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Abstract
In natural steganography, the secret message is hidden by

adding to the cover image a noise signal that mimics the het-
eroscedastic noise introduced naturally during acquisition. The
method requires the cover image to be available in its RAW form
(the sensor capture). To bring this idea closer to a practical em-
bedding method, in this paper we embed the message in quantized
DCT coefficients of a JPEG file by adding independent realiza-
tions of the heteroscedastic noise to pixels to make the embedding
resemble the same cover image acquired at a larger sensor ISO
setting (the so-called cover source switch). To demonstrate the
feasibility and practicality of the proposed method and to vali-
date our simplifying assumptions, we work with two digital cam-
eras, one using a monochrome sensor and a second one equipped
with a color sensor. We then explore several versions of the em-
bedding algorithm depending on the model of the added noise in
the DCT domain and the possible use of demosaicking to convert
the raw image values. These experiments indicate that the demo-
saicking step has a significant impact on statistical detectability
for high JPEG quality factors when making independent embed-
ding changes to DCT coefficients. Additionally, for monochrome
sensors or low JPEG quality factors very large payload can be
embedded with high empirical security.

Introduction
The goal of steganography is to communicate in secrecy by

hiding the very presence of the message within a host image called
the cover image. The actual embedding involves making small
modifications to the cover. The security of such communication is
evaluated as the statistical detectability of the introduced changes.
In this paper, we assume that the sender has a cover image avail-
able in the RAW format, examples of which include Canon’s CR2,
Nikon’s NEF format, and Adobe’s Digital Negative (DNG), and
desires to communicate secrets in its JPEG compressed form.
The RAW file serves as the so-called side-information or pre-
cover [25] provided by an acquisition oracle – the digital camera
itself.

Side-informed steganography is the most secure form of
steganographic communication known today. The first embed-
ding schemes that utilized side-information at the sender were the
embedding-while-dithering [16] and perturbed quantization [18]
in which the secret was embedded by perturbing the color quan-
tization (and dithering) or the rounding in JPEG compression.
The latter direction has been further developed through a se-
ries of papers [27, 32, 36, 24, 21] and culminated with SI-
UNIWARD [23, 9] as the current state of the art.

The idea to make the embedding modifications resemble
noise naturally inserted during acquisition dates back to [2] and

the rudimentary stochastic modulation [17], which ignored the
important fact that the acquisition noise is independent only in
the RAW domain. Franz et al. [13, 15, 14] attempted to estimate
the acquisition noise and preserve its dependencies in the devel-
oped domain (the true-color domain) by taking multiple scans of
the same image on a flat bed scanner. This rather labor intensive
method, however, was not practical or secure also because of the
inherent difficulty to estimate the acquisition noise properties in
the developed domain. A much more practical version of this con-
cept appeared in [11, 10], where the authors showed how multiple
JPEG images of the same scene can be used to infer the preferred
direction of embedding changes made to quantized DCT coeffi-
cients.

Recently, Natural Steganography (NS), that relies on the
concept of cover-source switching, has showed a great promise
for constructing practical secure steganographic systems [5, 4].
The author showed that a high-capacity steganographic scheme
with a rather low empirical detectability can be built when the
developing process of a RAW sensor capture is sufficiently sim-
plified, e.g., after gamma correction, bilinear downsampling, and
8-bit quantization of RAW images coming from a monochrome
sensor. The impact of embedding is masked as an increased level
of photonic (shot) noise due to a larger sensor gain (ISO setting).
This is possible because in the raw domain the distribution of the
shot noise is well approximated with the heteroscedastic model
independently distributed on each photo-site. For a sufficiently
simple developer, one can thus arrange the statistical properties
of the stego signal to mimic the increased heteroscedastic noise
and make the stego image statistically resemble an image taken
at a higher ISO setting (a switch in the cover source). The fea-
sibility of this concept was shown in [4] with raw images taken
with a Leica M Monochrome Type 230 camera. In a follow-up
work [5], the same author extended NS to more complex devel-
opers that involved gamma correction and bilinear downsampling
as these processes allowed analytic derivation of the acquisition
noise properties in the developed domain. In this paper, we make
NS more practical by introducing JPEG compression and also by
treating the developer as a black box. Similarly to [11, 10], we
use multiple instances of developed images in order to design our
embedding strategy for each DCT coefficient.

