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Abstract

Determining which processing operations were used to edit
an image and the order in which they were applied is an important
task in image forensics. Existing approaches to detecting single
manipulations have proven effective, however, their performance
may significantly deteriorate if the processing occurs in a chain
of editing operations. Thus, it is very challenging to detect the
processing used in an ordered chain of operations using tradi-
tional forensic approaches. First attempts to perform order of
operations detection were exclusively limited to a certain number
of editing operations where feature extraction and order detec-
tion are disjoint. In this paper, we propose a new data-driven
approach to jointly extract editing detection features, detect mul-
tiple editing operations, and determine the order in which they
were applied. We design a constrained CNN-based classifier that
is able to jointly extract low-level conditional fingerprint features
related to a sequence of operations as well as identify an oper-
ation’s order. Through a set of experiments, we evaluated the
performance of our CNN-based approach with different types of
residual features commonly used in forensics. Experimental re-
sults show that our method outperforms the existing approaches.

Introduction

Identifying the processing history of an image has been in-
vestigated over the last decade given its importance in wide vari-
ety of settings [25]. Digital images are used as evidence in legal
proceedings and criminal investigations. Therefore, it is impor-
tant to determine the types of editing operation that an image has
undergone and the order in which they have been applied. This
can provide a forensic analyst a complete information about a
forged image, such as the multiple types of processing operations
frequently used by a forger, and may enlighten directions to de-
termine the party who created the forgery.

Image editing operations typically leave behind unique arti-
facts, known as fingerprints, that can be used to determine its type.
Early approaches proceeded by extracting representative features
of these fingerprints then developed associated algorithms to de-
termine the type of a particular image tampering. This approach
has proven effective in detecting many types of image tampering
such as median filtering [19, 17], contrast enhancement [24], re-
sizing and resampling [21, 18], etc.

While exiting forensic approaches can determine if and how
an image has undergone a single processing operation, their per-
formance typically deteriorates if the processing occurs as a se-
quence of image editing operations [23, 8]. This is because finger-
prints produced by latter processing operations can destroy pro-
cessing fingerprints left by a former processing operation [23, 8].
Furthermore, detecting the order of operations can give a forensic
investigator a complete picture of the global processing operations
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in order to understand to which extend a subject image has been
altered from its raw version captured by a camera.

Little work has been done to determine the order of a pro-
cessing operation within a sequence of image editing. Early ap-
proaches proposed the notion of conditional fingerprints to deter-
mine the order of an operation occurring in an ordered chain of
image editing. More specifically, Stamm ez. al [23] proposed
to differentiate between the ordered chains using a sequence of
intermediate grouped hypothesis tests. Then, each intermediate
stage searches for the presence of a specific fingerprint or con-
ditional fingerprint. However, human discovery of conditional
fingerprints and complex hierarchical hypothesis test must be de-
signed for each chain, which is difficult and time consuming. This
problem has been also studied from the information-theoretical
perspective in [10].

An alternative steganalytic approach has been proposed by
Boroumand and Fridrich [8] where a rich model features based
approach with quantization step 1 (SRMQ1) [12] was used to de-
termine an operations order. This method operates by building
local models of pixel dependencies by analyzing the joint distri-
bution of pixel value prediction-errors. While this approach has
proven effective, it still requires a forgery analyst to separately
extract features then perform order of operations detection. Thus,
several questions remain open: How should low-level predictive
feature extractors be designed? Can order of operation detection
features be learned directly from data? Can we devise a generic
approach that can jointly extract features and perform order of
operations detection?

Furthermore, in a realistic scenario images are typically
JPEG compressed to be saved after being processed. JPEG com-
pression makes order of processing operation detection problem
harder because a substantial component of the processing artifacts
for forensic purposes is significantly suppressed or distorted. Our
ultimate goal is to devise a robust forensic approach to JPEG com-
pression that can jointly (1) learn pixel-value relationship traces
left by editing processing chains and (2) determine the order in
which these editing operations have been applied.

In this paper, we propose a more practical data-driven ap-
proach to perform order of operations detection that is able to
distinguish between conditional fingerprints left by different or-
dered chains of editing operations. To accomplish this, we em-
ployed a constrained convolutional neural network (CNN) based
approach which can adaptively learn low-level prediction error
features directly from data. In fact, CNNs tend to learn content-
dependent features from images.Therefore, researchers in foren-
sics employed several prediction error feature extractors associ-
ated with the CNNs. In our experiments, we evaluated our CNN-
based approach with different types of prediction error feature ex-
tractors commonly used in forensics, i.e., the adaptive constrained



convolutional layer used in forensics [1], the median filter resid-
ual (MFR) features employed in median filtering detection [9],
and the high-pass filter (HPF) first adopted in steganalysis [20].

