal noise of standard
deviation equal to 8.192 for even column and 5.461 for
odd column. The goal here is to challenge both the demo-
saicing algorithms with fluctuating color components and
denoising algorithms with noise distributed as the sensor
noise [5, 19].

We develop the image in 8bits tif (uncompressed) for-
mat and compute the gray scale version by averaging the
3 color components. Each time we use the same method-
ology as in the previous sections, by only modifying one
development setting.

We display the empirical co-occurrence between two
diagonal neighboring pixels on Figure 2 for the different
development settings of RawTherapee used for example in
Table 10. We choose the 2D co-occurrence matrix because
it is a good proxy for the SPAM [15] and SRM features [6],
which are features that are very efficient in steganalysis.

It is interesting to notice that, starting with the very
same raw image, each development leads to a very specific
co-occurrence matrix. For example, the USM1 and USM2
settings present sparse distributions while RL3 and RL4
present dense distributions. Note that the symmetry is due
to the fact that the columns alternate between two average
values. We have also checked that these discrepancies are
also verified for horizontal or vertical neighborhoods.

Another important remark is the fact that develop-
ments presenting similar co-occurrence matrices are the
most consistent ones (compare distribution shapes and re-
sults of Table 10), this is the case for for example for the
developments (b) to (f) or (k) to (o), that are, respectively,
Unsharp Mask (USM) and Denoising (DEN). Similar de-
tection performances also imply similar co-occurrences, see
for example distributions (b) and (c) and lines or columns
USM1 and USM2 of Table 10.

Further works are needed using other raw images and
by considering other dependencies, but these experiments
strengthen the idea that one important part the cover
source mismatch is due to the development pipeline and
its way to alter the statistical distribution of the image
during the development process.

Conclusion

The present work proposes another original look at the
Cover Source Mismatch phenomenon. While it has often
been assumed that this issue arises because of the difference
between camera models, using raw images we show that
this effect is largely due to the processing applied between
image acquisition and storage. We note that this study
does not contradict previous works, each camera model

is likely to use specific image processing algorithms, but
we refine it. We study the effect of three main types of
processing that are both the most widely used and the most
influencing in terms of CSM: namely image sharpening,
denoising and color adjustments. We show that application
of two different image processing algorithms have a great
influence on source mismatch; especially compared to the
mismatch when using the same algorithm with different
parameters. We also show that those processing algorithms
can drastically change the difficulty of steganalysis on the
generated dataset.

Table 9 sums up the principle conclusions of our anal-
ysis and try to answer to the difficult question "How to
define a Source?" by recalling the impact of each parame-
ter on the Inconsistency or the Difficulty. We can define
the parameters defining a source as the set of parameters
impacting these two parameters and from the our analy-
sis, the main parameters are the JPEG Quality Factor and
the Processing pipeline that have to be first considered,
the software and the color adjustment setting can be taken
into account if they are not used with their default settings.
Finally our experiments suggest that the camera model or
the ISO setting are not of prime importance.

To rephrase our conclusion, and contrary to what was
proposed in [21], a general advise to fight again the Cover
Source Mismatch should not be "Toss that BOSSbase, Al-
icel’” but rather "Keep that BOSSbase(-Raw), Alice, but
take care of the development pipeline!’

Future works are necessary to study in more details
the Cover Source Mismatch phenomenon and especially to
understand why some processing have a large mismatch
and some a much lower. Eventually, on steganalysis’ side,
future works should seek at a method that would prevent
suffering the “image processing” mismatch.