In the next section, we introduce the heteroscedastic model
of the acquisition noise and the concept of cover source switch-
ing, and study the dependencies of the acquisition noise in the
DCT domain. The following section contains the description of
the embedding method, which we develop through a cascade of
approaches to assess the bounds on its security under various sim-
plifying assumptions. In Section “Database Acquisition and Shot
Noise Distribution” we detail the process of acquiring the images
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for our experiments and verify our noise modeling assumptions.
The proposed variant of NS is put to test in Section “Experiments”
which contains all results and their discussion. The paper is closed
with a summary and a discussion of potential future directions.

Throughout this paper, we use capital letters for random vari-
ables and the corresponding lower-case symbols for their realiza-
tions. Matrices are typed in upper-case and vectors in lower-case
boldface font.

Natural steganography in JPEG domain
In this section, we introduce the heteroscedastic noise model

and study its properties after applying block Discrete Cosine
Transform (DCT) as in JPEG compression.

Model in the spatial domain
In natural steganography, the stego signal added to the cover

image acquired at ISO1 is constructed to mimic the additional
shot noise to make the stego image look like it was acquired at
ISO2 > ISO1.

The shot noise values in the spatial domain are assumed to
be independent realizations of random variables Ni, j that follow
the heteroscedastic model

N(1)
i, j ∼N (0,a1µi, j +b1) (1)

where µi, j is the noiseless photo-site value at photo-site i, j, while
(a1,b1) only depend on the ISO1 sensitivity and the specific sen-
sor.

The acquired photo-site sample x(1)i, j is thus a realization

x(1)i, j = µi, j +n(1)i, j , (2)

of a Gaussian variable

X (1)
i, j ∼N (µi, j,a1µi, j +b1). (3)

Because the sum of two independent normally distributed
random variables is also normally distributed with the mean and
variance the sum of means and variances of both variables, we can
write that at ISO2 the photo-site value is given by x(2)i, j = x(1)i, j +
si, j where Si, j is a random variable representing the stego signal
necessary to mimic the image captured at ISO2:

Si, j ∼N (0,(a2−a1)µi, j +b2−b1). (4)

Assuming that the observed photo-site is close to its expec-
tation, µi, j ≈ x(1)i, j , the photo-site of the stego image is distributed
as:

Yi, j ∼N (µi, j,a1µi, j +b1 +(a2−a1)µi, j +b2−b1)

∼ X (2)
i, j . (5)

The distribution of the stego signal in the continuous do-
main takes into account the statistical model of the shot noise
estimated for two ISO settings, ISO1 and ISO2, using the pro-
cedure described in [4]. The work presented in [5, 4] shows that
for monochrome sensors, this model in the spatial domain can be
used to derive the distribution of the stego signal in the spatial
domain after quantization, gamma correction, and image down-
sampling using bilinear kernels. We next study the properties of
the acquisition noise after DCT.

Model in the DCT domain
We now compute the joint-distribution of the heteroscedas-

tic noise in the DCT domain. This mathematical derivation can
be used for a specific practical scenario of image development
when a RAW image coming from a monochrome sensor is di-
rectly transformed into a JPEG image. To a certain extent, the
derivations are also valid when gamma correction is performed
before the DCT transform.

Given an 8× 8 block of shot noise in the spatial domain, S,
its block 8× 8 DCT transform can be written as the following
matrix multiplication [26]:

DCT(S) = A(ASt)t = ASAt , (6)

where

A =



a a a a a a a a
b d e g −g −e −d −b
c f − f −c −c − f f c
d −g −b −e e b g −d
a −a −a a a −a −a a
e −b g d −d −g b −e
f −c c − f − f c −c f
g −e d −b b −d e −g


(7)



a
b
c
d
e
f
g


=

1
2



cos(π/4)
cos(π/16)
cos(π/8)

cos(3π/16)
cos(5π/16)
cos(3π/8)
cos(7π/16)


. (8)

Note that the multiplication by A and At comes from first
transforming the columns and then the rows of matrix A.

In order to compute the covariance matrix of the stego signal
S, it is convenient to use vector notation by transforming the ma-
trix S∈R8×8 into a vector s∈R64 by concatenating the columns.
The transpose operation St is then equivalent to the multiplication
Ts, by T given by:

T =



1 0 . . .
0 . . . . . . 1 0 . . .

1 0 . . .
...

...
...

...
...

...
...

...
0 1 . . .

0 1 . . .
0 1 . . .

...
...

...
...

...
...

...
...


. (9)
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Consequently, the 8×8 matrix A is transformed into a 64×
64 matrix Av given by:

Av =



A 0 · · ·
0 A 0 · · ·
... 0 A 0 · · · 0

· · · 0 A 0
...

... 0 A 0
...