In what follows, we provide an overview of our proposed
data-driven approach including details on the employed con-
tsrained CNN architecture. Next, we evaluated our approach to
perform order of processing operations detection with three dif-
ferent types of image editing operations. Additionally, we studied
the impact of the training data size on CNN’s performance. Re-
sults of these experiments showed that our approach outperforms
the state-of-the-art method with JPEG re-compressed images and
can achieve 96.38% with three processing operations using a large
scale training dataset.

Proposed method

The goal of this paper is to devise a more practical data-
driven approach to performing order of processing operations de-
tection in JEPG re-compressed images. As noted above, early ap-
proaches rely on theoretical analysis and parametric models of im-
age’s data [8, 23] which may not be accurate enough particularly
in challenging scenarios. More specifically, in realistic scenarios
images are in general JPEG compressed such as in social me-
dia and photo-sharing websites. This makes forensic traces very
difficult to detect, hence, the performance of traditional forensic
approaches significantly deteriorates [8].

Typically, a forger uses a sequence of several editing oper-
ations to create a forgery, also called a chain of processing op-
erations. It is very challenging to detect chains of editing opera-
tions using traditional approaches. This is because operations that
occur later in the processing sequence can potentially destroy or
alter fingerprints left by operations that occur earlier in the se-
quence. Moreover, as mentioned above traditional approaches
rely on theoretical model of image’s data [8, 23] which may not
be accurate enough to detect manipulation fingerprints left by a
chain of processing operation.

Chains of processing operations are associated with an order
in which a forger employs to perform a sequence of manipulations
within an image. These chains leave behind manipulation traces,
known as conditional fingerprints [23] , which are dependent on
the employed order of operations in the chain. It is very challeng-
ing to detect traces induced by every single editing operation and
determine its corresponding order in a processing chain. There-
fore, forensic investigators must first measure and analyze traces
left by the cumulative effect induced by an ordered processing
operations chain [8].

Instead of relying on theoretical analysis of parametric mod-
els, we propose a data-driven approach to directly learn from data
the cumulative effect induced by an ordered chain of processing
operations. To accomplish this, we cast the order of processing
operations detection as a classification problem where every pro-
cessing chain corresponds to a class. To better understand this,
Fig. 1 illustrates two chains of processing operations that consist
of the same set of N editing operations. If we invert the order of
operations i and j in chain 1, this will correspond to a different
class of ordered chain 2 that leaves behind different and unique
cumulative effect in an image. Our approach works for general
scenarios such that the total number of operations N that a chain
consists of is arbitrary and can be as low as 1. Furthermore, our
method requires a forensic investigator to assign a label to each

Ordered Chain 1:

Ordered Chain 2: Op. 1 [rmmmmmmmneeees Op.j

Figure 1: Two chains of the same N processing operations using
different order; Chains 1 and 2 leave behind different traces.

different ordered processing chain as a separate class in the train-
ing data.

To formulate this problem, let us consider the detection prob-
lem where a forgery analyst would like to build a forensic detector
algorithm g(-) that identifies the type of editing operation which
an image X has undergone. Typically, the forensic detector g is
designed as the composition of two functions f(-) and d(-) such
that

8(x) =do f(x) =d(f(x)), M

where f() is a feature extractor and d(-) is the discriminative
classifier that determines the type of processing operation applied
to an image X. In general, traditional forensic approaches employ
a detection procedure where feature extraction and detection are
separate, i.e., functions f and d are completely disjoint.

In this paper, we employ the constrained CNN [3] as our
forensic detection system g in order to jointly learn forensic
features directly from data and identify the order of processing
operations in JPEG re-compressed images. Constrained CNNs
have proven effective at performing several multimedia forensic
tasks [3, 2, 5, 4]. These type of deep neural networks enforce the
CNN to learn prediction error filters at the first convolutional layer
while training. Prediction error filters in CNN suppress an im-
age’s content and can adaptively learn from data low-level pixel
relationships induced by different types of image editing opera-
tions.

In our method, the feature extraction function f corresponds
to CNN’s layers, before the classification layer, which learn deep
hierarchical forensic features throughout the network. We use the
last fully-connected layer of the CNN followed by a softmax asso-
ciated with an argmax operator as the forensic detector. In order
to devise a more powerful forensic detector d, we employ the deep
features approach [6] commonly used in computer vision [11]. To
accomplish this, we extract the activated deep features f(X) from
our constrained CNN. Next, we compute a confidence score s, for
each k' class by training an extremely randomized trees (ERT)
classifier [13] using the deep forensic features f(X) after activa-
tion. Next, we predict the processing operations order using our
new ERT-based detection system

8(X) = arg max s (f(x)) =, 2)

where the detector d consists of the ERT-based confidence scores
si’s associated with the argmax operator, 7 is the predicted class
(i.e., ordered chain), and % is the set of all possible types of image
editing including the unaltered images class.

