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Abstract
Current satellite imaging technology enables shooting high-

resolution pictures of the ground. As any other kind of digital im-
ages, overhead pictures can also be easily forged. However, com-
mon image forensic techniques are often developed for consumer
camera images, which strongly differ in their nature from satellite
ones (e.g., compression schemes, post-processing, sensors, etc.).
Therefore, many accurate state-of-the-art forensic algorithms are
bound to fail if blindly applied to overhead image analysis. Devel-
opment of novel forensic tools for satellite images is paramount to
assess their authenticity and integrity. In this paper, we propose
an algorithm for satellite image forgery detection and localiza-
tion. Specifically, we consider the scenario in which pixels within
a region of a satellite image are replaced to add or remove an ob-
ject from the scene. Our algorithm works under the assumption
that no forged images are available for training. Using a genera-
tive adversarial network (GAN), we learn a feature representation
of pristine satellite images. A one-class support vector machine
(SVM) is trained on these features to determine their distribution.
Finally, image forgeries are detected as anomalies. The proposed
algorithm is validated against different kinds of satellite images
containing forgeries of different size and shape.

Introduction
Ever since the birth of the Internet, the accessibility to im-

ages has become easier overtime. Internet has become an af-
fordable and effective platform for distributing one’s own images.
User friendly software like Photoshop and Gimp can be used
to generate a variety of image manipulations such as inpainting,
copy-forge, splicing, etc. A combination of the above two scenar-
ios is a perfect environment for producing doctored images, which
when treacherously used can cause substantial damage. There-
fore, it is of paramount importance to develop forensic methods
to validate the integrity of an image. For this reason, over the
years, the forensic community has developed several techniques
for image authenticity detection and integrity assessment [1, 2, 3].

In addition to photographs captured with cameras and smart-
phones, other types of imagery are starting to be circulated, pos-
ing new problems for the forensic community. Indeed, current
satellite imaging technology enables shooting high-resolution pic-
tures of the ground. Due to the increased availability of satellites
equipped with imaging sensors, overhead images are becoming
popular. It is now possible to easily gather overhead images of
the ground through public websites [4] and to buy custom image

sets of specific locations and times. As any other kind of digital
images, overhead pictures can also be easily forged. One question
that needs to be addressed is whether these images are authentic.
Cases of malicious overhead image manipulations have already
been reported [5], [6]. The development of forensic methods tai-
lored to the analysis of this type of imagery is considered to be
urgent.

However, common image forensic techniques are often de-
veloped for consumer cameras, which strongly differ in their
nature from satellite sensors (e.g., compression schemes, post-
processing, sensors, etc.). Therefore, many accurate state-of-the-
art forensic algorithms are bound to fail if blindly applied to over-
head image analysis. Development of novel forensic tools for
satellite images is paramount to assess their authenticity and in-
tegrity.

To fill the lack of ad-hoc forensic techniques for satellite im-
ages, the authors of [7] proposed an active method based on water-
mark embedding. Watermarks can then be exploited to detect pos-
sible doctored image regions. Unfortunately, this method can only
be used if watermark is inserted at image inception time. More
recently, the authors of [8] proposed a passive forensic method
for overhead image analysis. This algorithm is based on machine
learning techniques, but it can only localize image regions that
have been inpainted. To the best of our knowledge, no specific
algorithms for other kinds of satellite image forgeries have been
proposed in the literature.

In this paper, we propose an algorithm for satellite image
forgery detection and localization. Specifically, we consider the
situation in which pixels within a region of a satellite image are
replaced to add or remove an object from the scene. Our algorithm
works under the assumption that no forged images are available
for training. Using a generative adversarial network (GAN), we
learn a feature representation of pristine satellite images. A one-
class support vector machine (SVM) is trained on these features to
determine their distribution. Finally, image forgeries are detected
as anomalies.