0 · · · 0 A 0
...

· · · 0 A 0
· · · 0 A


. (10)

The vector form of the DCT (6) finally becomes

DCTv(s) = AvTAvTs = Bs, (11)

where B = AvTAvT.
Since the stego signal in the spatial domain follows the nor-

mal distribution 4 and since the DCT is linear, the stego signal
in the DCT domain, SDCT, follows a 64-dimensional multivariate
normal distribution

SDCT ∼N (0,CDCT), (12)

where

CDCT = E[BSStBt ] = BCov(S)Bt , (13)

and Cov(S) denotes a diagonal matrix with diagonal elements
equal to Var(Si, j) = (a2−a1)xi, j +b2−b1.

Discussion
Even though the stego signal (the sensor noise) is indepen-

dent in the spatial domain, it follows a general multivariate nor-
mal distribution in the DCT domain. Thus, ideally the embedding
should take into account dependencies that exist between DCT
modes within each 8× 8 block. Note that in this setting, no de-
pendencies exist between DCT blocks. This model consequently
enables us to explicitly compute the variance of the stego signal
for each DCT mode and the covariance between DCT modes.

To better understand the nature of the dependencies between
DCT coefficients, we sample the stego signal directly in the DCT
domain and observe the dependencies before and after JPEG
quantization.

In Figure 1, we visually compare sampled blocks before
(even columns) and after quantization (odd columns) with the
standard JPEG quantization matrix corresponding to quality fac-
tor 95. Note that the quantization process is here quant(x) =
∆× round(x/∆), where ∆ is the quantization step.

For different spatial cover blocks represented in the first row,
blocks of stego signals are sampled in the DCT domain (the sec-
ond row, S) using (12) or in the spatial domain (the third row, Ss)
using (4) and then transformed.

While the first two spatial blocks with horizontal/vertical di-
rections produce vertical/horizontal correlations in the DCT do-
main, neither the checkerboard or the constant block produce sig-
nificant correlations (for the constant block, the signal must be

i.i.d. since it is the DCT of an i.i.d. signal). The diagonal
blocks produce slightly correlated stego signals which are more
pronounced for the minor-diagonal block. Comparing the sec-
ond and third rows enables us to verify that the sampling either in
the spatial domain or directly in the DCT domain exhibits simi-
lar dependencies. The odd columns illustrate the effect of JPEG
quantization, which tends to reduce the dependencies between co-
efficients by nullifying high frequencies.

This experiment also shows that the dependencies in the
DCT domain, contrary to the spatial domain (see [8, 29]), heavily
depend on the cover block content. However, we shall see in Sec-
tion “Experiments” that for large quantization regimes not taking
into account the dependencies does not significantly impact the
detectability of embedding.

Overview of the algorithms
We remind the reader that our goal is to develop a NS method

capable of embedding messages in JPEG images by utilizing
a cover source switch from ISO1 to a larger ISO2. The first step
in building such a steganographic method is to estimate the pa-
rameters of the heteroscedastic sensor noise for the specific cam-
era that will be used for communication and for both ISO set-
tings: (a1,b1) and (a2,b2). This has been executed by taking
images of a gray gradient as explained in [5, 4] and in Section
“Shot noise distributions”. Having estimated these four parame-
ters, from Eqs. (2)–(5) the stego photo-site is obtained from the
cover photo-site X (1)

i, j ∼N (µi, j,a1µi, j +b1) by adding to it a re-
alization of Si, j ∼N (0,σ2

i, j), where σ2
i, j = (a2−a1)µi, j+b2−b1

≈ (a2−a1)xi, j +b2−b1.
In order to perform a cover-source switch on a raw pre-

cover image, we adopt special rules for photo-sites saturated at
2r, where r is the dynamic range of the sensor, typically 12 or
14 bits. Our strategy is similar to the one presented in [33]. The
photo-site value y(2)i, j after the cover-source switch mimicking sen-
sitivity ISO2 is:

y(2)i, j =


2r if x(1)i, j = 2r or x(2)i, j > 2r

0 if x(2)i, j < 0,

x(2)i, j else.

, (14)

To obtain a better insight into the role of our simplifying as-
sumptions and the effect of estimating the noise in the DCT do-
main and to establish upper bounds on the detection error, we in-
vestigate five different approaches explained below. The security
of these approaches is evaluated by building a classifier distin-
guishing between the images from both classes after JPEG com-
pression. To get closer to a practical scheme, we added the case
when the developer is treated as a black box and the noise distri-
bution is estimated from quantized DCT coefficients in the devel-
oped domain using Monte-Carlo (MC) sampling.