| Inconsistency and Difficulty [ Minor [ Moderate [ Major

JPEG QF X

Camera sensor X

Software X

Processing X

ISO X

Color Adjustment X

Table 9. How to define a Source ? : Comparison between the
different parameters studied in the paper in term of Inconsistency
and Difficulty.
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[Train\Test]| AL [J[USM1[USM2[USM3[USM4[USMS5][ RL1 | RL2 | RL3 | RL4 [|[DEN1|DEN2[DEN3[DEN4|DENS|
AL [[0-231]] 0.333 | 0.329 | 0.323 | 0.343 | 0.390 || 0.285 | 0.300 | 0.264 | 0.269 || 0.218 | 0.214 | 0.229 | 0.236 ] 0.250 |

usmi 0.268(| 0.318 | 0.314 | 0.311 | 0.334 | 0.382 || 0.302 | 0.306 | 0.318 | 0.317 || 0.375 | 0.391 | 0.421 | 0.439 | 0.455
uUsSm2 0.2471{| 0.320 | 0.315 | 0.321 | 0.330 | 0.387 || 0.292 | 0.307 | 0.291 | 0.301 || 0.383 | 0.386 | 0.413 | 0.445 | 0.459
usm3 0.309{| 0.322 | 0.321 | 0.316 | 0.334 | 0.390 || 0.318 | 0.345 | 0.319 | 0.326 || 0.338 | 0.343 | 0.382 | 0.403 | 0.404
usm4 0.303{| 0.321 | 0.327 | 0.311 | 0.335 | 0.386 || 0.316 | 0.338 | 0.323 | 0.325 || 0.392 | 0.385 | 0.416 | 0.439 | 0.458
USM5 0.3191| 0.324 | 0.325 | 0.327 | 0.342 | 0.390 || 0.398 | 0.424 | 0.323 | 0.408 || 0.458 | 0.485 | 0.484 | 0.466 |0.471

RL1 0.2321| 0.328 | 0.327 | 0.324 | 0.353 | 0.387 || 0.291 | 0.301 | 0.264 | 0.269 || 0.230 | 0.218 | 0.222 | 0.231 | 0.188
RL2 0.2491| 0.334 | 0.330 | 0.333 | 0.359 | 0.394 || 0.293 | 0.286 | 0.267 | 0.280 || 0.330 | 0.341 | 0.370 | 0.406 |0.421
RL3 0.255(| 0.326 | 0.328 | 0.341 | 0.365 | 0.389 || 0.306 | 0.293 | 0.261 | 0.263 || 0.241 | 0.257 | 0.255 | 0.275 | 0.314
RL4 0.244 1| 0.333 | 0.334 | 0.332 | 0.348 | 0.387 || 0.299 | 0.290 | 0.257 | 0.264 || 0.264 | 0.299 | 0.320 | 0.347 |0.348

DEN1 0.2881| 0.349 | 0.351 | 0.351 | 0.385 | 0.405 || 0.315 | 0.333 | 0.304 | 0.314 || 0.217 | 0.198 | 0.185 | 0.188 | 0.194
DEN2 0.307{| 0.382 | 0.377 | 0.384 | 0.395 | 0.424 || 0.349 | 0.368 | 0.340 | 0.345 || 0.225 | 0.191 | 0.157 | 0.152 | 0.168
DEN3 0.310{| 0.391 | 0.385 | 0.396 | 0.404 | 0.429 || 0.360 | 0.381 | 0.336 | 0.342 || 0.234 | 0.202 | 0.152 | 0.128 | 0.118
DEN4 0.336{| 0.402 | 0.395 | 0.409 | 0.413 | 0.437 || 0.378 | 0.396 | 0.349 | 0.364 || 0.246 | 0.218 | 0.159 | 0.123 | 0.101
DENbS 0.358|| 0.414 | 0.403 | 0.408 | 0.421 | 0.433 || 0.379 | 0.414 | 0.377 | 0.377 || 0.258 | 0.219 | 0.165 | 0.126 {0.098

Table 10. Intrinsic difficulty and consistence of images bases for different processing parameters. Each row corresponds to a training
base while each column corresponds to a testing base. The training base is the BOSSBase with M9 images removed, the testing base
is the M9Base-1SO160. Data hiding was carried with nsF5 at payload 0.04 bpac.