To validate the proposed method, we built a custom dataset
of forged satellite images using different forgery sizes. Results in
terms of forgery detection and localization are presented. More-
over, as the proposed algorithm works by analyzing images patch-
wise, it is possible to strongly parallelize it to keep processing
time at bay.
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Problem Definition and Background
In this section we describe the problem formulation and no-

tation used throughout the entire paper. Following this, we pro-
vide some background concepts on autoencoders and convolu-
tional neural networks.

Problem formulation
Consider an image I coming from a satellite. We can rep-

resent the pixel integrity associated with the image I, as a binary
mask M of the same size as the image in pixels. Each entry of
M is a binary label 0 or 1, such that a pixel belonging to a forged
area is assigned the label 0 and a pixel from an untampered area
is assigned a 1. As forgery, in this paper we consider an object in-
sertion / removal through a copy-paste operation from a different
source. This means that forged pixels do not belong to a satel-
lite image but come from a different device (e.g., the picture of a
plane acquired with a normal camera). Figure 1 shows an exam-
ple of a pristine satellite image and a completely white (i.e., label
1) mask, as well as a forged image with the respective black and
white mask localizing the forgery. Within this setup, our goal is
twofold:

• Tampering Detection: given an image, detect whether it is
pristine or forged.

• Tampering Localization: given a forged image, detect which
are the forged pixels.

These two tasks can be accomplished by computing M̂ (i.e., an
estimate of M). If M̂ contains any entry different from 1, the
image is detected as forged. Entries of M̂ whose values are 0
represent forged pixel positions.

Related Work
In this section we present a brief summary of autoencoders

that are needed to follow this paper. For a thorough review, we
recommend the readers to refer to Chapter 14 of [9].

Autoencoders are neural networks that are trained to attempt
to obtain an output equal to the input through a set of linear and
non-linear operations that expand or reduce data dimensionality
at some point in the network. They consist of two parts: the en-
coder Ae and decoder Ad . The output of the encoder is called
feature vector or hidden representation, and we represent it as h.
In this paper we work with autoencoders where the dimensional-
ity of h is lower than the dimensionality of the input. This kind
of autoencoders are known as undercomplete autoencoders. From
now on, whenever we refer to autoencoders we refer to undercom-
plete autoencoders. Such an architecture forces the autoencoder
to capture a salient representation of the input in a reduced dimen-
sionality space.

Autoencoders are trained by minimizing through iterative
procedures a loss value defined as

L = L(x, Ad(Ae(x))), (1)

where L(·, ·) is the loss function computing some distance
between its two arguments, x is the autoencoder input, and
Ad(Ae(x)) is the output. In the special case where L is the mean
squared error (MSE) loss, the autoencoder learns to perform a
generalized non linear principal component analysis (PCA).

(a) Pristine image (b) Pristine mask

(c) Forged mask (d) Forged mask

Figure 1: Example of pristine (a) and forged (c) images I associ-
ated to their binary forgery masks M (b) and (d), respectively

In this paper we design our autoencoders using Convolu-
tional Neural Networks (CNNs). CNNs have proven to be very
successful in a variety of computer vision tasks such as object
recognition [10], object detection [11], etc. They came to lime-
light in 2012 [12] when they produced stunning results in the Ima-
geNet Large Scale Visual Recognition Challenge (ILSVRC) [13].
Since then there has been an explosion in the application of CNNs
to various other computer vision tasks and often resulting in new
state of the art results.

When it comes to image forensics, the use of CNNs has been
on the rise. Many forensic problems deal with non-linear and of-
ten difficult to model pipelines. Therefore, CNNs have proven to
be successful in this area. The first works using CNNs in this area
were focused on steganalysis [14, 15, 16, 17]. Strictly concerning
multimedia forensics, many other tasks have been considered. As
a few examples, [18] deals with median filtering detection, [19]
proposes the use of a constrained convolutional layer for forgery
detection. In [20, 21, 22, 23], the problem of camera model identi-
fication and its possible forgeries is explored. Double JPEG com-
pression is also considered in [24, 25].