1. Pure, unmodified images. As a baseline experiment,
no modifications were introduced to the ISO1 images and
a classifier was trained to recognize between these and ISO2
images after JPEG compression.

2. Simulated noise. Before any developing, we added a simu-
lated heteroscedastic noise to the raw images at ISO1 using
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Figure 1: First row: spatial 8× 8 blocks. The second and third rows are samples where, for the purpose of comparison, the signal S is
sampled directly in the DCT domain by sampling a 64-dimensional multivariate Gaussian distribution while Ss is sampled in the spatial
domain and then converted to DCT coefficients.

the clipping rule 14. Provided the parameters of the het-
eroscedastic noise at each ISO setting were precisely esti-
mated and under the assumption that we steganalyze using
the best possible detector, this result could serve as an upper
bound on the security of the method – the detection error.
Note, however, that it does not correspond to any practical
embedding.

3. Monte-Carlo estimate of the variance. We add 300 inde-
pendent realizations of the heteroscedastic noise estimated
as in Approach 2 to the raw pre-cover image acquired at
ISO1, x(1)i, j , employing again 14, develop the images, and
apply the DCT. Then, we independently estimate the mean
and the variance of each DCT coefficient from the MC sam-
ples. To obtain the stego JPEG file, we add independent re-
alizations of such random variables to the unquantized DCT
coefficients of the developed pre-cover and round to integers
to obtain the JPEG DCT coefficients of the stego image.

4. Monte-Carlo estimate of the pmf. To remove the Gaus-
sianity assumption, we use the MC samples to directly esti-
mate the probability mass function of each rounded DCT
coefficient. Then, we sampled from this distribution for
each coefficient to obtain the final quantized DCT coeffi-
cient from the stego image.

5. SI-UNIWARD. For comparison with the current state of the
art, we embedded all images also with SI-UNIWARD [23]
with the same average embedding rate or lower if the em-
bedding rate was over 1 bit per DCT coefficient, the maxi-
mal payload of SI-UNIWARD.

We now proceed with a formal description of the NS method that
hides messages in the JPEG file given a pre-cover in a RAW for-
mat. The sender basically uses the pre-cover in the RAW format
to estimate the Gaussian variance from MC samples (Approach 3)
and then compute the pmf of the quantized stego DCT coefficient,
or to directly estimate the pmf of each quantized DCT coefficient
from the stego image (Approach 4). The advantage of Approach 4
is that it can be applied for realistic (i.e., complicated) developers
that output more complex (non-Gaussian) shot noise distribution.

Denoting the pmf of a fixed quantized stego DCT coefficient
as qk, the payload that could embed at this coefficient is

−∑
k

qk log2 qk bits, (15)

the entropy of the pmf. For Approach 3, given the variance ω2

of a specific unquantized stego DCT coefficient with quantiza-
tion step ∆, qk corresponds to the kth bin in a quantized Gaussian
distribution N (0,ω2/∆2):In contrast, in Approach 4 the pmf qk
is estimated directly from the 300 MC samples by computing an
empirical histogram.

The actual message embedding can be implemented in
practice using the multi-layered version of syndrome-trellis
codes [12], which essentially allow embedding payload close to
the entropy (15) at each DCT coefficient. We would also like to
stress that the total payload that can be embedded is determined by
the two ISO values and is equal to the sum of entropies (15) over
all DCT coefficients in the JPEG image. The payload size also
depends on the JPEG quality factor and the content of the image.
Should the sender need to embed a shorter payload, the message
could be padded with random bits. Alternatively, the sender could
also switch to a smaller value of ISO2. On the contrary, if the pay-
load to be embedded is larger than the admissible payload offered
by the cover-source switch, the sender would have to use a larger
value of ISO2 or split the payload across multiple images.

Note that the proposed NS method may, depending on the
ISO settings, embed more bits in an image than SI-UNIWARD.
For a fair comparison, for SI-UNIWARD we therefore embedded
the same relative payload in each image (in bits per pixel rather
than per non-zero AC DCT coefficient) obtained by averaging the
payload embedded by Approach 3 over the whole database.

Database acquisition and shot noise distribu-
tion

In this section, we describe how we acquired the image
databases needed to benchmark Natural Steganography, and dis-
cuss the statistical properties of the photonic noise distribution for
different sensors.