[Train\Test]| AL [J[USM1[USM2[USM3[USM4[USM5]|[ RL1 | RL2 | RL3 | RL4 [|[DEN1|DEN2[DEN3[DEN4[DENS|
[AL [[0-018][ -0.009 | 0.001 | -0.006 | -0.013 ] -0.000 ]| 0.003 | 0.020 | 0.015 | 0.002 ][ -0.081 [ -0.110 | -0.136 | -0.148 [-0.141 |

usm1 -0.017|| 0.011 | 0.007 | -0.004 | 0.006 | 0.005 ||-0.001 |-0.098 |-0.030 | -0.022 || -0.048 | -0.058 | -0.058 | -0.022 |-0.017
USM2 -0.092|| 0.005 | 0.003 | 0.009 | -0.002 | 0.003 ||-0.025 | -0.005 | -0.091 | -0.060 || -0.048 | -0.069 | -0.042 | -0.016 |-0.008
usm3 0.041|| 0.017 | 0.017 |-0.001| 0.004 | 0.015 || 0.013 | 0.036 | 0.018 | 0.022 || -0.115 | -0.127 | -0.072 | -0.060 [-0.073
USM4  [|-0.070{| 0.003 | 0.011 |-0.004 | 0.007 | 0.004 || -0.045|-0.084 | -0.046 | -0.028 || -0.057 | -0.087 | -0.043 | -0.030 |{-0.015
USMb5 -0.010|| -0.009 | 0.008 | 0.004 | 0.018 | 0.005 || 0.035 | 0.049 |-0.026 | 0.062 || -0.010 | 0.000 | 0.008 | -0.015 |-0.002

RL1 0.001 || 0.009 | 0.013 | 0.013 | 0.018 | 0.001 || 0.015 | 0.006 |-0.012|-0.015 || -0.044 | -0.102 | -0.154 | -0.134 |-0.206
RL2 -0.053|| 0.011 | 0.003 |-0.003 | 0.016 | 0.008 ||-0.019|0.011 |-0.010| 0.005 || -0.078 | -0.082 | -0.084 | -0.059 |-0.051
RL3 0.001 || -0.005 | 0.003 | 0.003 | 0.011 | 0.007 || 0.010 |-0.004 | 0.004 | -0.001 || -0.124 | -0.138 | -0.181 | -0.171 |-0.147
RL4 -0.002|| 0.001 | 0.020 | -0.008 | 0.001 | -0.001 || 0.005 | 0.002 | 0.006 |-0.002|| -0.116 | -0.095 | -0.116 | -0.109 |-0.117

DEN1 0.015|| -0.018 | -0.016 | -0.037 | -0.006 | -0.010 || -0.011 | 0.014 | 0.014 | -0.010 || 0.018 | 0.014 | 0.007 | 0.001 [-0.035
DEN2 -0.012|| -0.028 | -0.025 | -0.027 | -0.026 | -0.003 || -0.021 | 0.013 | 0.010 | 0.004 || 0.017 | 0.008 | -0.007 | -0.003 |-0.015
DEN3 -0.024|| -0.037 | -0.032 | -0.030 | -0.025 | -0.004 || -0.030 | -0.007 | -0.031 | -0.028 || 0.015 | 0.017 | 0.016 | 0.012 | 0.019
DEN4 0.024{| 0.009 | -0.003 | 0.019 | 0.010 | 0.005 || 0.024 |-0.026 | -0.006 | -0.004 || 0.021 | 0.029 | 0.012 | 0.009 | 0.012
DENbS 0.008 || -0.022 | -0.018 | -0.002 | -0.003 | -0.001 || -0.028 | 0.028 | 0.008 |-0.017 || 0.021 | 0.014 | 0.009 | 0.005 {0.006

Table 11. Difference in Pr between training on the BOSSBase with M9 images removed and training on the same base as the testing
set (here M9Base-1SO160) a negative result means a better classification when training on the BOSSBase while a positive result means
better classification when training on the same base as the testing set. Data hiding was carried with nsF5 at payload 0.04 bpac.