Convolutional neural networks usually consist of operations
such as convolutions, batch normalization [26], local pooling,
thresholding and non linear activations. These operations are
stacked together and are tuned by minimizing a cost function at
the output. Following, we describe some of the most commonly
used layers:

• Convolutional: the input of this layer is convolved with a
bank of filters whose response is learned through training.
The input is typically a 3D structure, i.e., it has two spatial
coordinates plus depth (e.g., an RGB image). The output is
known as feature map.

• Max pooling: given an input x, a sliding window is used to
extract the maximum value over it.
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Figure 2: Pipeline of the proposed method. At training time, the
feature extractor and one-class SVM learn their models from pris-
tine images only. At testing time, forged areas are detected as
anomaly with respect to the learned model.

• Batch Normalization: given an input x, this layer normalizes
x by imposing zero mean and unit variance. Details about
this are explained in [26].

• Deconvolutional: this layer is the transpose of a convo-
lutional layer. The output is obtained by convolving a
zero-padded version of the input with a filter bank learned
through training. The spatial dimensions of the output are
greater than that of the input.

Method
In this section we elaborate on the details of our method to

detect object insertion / deletion attacks in satellite images. In
particular, the pipeline of our method is reported in Figure 2, and
it is composed by the following steps:

• The color image under analysis is split into patches (either
overlapping or not) of size 64×64 pixels.

• A adversarially trained autoencoder encodes the patches into
a low dimensional representation called feature vector h.

• A one-class SVM fed with h is used to detect forged patches
as anomalies with respect to features distribution learned
from pristine patches.

• Once all patches are classified, a label mask for the entire
image is obtained by grouping together all the patch labels.

The rationale behind the proposed solution is that autoen-
coders are able to capture a reduced dimensionality representa-
tion of the input data, still retaining important characteristic in-
formation, as shown in [27, 28] for forensic purposes. Therefore,
by training an autoencoder only on pristine data, we expect it to
learn to extract features specific of original satellite images. Con-
versely, when it is tested on forged data, the extracted features
should be strongly different from those obtained from pristine im-
ages. A one-class SVM trained on pristine features only can then
be used to discriminate between features coming from pristine
and forged images. Following, we report a detailed explanation
of each step of the proposed pipeline.

Patch Extraction
The given image I is split into regular patches Pk, where

k ∈ [1,K] is the patch index, and K is the total amount of patches.
Patches can be either overlapped or not depending on the selected
trade-off between detection accuracy and computational complex-
ity (i.e., overlapping leads to more patches to analyze but more
accurate results).
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Figure 3: Architecture of the used GAN.

Feature Extraction
Every patch Pk is fed to the autoencoder A which consists

of two parts: the encoder Ae and decoder Ad . Both Ae and Ad
are made of convolutional and deconvolutional neural networks
respectively. They are symmetric in terms of the number of lay-
ers. The architecture of Ae has been selected following the same
rationale of [29] and it is as follows:

• conv1: convolution layer with 16 filters each of size (6,6)
with stride 1.

• conv2: convolution layer with 16 filters each of size (5,5)
with stride 2.

• conv3: convolution layer with 32 filters each of size (4,4)
with stride 2.

• conv4: convolution layer with 64 filters each of size (3,3)
with stride 2.

• conv5: convolution layer with 128 filters each of size (2,2)
with stride 2.

All convolutional layers except conv5 are followed by batch
normalization. All the convolution layers are activated using a
linear function. The output of conv5 is the feature vector h, a
2048 dimensional vector and has a much lower dimension than
that of the input which is 12288 dimensional. The architecture of
Ad is as follows:

• dconv1: deconvolution layer with 64 filters each of size (2,2)
with stride 2.

• dconv2: deconvolution layer with 32 filters each of size (3,3)
with stride 2.

• dconv3: deconvolution layer with 16 filters each of size (4,4)
with stride 2.

• dconv4: deconvolution layer with 16 filters each of size (5,5)
with stride 2.

• dconv5: deconvolution layer with 3 filters each of size (6,6)
with stride 1.