Acquisition process
In contrast to the widely used BOSSBase [1] used in

steganography and steganalysis, for benchmarking Natural
Steganography the datasets need to be built with special care. Be-
cause the goal of the embedding is to mimic a shot noise at ISO2
from images captured at sensitivity ISO1 < ISO2, two sets of im-
ages have to be acquired: one set at ISO1 that will be used for
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Figure 2: Comparison between distributions of shot noise coming from different sensors. Histograms are computed from the photo-site
values of one given channel (for color sensors) on a uniform patch. Dash lines represent Gaussian distributions with the same mean and
variance as the histogram.

the embedding and another set at ISO2 that will represent the set
of cover images. The steganalyst will then compare stego images
coming from the set at ISO1 and cover images acquired at ISO2.
We assume here that the sender will modify or remove the ISO
setting from the stego images because the steganalyst could po-
tentially utilize the discrepancy between the noise level in stego
images and the ISO setting.

It is important to mention that in order to build a classifier
that will only detect the steganographic embedding, the two sets
of images have to represent identical content.

During our acquisition campaign, we consequently paid at-
tention to use constant acquisition parameters: the same focus, the
same scene with the use of a tripod, the same white balance, and
the same aperture to have only the sensitivity and the exposure
time fluctuating. We realized the importance of this step when
at one point we slightly modified the focus between the two sets,
which resulted in increased classification accuracy due to the abil-
ity of the classifier to distinguish between content sharpness rather
than the steganographic changes.

To alleviate the labor associated with the acquisition of these
databases, we took around 200 raw images1 at each setting and
subsequently cropped each picture to non-overlapping 512×512
images to generate around 10,000 crops in each set. The develop-
ment of the raw image was done using the ’dcraw’ Linux com-
mand line with the parameters ’-k 0’ to obtain the same dark-
ness level for each set, ’-g 1 1’ to disable gamma correction,
’-W’ to obtain the same white balance for each set and ’-6’ to
generate 16-bit ppm/pgm images instead of 8-bit images.

We ran these acquisition campaigns on three sensors: one
monochrome CCD sensor from the Leica M Monochrome Type

1The exact number depends of the sensor resolution.

230 camera, one color CCD sensor from the Leica M9 camera,
and one CMOS sensor from the Z CAM E1 action camera. Note
that the Leica M Monochrome and Leica M9 cameras have iden-
tical sensors but the Monochrome does not have a Bayer CFA.
The databases built from Leica cameras are images from different
scenes, shot using a tripod at different ISO settings (320, 1000,
and 1250 for the Monochrome), the databases from the E1 sensor
have been captured using a rotating platform in a room filled with
different objects.

Shot noise distributions
We were very surprised to notice that, using exactly the

switch 14, the detectability of the M9 sensor was extremely high
compared to the detectability of the Monochrome sensor. After
some investigations, we noticed that the shot noise on the M9
sensor does not have a Gaussian distribution at high ISO sensitiv-
ities.

This phenomenon is illustrated in Figure 2, where we com-
pare the shot noise distributions for both different sensors. To
estimate the distribution of the sensor noise, we used here a sim-
ple but robust technique: we shot a white wall at a distance of
1m from the sensor and out of focus in order to obtain an im-
age with average constant illumination. We then computed the
histogram from the RAW image, using the photo-site values2 of
a 100× 100 patch centered on the image to avoid vignetting for
one given color channel (we checked that our observations were
consistent for all channels and for different patches). While the
histogram of the noise taken at ISO 160 (Figure 2a) corresponds
to a Gaussian signal, as soon as the ISO sensitivity is increased,
the shot noise distribution becomes strongly non-Gaussian. For

2They are, for example, easily accessible using the Rawkit Python
module [30].
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example, at ISO 2000 (Figure 2b) the distribution has heavy tails
and the Gaussian assumption is rejected. The sensor capture from
another M9 camera (see Figure 2c) shows that this artifact does
not come from the specific camera. It is also not specific to the
manufacturer since Figure 2e depicts a Gaussian distribution for
the Leica Type M262 CMOS sensor. What is even more surpris-
ing is the fact that the Leica M Monochrome Type 230 camera
(an M9 version without Bayer CFA) does not exhibit this artifact
(Figure 2d).

In the end, we selected two sensors:

1. Leica M Monochrome camera to directly acquire grayscale
images because this sensor does not have demosaicking ap-
plied during the development process and it also exhibits
normally distributed shot noise,

2. Z CAM E1 to acquire color images because of a Gaussian
shot noise distribution at high ISO (Figure 2f). This action
camera has a time-lapse mode, which enables fast acquisi-
tion of new images.

Note that the M9 Leica was the only camera for which we ob-
served a rather peculiar non-Gaussian shot noise.