[Train\Test][ AL [[USM1][USM2[USM3[USM4[USM5][ RL1 | RL2 | RL3 | RL4 [|[DEN1|DEN2[DEN3[DEN4[DENS5|
[AL [[0.327] 0.452 | 0.459 | 0.444 [ 0.46 | 0.476 || 0.4 [ 0.417 [ 0.358 | 0.368 ]| 0.13 | 0.081 | 0.057 | 0.041 [ 0.052 |

USM1 0.362 || 0.426 | 0.433 | 0.424 | 0.434 | 0.455 || 0.406 | 0.442 | 0.397 | 0.397 || 0.255 | 0.258 | 0.253 | 0.249 | 0.287
USM2 0.389 || 0.435 | 0.434 | 0.429 | 0.435 | 0.453 || 0.419 | 0.448 | 0.423 | 0.435 || 0.284 | 0.261 | 0.261 | 0.293 | 0.294
USM3 0.357 || 0.429 | 0.429 | 0.419 | 0.427 | 0.456 || 0.401 | 0.439 | 0.397 | 0.402 || 0.262 | 0.228 | 0.192 | 0.156 | 0.174
USM4 0.374 || 0.425 | 0.428 | 0.419 | 0.43 | 0.451 || 0.422 | 0.442 | 0.407 | 0.416 || 0.308 | 0.266 | 0.232 | 0.215 | 0.267
USM5 0.401 || 0.438 | 0.43 | 0.429 | 0.437 | 0.456 || 0.428 | 0.462 | 0.443 | 0.443 0.41 | 0.405 | 0.415 | 0.438 | 0.432

RL1 0.334 || 0.446 | 0.463 | 0.454 | 0.444 | 0.465 || 0.402 | 0.416 | 0.371 | 0.385 || 0.161 | 0.098 | 0.094 | 0.096 | 0.099
RL2 0.358 || 0.458 | 0.457 | 0.452 | 0.463 | 0.475 || 0.417 | 0.413 | 0.371 | 0.376 || 0.207 | 0.174 | 0.175 | 0.204 | 0.261
RL3 0.348 || 0.468 | 0.471 | 0.462 | 0.457 | 0.482 || 0.415 | 0.422 | 0.361 | 0.37 0.171 | 0.149 | 0.135 | 0.098 | 0.089
RL4 0.351 || 0.461 | 0.472 | 0.468 | 0.478 | 0.485 || 0.424 | 0.421 | 0.359 | 0.364 || 0.169 | 0.145 | 0.16 0.13 | 0.105

DEN1 0.36 || 0.481 | 0.481 | 0.477 | 0.476 | 0.489 || 0.442 | 0.43 | 0.401 | 0.399 || 0.122 | 0.078 | 0.032 | 0.029 | 0.048
DEN2 0.371 || 0.482 | 0.484 | 0.479 | 0.481 | 0.486 || 0.443 | 0.435 | 0.411 | 0.419 || 0.116 | 0.067 | 0.03 | 0.021 | 0.021
DEN3 0.377 || 0.481 | 0.482 | 0.479 | 0.484 | 0.489 || 0.448 | 0.437 | 0.422 | 0.426 || 0.127 | 0.069 | 0.026 | 0.014 | 0.01
DEN4 0.362 || 0.476 | 0.484 | 0.478 | 0.484 | 0.486 || 0.445 | 0.435 | 0.402 | 0.401 || 0.135 | 0.076 | 0.035 | 0.014 | 0.01
DENS5 0.384 || 0.483 | 0.484 | 0.483 | 0.484 | 0.489 || 0.448 | 0.453 | 0.41 | 0.426 || 0.143 | 0.085 | 0.031 | 0.02 |0.012