Every deconvolutional layer is followed by batch normalization
except deconv5. Deconv5 has a hyperbolic tangent activation
where all other deconvolution layers have linear activations. The
output of deconv5 is the output of the autoencoder. Once the au-
toencoder is trained on pristine image patches, we use it as feature
extractor to compute the feature vector hk =Ae(Pk) from each im-
age patch Pk.

Conventionally A can be trained using stochastic gradient de-
scent to minimize mean squared loss between input (i.e., Pk) and
output (i.e., Ad(Ae(Pk))) . However better results can be achieved
when we follow an adversarial framework for training the autoen-
coder. In [30] the authors established a framework of min-max
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adversarial game between two neural networks, namely the gen-
erator and discriminator, and such networks are called Generative
Adversarial Networks. As shown in Figure 3, the discriminator
aims to accurately discriminate between patches from real satel-
lite images and patches created by the generator. The generator
on the other hand aims to mislead the discriminator by trying to
generate data closer and closer to the real one. Such frameworks
have proven to be extremely effective.

The architecture of the discriminator D we use is as follows:

• conv1: convolution layer with 16 filters each of size (5,5)
with stride 1 followed by Leaky ReLU and batch normal-
ization.

• conv2: convolution layer with 16 filters each of size (2,2)
with stride 2.

• conv3: convolution layer with 32 filters each of size (4,4)
with stride 1 followed by Leaky ReLU and batch normal-
ization.

• conv4: convolution layer with 32 filters each of size (2,2)
with stride 2.

• conv5: convolution layer with 64 filters each of size (3,3)
with stride 1 followed by Leaky ReLU and batch normal-
ization.

• conv6: convolution layer with 64 filters each of size (2,2)
with stride 2 followed by Leaky ReLU and batch normal-
ization.

• fc1: A 128-neuron fully connected dense layer followed by
a Leaky ReLU activation.

• fc2 : A single neuron followed by a sigmoid activation.

After training the autoencoder using the GAN strategy on
pristine images only, the encoder Ae is used to extract the feature
vector hk from each patch Pk under analysis.

One-Class SVM
The autoencoder A is trained only on pristine patches and

hence it learns to encode them very well. So when A sees a patch
containing a forgery, it encodes it quite differently. In order to
capture this difference without any knowledge on forged data, we
use a one-class SVM trained on feature vectors h extracted from
pristine images only. The used one class SVM learns pristine fea-
ture distribution. It then outputs a soft value which represents the
likelihood of the feature vector h under analysis being pristine.
We define the soft mask M̃ as a matrix the same size of the image,
where each entry contains the soft SVM output relative to the im-
age patch in the same position. This soft mask M̃ can be used to
obtain the final detection binary mask M̂ by simply thresholding.

Experimental Validation
In this section we report the experimental validation of the

proposed technique. We first discuss how we built the used
dataset. We then provide details about the considered experimen-
tal setup for reproducible research. Finally, we show the achieved
numerical results.

Dataset
We tested our algorithm using overhead images obtained

from the Landsat Science program [31, 32]. The Landsat Science
is a program run jointly by NASA [33] and the US Geological

Survey(USGS) [34]. It was first launched in 1972 and has pro-
duced the longest, continuous record of Earth’s land surface as
seen from Space. NASA is responsible for the remote sensing
equipment, launching satellites and validating their performance.
USGS operates the satellites and manages data reception, archiv-
ing and distribution. Since late 2008 these images have been made
available free of charge. The Landsat Program obtains overhead
images from a series of satellites. We have created our dataset D
using images from one satellite. D consists of 130 color images
each cropped at a resolution of 650× 650 pixels. This dataset is
further divided into three parts namely training Dtrain, validation
Dval and testing Dtest.

Out of the 130 images, 30 of them are used to create patches
for training and validation. Patches of size 64× 64× 3 are ex-
tracted from every image with a patch stride of 32× 32 generat-
ing a total of 10830 patches. Out of these patches, 20 percent have
been used for validation and the remaining for training. So Dtrain
consists of 8664 patches and Dval 2166 patches.