Experiments
In this section, we subject the proposed natural steganog-

raphy algorithms to tests on images taken with the CCD sensor
from the Leica M Monochrome Type 230 and the CMOS sen-
sor from the Z CAM E1 action camera. Images coming from the
monochrome sensor are named MonoBase and are composed of
10,320 512×512 images in 16-bit PGM format developed using
the command “dcraw -k 0 -6 -W -g 1 1”. Since there is no
demosaicking on this sensor, this format is very close to the RAW
format. Images coming from the E1 sensor are named E1Base
and are generated from 200 DNG images that are developed and
cropped to provide 10,800 512× 512 images. Both E1Base and
MonoBase can be downloaded from [3] and [6].

The switches used for MonoBase are from ISO 320 to ISO
1000 and for E1Base from ISO 100 to ISO 200. Because the
E1 sensor is smaller and cheaper, the power of the stego signal
for both sensors is of the same order of magnitude. The param-
eters (a,b) used to realize the switches are (4.3,3801) for the
MonoBase and (0.9,−800.0) for the E1Base. Note, however,
MonoBase images use values coded between [0;216− 1] due to
the PGM format while E1Base values are between [0;214−1] due
to the sensor dynamic range. We believe that the negative value
of b for E1Base is due to a bias correction that is ISO dependent
and coded inside the chipset.

The detection error is evaluated as the minimal total classifi-
cation error probability under equal priors, PE = minPFA

1
2 (PFA +

PMD), with PFA and PMD standing for the false-alarm and missed-
detection rates, using a low complexity linear classifier [7]. The
JPEG images were steganalyzed with the SRM [19], GFR [34],
DCTR [22] and cc-JRM [28] feature sets. For improved read-
ability, we report only the best detection (lowest error) over these
four feature sets. All reported errors are averaged over ten differ-
ent splits of the database into equal sized training and testing sets.
The largest measured standard deviation over the ten splits was
0.0097.

50 60 70 80 90 100
0

0.2

0.4

JPEG quality factor

P E

pure images
sim. noise

SI-UNIWARD

Figure 3: Detection error PE for the pure, simulated noise, and SI-
UNIWARD (Approaches 1, 2, and 6) for a switch from ISO 320 to
ISO 1000 on MonoBase as a function of the JPEG quality factor.
Approaches 3–5 exhibit security that is approximately equal to
that of Approach 2 (simulated noise), see Table 2.

Results on MonoBase
In Figure 3, we show the detection errors for Approach 1,

2, and 5 (Pure, Simulated, and SI-UNIWARD) as a function of
the JPEG quality factor. SI-UNIWARD embeds into each image
the same payload obtained as the average payload over the whole
database for Approach 4 using Eq. (15) (see Table 1).

In Table 2, we list the detection errors for all five approaches.
The fact that the detection errors for Approach 3 and 4 are very
close to the errors of Approach 2, the simulated acquisition noise
that should preserve all dependencies among DCT coefficients,
validates the simplifications of ignoring the dependencies during
embedding used by Approach 3 and 4.

Our method clearly has a great promise, particularly w.r.t.
the current state of the art in side-informed steganography, the
SI-UNIWARD. For a JPEG QF of 95, the practical security of
NS using MC-pmf (Approach 4) leads to PE ' 40% for an av-
erage embedding rate of 2.36 bpnzac when PE ' 0% for SI-
UNIWARD. Note, however, that when making this comparison,
it should be taken into account that NS needs the RAW file while
SI-UNIWARD only needs the non-rounded values of DCT coef-
ficients that are computed from the developed image, which is
a substantially less extensive side-information.

It is also interesting to note that taking into account the de-
pendencies between DCT coefficients within the same block has
virtually no impact on the empirical security for this particular
sensor. This is probably due to the fact that the DCT tends to
generate uncorrelated coefficients whose dependencies are rather
weak and/or not captured by the employed steganalysis features
in this case. The analysis performed in Section “Model in the
DCT domain” also shows that dependencies have to be taken into
account only when the content inside a block is structured (edges,
patterns). Such blocks will not be as common in high-resolution
images investigated in this paper.

Another important point is that Approach 4, which treats the
developing process as a black box and has access only to rounded
DCT coefficients, is basically as secure as the other approaches.
This indicates a path that can be taken for other, more advanced
and more realistic developers for this sensor.
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QF Average embedding Average embedding
rate (bpp) rate (bpnzac)

55% 0.0158 0.2315
65% 0.0277 0.3474
75% 0.0462 0.4734
85% 0.1127 0.8607
95% 0.5300 2.3650

Table 1: Average payload in bits per pixel per MonoBase image
embedded by Approach 3.