Table 12. Intrinsic difficulty and consistence of images bases for different processing parameters. Each row corresponds to a training
base while each column corresponds to a testing base. The training base is the BOSSBase with M9 images removed, the testing base
is the M9Base-1SO160. Data hiding was carried with J-UNIWARD at payload 0.5 bpnzac.
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[Train\Test] AL |[[USM1|USM2[USM3[USM4[USM5[[ RL1 | RL2 | RL3 | RL4 [[DEN1|DEN2|DEN3[DEN4|DENS|
[AL [[0.009 ][ -0.009 | -0.004 | -0.005 | -0.003 [ 0.009 [ 0 [-0.002]-0.012]-0.007 ][ -0.038 [ -0.043 | -0.062 | -0.144 | -0.131 |

USM1 -0.028|-0.009 | -0.004 | -0.007 | -0.005 | 0.001 || -0.018| -0.02 | -0.028 | -0.027 || -0.086 | -0.094 | -0.154 | -0.176 | -0.119
USM2 0.003 || 0.002 | 0.012 | -0.004 | -0.006 | 0.007 || -0.004 | -0.01 | 0.001 |-0.023 || -0.086 | -0.117 | -0.181 | -0.149 | -0.145
USM3 -0.012 0 -0.008 | 0.002 0 0.005 || -0.032|-0.022|-0.022|-0.034 || -0.103 | -0.123 | -0.171 | -0.227 | -0.232
USM4 -0.0271| -0.006 | -0.007 | -0.003 |-0.011 | -0.001 || -0.008 | -0.013 | -0.026 | -0.029 || -0.104 | -0.172 | -0.192 | -0.21 |-0.174
USM5 -0.032 | -0.002 | -0.008 | -0.012 | -0.002 | 0.001 || -0.012 | -0.001 0 -0.024 || -0.066 | -0.074 | -0.071 | -0.052 | -0.059

RL1 0.009 || 0.008 | 0.025 | 0.015 | 0.003 | 0.001 || 0.009 |-0.002| 0.021 | 0.016 || -0.043 | -0.094 | -0.033 | -0.039 | -0.108
RL2 -0.009 || -0.009 | -0.011 | -0.016 | -0.005 0 -0.014 | 0.015 | -0.004 | -0.003 || -0.064 | -0.116 | -0.064 | -0.083 | -0.065
RL3 0.012 || 0.012 | 0.014 | 0.01 |-0.021 0 0.014 | 0.009 | 0.01 | 0.007 || -0.07 | -0.021 | -0.066 | -0.12 |-0.185
RL4 0.001 || 0.006 |-0.001| 0.015 | 0.002 | 0.016 || -0.006 | 0.013 | 0.005 | 0.002 || -0.03 | -0.046 | -0.009 | -0.042 | -0.154

DEN1 0.008 || -0.004 | -0.008 | -0.003 | -0.01 | -0.002 || 0.003 |-0.008|-0.004 | -0.014 || 0.018 | 0.014 | -0.008 | -0.018 | -0.02
DEN2 0.003 || -0.005 | -0.005 | -0.007 | -0.006 | -0.007 || -0.01 |-0.015| 0.001 | 0.003 0 0.01 | 0.005 | 0.004 0

DEN3 0.007 || -0.007 | -0.007 | -0.006 | -0.006 | -0.002 || 0.001 |-0.018| 0.011 | 0.006 || 0.014 | 0.013 | 0.003 | 0.003 |-0.001
DEN4 -0.0221| -0.012 | -0.006 | -0.009 | -0.006 | -0.004 || -0.013 | -0.015| -0.016 | -0.02 0.01 | 0.011 | 0.013 | 0.005 | 0.001
DENS5 -0.013]| -0.007 | -0.007 | -0.006 | -0.006 | -0.003 || -0.01 | 0.003 |-0.011| 0.001 || -0.007 | 0.006 | 0.005 | 0.009 | 0.003

Table 13. Difference in Pr between training on the BOSSBase with M9 images removed and training on the same base as the
testing set (here M9Base-1SO160) a negative results means a better classification when training on the BOSSBase while a positive
result means better classification when training on the same base as the testing set. Data hiding was carried with J-UNIWARD at
payload 0.5 bpnzac.