The remaining 100 images are used for creating Dtest. Half
of Dtest is used to generate forgeries, the remaining half is kept

(a) Image with small sized
splicing

(b) Forged mask

(c) Image with medium sized
splicing

(d) Forged mask

(e) Image with large sized
splicing

(f) Forged mask

Figure 4: Examples of forged images with forgeries of different
sizes. Ground truth masks M are also reported.
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as pristine testing data. In order to create forged images, credible
objects such as airplanes, clouds, etc. are spliced at random posi-
tions onto the 50 selected images from Dtest. During the splicing
operation, the size of spliced objects relative to the used analysis
patch size is controlled. Therefore, we define three sizes namely:

• Small - Object size is smaller than the patch size (approxi-
mately 32 pixel per side).

• Medium - Object size is comparable to patch size (approxi-
mately 64 pixel per side).

• Large - Object size is larger than patch size (approximately
128 pixel per side).

Objects of each size are forged onto the 50 images at random po-
sitions to create 150 forged images, i.e., we have 50 images with
Small objects spliced onto them (D32), 50 images with Medium
objects spliced onto them (D64), and at last 50 images with Large
objects spliced onto them (D128). Examples of pristine images
and forged images with different size forgeries are shown in Fig-
ure 4.

Experimental Setup
Our model consists of two important components, namely

the Autoencoder A and the one-class SVM. In this section we
describe the policies we used to choose the best model and the
various hyper parameters for each of these.

Autoencoder
The autoencoder is fed with patches from pristine images

and its task is to capture their distribution. An autoencoder can be
trained on its own but we choose to couple it with a Discriminator
D to further push its training. The job of D is to be able to dis-
criminate between patches produced by A and the actual patches
from pristine images. By coupling A with D we form a Genera-
tive Adversarial Network (GAN). We can judge the performance
of A using the mean squared error metric and the performance of
D by binary cross entropy. Both A and D are CNNs and, in or-
der to choose the right CNN architecture, we use the following
approach:

• The architecture of D is fixed and it is described in the Fea-
ture Extraction section.

• For A, a variety of CNN architectures are tested and the one
with the lowest mean squared error loss is chosen as the best
model.

The various architectures tested to choose the best model for
A are detailed in Table 1

Training Strategy
We adopt two different training strategies, With GAN and

Without GAN

• Without GAN: we train the autoencoder with patches from
Dtrain and Dval. We use the Adam optimizer for a total of
100 epochs. The model weights with the lowest MSE loss
on Dval over the 100 epochs are chosen as the final model
weights.

• With GAN: we first train the autoencoder using patches
from Dtrain and Dval using the Adam optimizer for 100
epochs. The weights corresponding to the lowest loss on

Figure 5: Example of t-SNE representation of the feature vectors
extracted from a forged image. Features from pristine patches
(i.e., red dots) cluster together, whereas features from forged
patches (i.e., blue dots) are more distant.

Dval over the 100 epochs are locked. We then use these
weights to initialize the weights of the generator in the GAN.
The GAN is then trained for 100 epochs with the SGD op-
timizer and a learning rate of 0.001 for the discriminator,
and the Adam optimizer with a learning rate of 0.001 for
the generator. The GAN training is carried out on batches
of 128 patches. The weights with the lowest MSE loss are
chosen for the final generator.

For the SVM, we used a radial basis function with γ =
1/2048 as kernel, and small value of nu-parameter (ν = 0.00001).

Results
Using the With GAN training strategy, the mean squared

error (MSE) loss over Dval for the various architectures of the
autoencoder are reported in Table 2. Architectures A2, A3 and
A4 have similar number of parameters (about 100k) while A1 has
almost a million parameters. Note that A1 , A2 and A3 perform
similarly despite the huge difference in the number of parameters.
Among all of them A4 provides the lowest MSE and hence better
patch reconstruction. Therefore, we decided to select architecture
A4 for our system.