QF Pure Sim. MC var. MC pmf SI-UNI
App 1 2 3 4 5
55% .3414 .4659 .4672 .4716 0.2514
65% .2932 .4617 .4610 .4601 0.2139
75% .2207 .4534 .4511 .4486 0.1502
85% .1467 .4399 .4449 .4438 0.0694
95% .0624 .4090 .4112 .4093 0.0042

Table 2: Minimum detection error when steganalyzing the NS in
MonoBase with SRM, GFR, DCTR, and cc-JRM feature sets for
five different approaches and a range of JPEG quality factors for
a switch from ISO 320 to ISO 1000.

Results on E1Base
We now evaluate the empirical security of NS in the JPEG

domain for images coming from a color sensor. In contrast to
monochrome sensors, after development the stego signal becomes
dependent due to demosaicking.

Table 3 contains the detection results for all five embed-
ding approaches for the E1 sensor. Compared to images from the
monochrome sensor, the empirical security of Approach 2 (Sim-
ulated Noise) decreased by about 10% but the PE remained above
30% for all QFs. However, the security of Approaches 3 and 4
(’MC var’ and ’MC pmf’), is much lower especially for high QFs.
We recommend using NS with Approaches 3 and 4 only for qual-
ity factors lower than 65 for which PE ≥ 25% while the average
embedding rate is still high with 2.5 bpnzac, see Table 4. The
fact that the empirical security of ’MC var’ is slightly larger than
for ’MC pmf’ is probably due to the fact that the number of sam-
ples used during Monte Carlo sampling (300), it not enough to
accurately estimate the theoretical pmfs.

Note that Approach 1 (pure images) is also more detectable
than for the monochrome sensor despite the gap between the two
ISO sensitivities being similar. This is likely due to the dependen-
cies introduced by demosaicking for images from the E1 sensor.

Comparing the embedding rates in bpnzac for the two
databases (see Tables 1 and 4), while for MonoBase the rates in-
crease from 0.2 to 2.36 bpnzac with increasing QF, they are nearly
constant for the E1Base and always larger than 2 bpnzac. This can
be explained by the fact that the demosaicking applied to E1 im-
ages increases the number of small DCT coefficients before quan-
tization, especially in high frequencies. Thus, after quantization
the number of non-zero coefficients is larger for MonoBase than
for E1Base and the rate in bpnzac is correspondingly smaller.

Discussion
In this section, we attempt to explain the striking difference

in empirical security of NS (Approach 4) when applied to the

QF Pure Sim. MC var. MC pmf SI-UNI
App 1 2 3 4 5
65% 0.1168 0.3426 0.2433 0.1920 0.1168
75% 0.0937 0.3385 0.1757 0.1473 0. 0957
85% 0.0732 0.3350 0.0881 0.0715 0.0752
95% 0.0595 0.3077 0.0056 0.0023 0.0032

Table 3: Detection error PE when steganalyzing the NS in E1Base
with SRM, GFR, DCTR, and cc-JRM feature sets for different
approaches and JPEG quality factors for ISO switch 100 to 200.
Note that the embedding capacity of SI-UNIWARD is limited to
1 bpnzac.

QF Average embedding Average embedding
rate (bpp) rate (bpnzac)

65 0.0330 2.5556
75 0.0618 2.2849
85 0.1493 2.3336
95 0.5671 2.8488

Table 4: Average embedding rate for Approach 4 (MC pmf),
E1Base.

monochrome sensor and the color sensor. As analyzed in Sec-
tion “Model in the DCT domain”, depending on the block con-
tent, intra-block dependencies exist between DCT coefficients of
the stego-signal. Furthermore, inter-block dependencies also ex-
ist between DCT coefficients from neighboring blocks due to the
demosaicking process. Note, however, that the natural dependen-
cies among neighboring pixels do not impact per se the depen-
dency of the stego signal since the shot noise is independent from
the photo-site values.

In order to determine whether the loss of security is due to
not preserving intra or inter-block dependencies among DCT co-
efficients, we conducted two experiments:

Experiment 1: We generated the stego images to preserve
intra-block dependencies of the stego noise in each each DCT
block. In particular, each block came from one specific realization
of Approach 2 but different blocks came from different realiza-
tions. Calling this strategy ’Sim block-wise’, its practical security
is compared with Approach 2 in Table 5, which shows that the
empirical security is even lower than the security of ’MC-pmf’
(Approach 4). This means that the loss of security of ’MC-pmf’
and ’MC-var’ must be due to violating inter-block dependencies
rather than not preserving intra-block dependencies.