[Train\Test]| AL [J[USM1[USM2[USM3[USM4[USM5]|[ RL1 | RL2 | RL3 | RL4 [|[DEN1|DEN2[DEN3[DEN4[DENS|
AL [[0.235]] 0.332 | 0.328 | 0.324 | 0.347 | 0.380 || 0.288 | 0.300 | 0.260 | 0.269 || 0.210 | 0.234 | 0.240 | 0.231 [0.272 |

usm1 0.257 || 0.317 | 0.323 | 0.318 | 0.337 | 0.383 || 0.299 | 0.316 | 0.298 | 0.303 || 0.394 | 0.395 | 0.425 | 0.449 |0.461
USM2 0.256 || 0.322 | 0.315 | 0.317 | 0.333 | 0.383 || 0.294 | 0.301 | 0.286 | 0.289 || 0.368 | 0.389 | 0.429 | 0.445 | 0.460
usm3 0.309| 0.325 | 0.319 | 0.314 | 0.336 | 0.383 || 0.325 | 0.349 | 0.334 | 0.322 || 0.344 | 0.327 | 0.381 | 0.400 | 0.419
UsSmM4 0.303|| 0.327 | 0.329 | 0.314 | 0.335 | 0.385 || 0.316 | 0.334 | 0.324 | 0.329 || 0.386 | 0.392 | 0.406 | 0.420 | 0.441
USMb5 0.308 || 0.330 | 0.324 | 0.327 | 0.351 | 0.391 || 0.319 | 0.344 | 0.330 | 0.339 || 0.466 | 0.460 | 0.466 | 0.469 | 0.465

RL1 0.227|| 0.327 | 0.324 | 0.321 | 0.348 | 0.387 || 0.282 | 0.298 | 0.258 | 0.286 || 0.237 | 0.229 | 0.237 | 0.214 | 0.248
RL2 0.275| 0.338 | 0.331 | 0.336 | 0.353 | 0.391 || 0.291 | 0.290 | 0.268 | 0.277 || 0.312 | 0.341 | 0.382 | 0.398 | 0.384
RL3 0.244 1| 0.335 | 0.327 | 0.342 | 0.358 | 0.389 || 0.303 | 0.300 | 0.265 | 0.266 || 0.256 | 0.257 | 0.258 | 0.255 | 0.268
RL4 0.258 || 0.339 | 0.325 | 0.347 | 0.363 | 0.392 || 0.307 | 0.291 | 0.256 | 0.268 || 0.264 | 0.280 | 0.322 | 0.293 | 0.320

DEN1 0.274 ]| 0.359 | 0.357 | 0.357 | 0.381 | 0.410 || 0.324 | 0.349 | 0.309 | 0.304 || 0.218 | 0.197 | 0.169 | 0.179 | 0.182
DEN?2 0.298 | 0.379 | 0.373 | 0.383 | 0.399 | 0.421 || 0.341 | 0.367 | 0.337 | 0.338 || 0.224 | 0.194 | 0.161 | 0.151 | 0.159
DEN3 0.309|| 0.390 | 0.381 | 0.398 | 0.403 | 0.428 || 0.353 | 0.382 | 0.333 | 0.345 || 0.233 | 0.204 | 0.150 | 0.125 | 0.113
DEN4 0.348 || 0.402 | 0.400 | 0.415 | 0.414 | 0.432 || 0.378 | 0.388 | 0.366 | 0.366 || 0.247 | 0.209 | 0.163 | 0.132 | 0.103
DEN5 0.373| 0.419 | 0.408 | 0.419 | 0.423 | 0.434 || 0.405 | 0.392 | 0.382 | 0.384 || 0.274 | 0.218 | 0.170 | 0.130 | 0.100

Table 14. Intrinsic difficulty and consistence of images bases for different processing parameters. Each row corresponds to a training
base while each column corresponds to a testing base. The training base is the BOSSBase with M9 images removed, the testing base
is the M9Base-1SO1250. Data hiding was carried with nsF5 at payload 0.04 bpac.