In order to visualize the forged-vs-pristine discriminabil-
ity power of feature vectors h extracted from the proposed au-
toencoder, we applied the t-SNE algorithm [35]. T-SNE can be
used for unsupervised feature dimensionality reduction in order
to check whether it is possible to cluster some data. In our par-
ticular case, the feature vector h is a high dimensional vector that
is very difficult to visualize, whereas, by applying t-SNE we have
some visual clues on feature behavior. Figure 5 shows the dis-
tribution of features in a reduced dimensionality space of three
dimensions using t-SNE. It is possible to notice that patches not
containing forged pixels have features that cluster together (i.e.,
red dots). Conversely, features belonging to patches containing
forged pixels (i.e., blue dots) are spread in the three-dimensional
space far from the pristine cluster. This confirms that the proposed
feature vector is able to capture forged-vs-pristine information.

In order to evaluate forgery detection performance, we esti-
mated the soft mask M̃ for each image in the dataset. For each
mask, we selected as pristine confidence the minimum M̃ value
(i.e., the SVM output associated to the least probable pristine
patch). By thresholding this confidence score, we obtained a re-
ceiver operating characteristic (ROC) curve. Figure 6 shows some
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Table 1: The four proposed autoencoder architectures (shown in columns). The number of filters for each convolutional layer, its size and
the used stride is shown in parenthesis followed by the activation function. If no activation is specified for any layer its assumed to be
linear activation

Encoder and Decoder Architectures
A1e A2e A3e A4e

conv1
(16, (6,6), Stride 1) + ReLU

conv1
(16, (6,6), Stride 1)

conv1
(16, (6,6), Stride 1)

conv1
(16, (6,6), Stride 1)

conv2
(32, (5,5), Stride 2) + ReLU

conv2
(16, (5,5), Stride 2)

conv2
(16, (5,5), Stride 2)

conv2
(16, (5,5), Stride 2)

conv3
(64, (4,4), Stride 2) + ReLU

conv3
(32, (4,4), Stride 2)

conv3
(32, (4,4), Stride 2)

conv3
(32, (4,4), Stride 2)

conv4
(128, (3,3), Stride 2) + ReLU

conv4
(32, (3,3), Stride 2)

conv4
(32, (3,3), Stride 2)

conv4
(64, (3,3), Stride 2)

conv5
(256, (2,2), Stride 2) + ReLU

conv5
(128, (2,2), Stride 2)

conv5
(128, (2,2), Stride 2)

conv5
(128, (2,2), Stride 2)

BN after each convolutional layer except conv5
A1d A2d A3d A4d

deconv1
(256, (2,2), Stride 2) + ReLU

deconv1
(32, (2,2), Stride 2)

deconv1
(64, (2,2), Stride 2)

deconv1
(64, (2,2), Stride 2)

deconv2
(128, (3,3), Stride 2) + ReLU

deconv2
(32, (3,3), Stride 2)

deconv2
(32, (3,3), Stride 2)

deconv2
(32, (3,3), Stride 2)

deconv3
(64, (4,4), Stride 2) + ReLU

deconv3
(16, (4,4), Stride 2)

deconv3
(32, (4,4), Stride 2)

deconv3
(16, (4,4), Stride 2)

deconv4
(32, (5,5), Stride 2) + ReLU

deconv4
(16, (5,5), Stride 2)

deconv4
(16, (5,5), Stride 2)

deconv4
(16, (5,5), Stride 2)

deconv5
(3, (6,6), Stride 1) + tanh

deconv5
(3, (6,6), Stride 1) + tanh

deconv5
(3, (6,6), Stride 1) + tanh

deconv5
(3, (6,6), Stride 1) + tanh

BN after each deconvolutional layer except deconv5

examples of forged images, groundtruth masks, and estimated soft
mask M̃. Figure 7 shows ROC curves split for datasets containing
forgeries of different average size. Clearly, the bigger the forgery
(i.e., 128 pixel per side), the better the performance (area under
the curve around 0.97). However, even when forgeries are smaller

Table 2: MSE of the various autoencoder architectures. The one
with the lowest MSE loss is selected for the proposed method.