Experiment 2: To confirm this hypothesis, we next used
a synthetic RAW image with all photo-site values from even
columns equal to 8192 and the values of odd columns equal to
5461 (see [20]). This content was selected purposely with harsh
high-frequency discontinuities in order to magnify the errors the
interpolation algorithm will introduce. The demosaicking has to
predict the missing color components. After adding stego noise
with arbitrary (a,b) parameters, we then apply both Approach 2
and Approach ’Sim block-wise’ without considering the JPEG
quantization step. Since co-occurrence matrices are sensitive to
steganographic embedding – they are for example the basis of
SPAM or SRM feature sets [19, 31] – we plot in Figure 4 the
co-occurrence of the red color component of adjacent pixels after
development. These sets of pairs of adjacent pixels are either lo-
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(a) (b) (c) (d)
Figure 4: Experiment with a synthetic RAW image: co-occurrences of pixel pairs of adjacent pixels belonging either to adjacent blocks
(a), to the same block (b), to adjacent blocks (c) or same block (d) after simulating noise that preserves dependencies only at the block-wise
level.

cated on the boundaries of two adjacent DCT blocks for Approach
2 (Figure 4a) and for Approach ’Sim block-wise’ (Figure 4c), or
in the middle of one DCT block for Approach 2 (Figure 4b) and
for Approach ’Sim block-wise’ (Figure 4d). Note that the demo-
saicking process has a profound effect on inter-block dependen-
cies. After Approach 2, which does not violate the demosaicking
step, the co-occurrences are nearly identical for different pixel lo-
cations but if we compare Approach 2 and Approach ’Sim block-
wise’ for pixels located across the boundaries of DCT blocks (Fig-
ure 4a vs Figure 4c) the co-occurrences become very different be-
cause ’Sim block-wise’ only preserves intra-block dependencies.

QF Sim. MC pmf Sim block-wise
65 0.3426 0.1920 0.1511
75 0.3385 0.1473 0.1093
85 0.3350 0.0715 0.0274
95 0.3077 0.0023 0.0005

Table 5: Comparison between Approach 2 (simulated noise),
which preserves intra-block dependencies, Approach 4 (indepen-
dent embedding at each DCT coefficient), and simulated noise
sampled independently for each DCT block.

We conclude from these two experiments that the low em-
pirical security of Approach ’MC pmf’ is due to the fact that it
does not preserve inter-block dependencies between DCT coeffi-
cients. This conclusion is supported by the fact that preserving
intra-block dependencies but not inter-block dependencies does
not improve security (Experiment 1), and also by the fact that dis-
crepancies form in co-occurrences of adjacent pixels from neigh-
boring blocks (see Experiment 2).

Conclusions and perspectives
Natural steganography is an embedding paradigm in which

sensor noise is added to a RAW (cover) image capture to em-
bed the secret message, making thus the stego image look as if
it was acquired at a higher ISO setting. The novel idea explored
in this paper is extending NS to allow embedding of the mes-
sage in quantized DCT coefficients in a JPEG file and with more
complex RAW format developers. The most promising embed-
ding algorithms studied in this paper estimate the distribution of
quantized stego DCT coefficients using Monte-Carlo sampling by

adding sensor noise to the RAW cover capture, developing the im-
ages, and then JPEG compressing. This approach is free of any
modeling assumptions on the distribution of stego image DCT
coefficients and can also be used with more complex (e.g., more
realistic) developers.

Our findings can be summarized as follows:

• For images acquired by monochrome sensors, such as the
Leica M Monochrome Type 230, when adopting a linear
development, NS can embed large payloads (more than 2
bpnzac) with high empirical security (PE > 0.4) for a wide
range of JPEG quality factors. We experimentally verified
that making independent embedding changes to DCT coef-
ficients does not significantly impact the security.

• When the same strategy (independent embedding in each
DCT coefficient, linear development) is applied to images
from a color sensor, the empirical security of NS becomes
low. Further analysis showed that this loss of security can be
attributed to the failure of the embedding algorithm to pre-
serve inter-block dependencies between DCT coefficients
introduced by the demosaicking process.

In our future work, we plan to address the problem of statistically
modeling and better preserving inter-block dependencies between
DCT coefficients for color sensors and move towards more ad-
vanced development pipelines. To this end, generative models,
such as the PCA or the Generative Adversarial Networks using
strategies similar to [35], could be used.
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