[Train\Test]| AL |[USMI1|[USM2[USM3[USM4[USM5][ RL1 | RL2 | RL3 | RL4 [[DEN1|DEN2[DEN3|DEN4[DEN?|
AL [F0-005] -0.005 | -0.005 | -0.016 | -0.008 | -0.006 || -0.024 | -0.001 | -0.007 | -0.004 | -0.062 | -0.075 | -0.116 | -0.162 | -0.142 |

usmi -0.066||-0.023 | -0.020 | -0.024 | -0.024 | -0.015 || -0.041 | -0.051 | -0.031 | 0.014 || 0.042 | -0.051 | -0.038 | 0.003 | 0.003
UsSmM2 -0.019|| -0.014 |-0.025 | -0.029 | -0.030 | -0.016 || -0.062 | -0.013 | -0.034 | -0.004 || -0.024 | -0.056 | -0.059 | -0.021 |-0.004
usm3 0.003 || -0.014 | -0.018 |-0.026 | -0.024 | -0.011 || 0.004 | -0.007 | 0.044 | 0.003 || -0.030 | -0.087 | -0.086 | -0.087 |-0.036
USM4  [[-0.034|| -0.007 | -0.005 | -0.027 [-0.013| -0.011 || -0.029 | -0.036 | 0.001 | 0.006 || 0.015 | -0.048 | -0.078 | -0.049 [-0.019
USM5 -0.037|| -0.019 | -0.020 | -0.034 | -0.018 |-0.005 || -0.018 | 0.018 |-0.025 | -0.003 || 0.081 | 0.024 | -0.023 | -0.014 |-0.011

RL1 -0.024|| -0.006 | -0.012 | -0.025 | -0.006 | -0.010 ||-0.020| -0.008 | -0.006 | 0.010 || -0.014 | -0.026 | -0.059 | -0.147 |-0.166
RL2 -0.011}| -0.005 | -0.015 | -0.012 | -0.012 | -0.004 || -0.034 |-0.008 | -0.015 | -0.009 || -0.065 | 0.008 | 0.027 | 0.020 |-0.046
RL3 -0.017|| -0.005 | -0.010 | -0.008 | -0.020 | -0.009 || -0.017 | -0.003 [-0.001 | -0.012 || -0.033 | -0.082 | -0.108 | -0.170 |-0.165
RL4 -0.016|| -0.014 | -0.022 | -0.013 | -0.008 | -0.004 || -0.013 | -0.016 | -0.014 [-0.008|| -0.036 | 0.001 | 0.022 | -0.118 |-0.088

DEN1 0.014|| 0.013 | 0.001 | 0.000 | 0.011 | 0.006 || 0.005 | 0.035 | 0.036 | 0.013 || 0.019 | 0.005 | -0.027 | -0.038 |-0.047
DEN?2 0.013|| 0.023 | 0.019 | 0.021 | 0.019 | 0.014 || 0.015 | 0.028 | 0.039 | 0.030 || 0.009 | 0.004 | -0.006 | -0.034 |-0.062
DEN3 -0.015|| -0.008 | -0.011 | 0.001 | -0.001 | 0.001 ||-0.027 | 0.011 |-0.012|-0.016 || 0.005 | 0.009 | 0.005 | -0.008 |-0.036
DEN4 -0.029|| -0.017 | -0.013 | 0.004 | -0.009 | -0.007 || -0.057 | -0.028 | -0.020 | -0.021 || -0.015 | -0.006 | 0.007 | 0.011 |-0.001
DEN5S -0.016|| -0.008 | -0.011 | -0.012 | -0.007 | -0.008 || -0.031 | -0.050 | -0.030 | -0.031 || 0.006 | -0.005 | 0.016 | 0.003 |0.001

Table 15. Difference in Pr between training on the BOSSBase with M9 images removed and training on the same base as the testing
set (here M9Base-1SO1250) a negative result means a better classification when training on the BOSSBase while a positive result
means better classification when training on the same base as the testing set. Data hiding was carried with nsF5 at payload 0.04 bpac.
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