Architecture Trainable Parameters MSE loss
A1 997299 0.00131671
A2 84547 0.00131675
A3 124883 0.00130047
A4 135939 0.00125511

Table 3: Detection results in terms of AUC for the different
datasets. AUCs are reported in two different cases: autoencoder
trained with or without the GAN. Best results are reported in ital-
ics.

Forgery AUC AUC AUC
Size (without Gan) (with GAN) Difference
Small 0.784 0.797 +0.013

Medium 0.904 0.920 +0.016
Large 0.950 0.972 +0.022

than the analysis block (i.e., 32 pixel per side on 64×64 blocks),
the area under the curve (AUC) is almost 0.80.

Additional results are reported in Table 3. This table reports
AUC for each different size dataset depending on the used au-
toencoder training strategy. More precisely, it is possible to no-
tice that by training the autoencoder without the GAN, detection
results are always slightly worse. This motivates the use of the
GAN training paradigm for forgery detection in this scenario.

In order to validate the proposed method in terms of localiza-
tion, we computed a soft mask M̃ for each image in the dataset.
We then thresholded each soft mask M̃ to obtain a binary mask
soft mask M̂. For each image and used threshold, we computed:
the true positive rate as the percentage of forged pixels correctly
detected; false positive rate as the percentage of pristine pixels de-

Table 4: Localization results in terms of AUC for the different
datasets. AUCs are reported in two different cases: autoencoder
trained with or without the GAN. Best results are reported in ital-
ics.

Forgery AUC AUC AUC
Size (without Gan) (with GAN) Difference
Small 0.913 0.902 -0.009

Medium 0.963 0.961 -0.002
Large 0.970 0.974 -0.004
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(a) Forged image I (b) Forged image I

(c) Forged mask M (d) Forged mask M

(e) Soft mask M̃ (f) Soft mask M̃

Figure 6: Examples of forged images with ground truth forged
mask M and estimated soft mask M̃. It is possible to notice the
correlation between ground truth and estimated soft mask.

tected as forged. Based on these two values, we drew ROC curves.
Figure 8 shows ROC curves obtained with our proposed GAN on
datasets with forgeries of different size. Specifically, it is possible
to notice that AUC is always greater than 0.90. In particular, if
the forgeries are twice the size of the analysis patch, the AUC is
higher than 0.97.

Additional results are reported in Table 4. We show AUC
values for the different datasets (according to forgery sizes), com-
paring the effect of training the autoencoder with or without the
GAN. Notice that, for localization purposes, it is slightly better to
avoid the GAN.

A final consideration is devoted to computational time. We
tested the proposed algorithm on a workstation equipped with
an Intel Core i7-5930K CPU, 128 GB of RAM and a NVIDIA
GeForce Titan X GPU. The processing time needed for a 64×64
pixel patch (considering both the autoencoder and the SVM) was
around 500µs for testing. As each patch processing is indepen-
dent, the algorithm allows for strong parallelization, thus making

Figure 7: Forgery detection ROC curves. Each curve represents
results on a different dataset according to the forgery average size.

Figure 8: Forgery localization ROC curves. Each curve represents
results on a different dataset according to the forgery average size.

processing of high resolution images not an issue.

Conclusions
In this paper we proposed a solution for satellite imagery

forgery detection and localization. The rationale behind the pro-
posed method is that it is possible to train an autoencoder to obtain
a compact representation of image patches coming from pristine
satellite pictures. This autoencoder can than be used as a feature
extractor for image patches. During testing, a one-class SVM is
used to detect whether feature vectors come from pristine images
or not, thus representing forgeries.

The solution proposed in this paper makes use of generative
adversarial networks to train the autoencoder for the forgery de-
tection task. Moreover, it is worth noting that the whole system is
trained only on pristine data. This means that no prior knowledge
on the forgeries is assumed to be available.

Tests on copy-paste attacked images with different forgery
size show promising accuracy in both detection and localization.
Future work will be devoted to study system robustness to differ-
ent kinds of forgeries as well.
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