Unlike traditional approaches which rely on hand-designed
features, our constrained CNN can learn directly from data condi-
tional forensic fingerprints [23] related to the order of processing
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Figure 2: CNN proposed architecture; BN:Batch-Normalization Layer; TanH: Hyperbolic Tangent Layer

operations. Furthermore, several approaches to order of process-
ing operations detection are designed using targeted forensic de-
tector [23] which is difficult and time consuming. By contrast, our
method is generic and scalable to all different types and number
of applied image editing operations.

Detector architecture

In this section, we give a brief overview about our proposed
CNN architecture. Fig. 2 depicts the four different designed con-
ceptual blocks that we used in our CNN as well as the dimen-
sion of each layer and its corresponding output. The input layer
corresponds to a grayscale 256x256 pixel sized image. In what
follows, we describe in detail each used conceptual block in our
CNN architecture.

Pixel-value dependency feature extraction: As mentioned
above, the existing CNNs tend to learn content-dependent fea-
tures from images which is very well-suited for object recognition
tasks. If CNNs of this form are used to perform order of opera-
tions detection, this may lead to a classifier that identifies objects
associated with the training data as opposed to learn traces left
by an ordered sequence of operations. To overcome this problem,
we used a constrained convolutional layer [1] in the first layer
of our CNN architecture. This type of layer has proven effective
at extracting generic image manipulation features [1] which take
the form of low-level pixel-value dependency features. In total,
we used five different 5x5 constrained convolutional filters which
will produce prediction residual feature maps of size 252 x252 5.

Hierarchical feature extraction: In order to learn higher-
level classification features, one can notice from Fig. 2 that we
used a conceptual block which consists of three different regular
convolutional layers. Each of these layers learns new represen-
tation of the data and is followed by a batch normalization (BN)
layer [15], a hyperbolic tangent (TanH) activation function, and
a max-pooling layer. Furthermore, we can notice that the predic-
tion residual feature maps produced by the previous conceptual
block are directly passed to a regular convolutional layer in the
hierarchical feature extraction block. This is because these type
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of features are vulnerable to be destroyed by nonlinear operations
such as pooling and TanH activation function [3].

Cross feature maps learning: Convolutional layers in CNN
are able to learn new associations between features within the
same feature map. In our CNN architecture the output of the
hierarchical feature extraction conceptual block is fed to a 1x1
convolutional layer that consists of 128 filters. This type of layer
will learn new associations of features located at the same spa-
tial location but in a different feature map. The 1 x 1 convolu-
tional layer has shown to improve CNN’s performance when ap-
plied to a steganalysis task [26]. Finally, the output of the 1x1
convolutional layer is followed by an average pooling layer. In
our experiments, the choice of average pooling has empirically
demonstrated to outperform other types of pooling layers when
used after the 1x 1 convolutional layer.

Classification: The last conceptual block in our CNN ar-
chitecture consists of three fully-connected layers. Similarly to
the convolutional layers, the first two fully-connected layers are
followed by a TanH activation function and each contains 200
neurons. These two layers are used to learn new associations
of the highest-level convolutional features learned by the former
block. Finally, the output layer, known as classification layer, is
followed by a softmax. This type of activation function maps fea-
tures learned by a CNN to a set of probability values where neu-
rons in this layer sum to one. The total number of neurons in the
classification layer is equal to the total number of image manip-
ulations we a consider in a detection task including the unaltered
images class. Each input image will correspond to the class as-
sociated with the highest activated neuron. Finally as described
in the previous section, we improve the performance of our CNN
by using the deep features approach [11]. To do this, we extract
the deep features from the second fully-connected of our CNN
by doing a feedforward pass of our data. Next, we train an ERT
classifier to detect the order of processing operations in altered
images as described in Eq. (2).



Table 1:
databases.

Used editing operations to create our experimental

Table 2: Residual feature analysis using our proposed CNN with
and without JPEG re-compression after processing.

Editing operation Parameter Method JPEG (QF=90) | No compression
Unaltered (UA) — Proposed 92.90% 96.38%
Median Filtering (MF) Kjize = 5%5 HPF-based CNN 80.63% 92.99%
Gaussian Blurring (GB) with o = 1.1 Ksize = 5%5 MFR-based CNN 72.54% 87.17%
Resampling (RS) with bilinear interpolation | Scaling =1.5

General experimental setup

We assessed the performance of our proposed constrained
CNN-based approach to perform order of operations detection
through a set of experiments. We conducted three different exper-
iments: (1) first we evaluated CNNs performance with different
residual feature extractors, (2) we then compared our constrained
CNN-based method to the spatial rich model features approach [8]
associated with the ensemble classifier [12], (3) finally we as-
sessed the impact of the training set size on CNN’s performance.

To accomplish these experiments, we collected 15,125 im-
ages from the publicly available Dresden Image Database [14]
to create several experimental databases. In order to generate
grayscale images, we retained the green layer of the 16 central
256x256 patches. Images were manipulated using three process-
ing operations listed in Table 1. For ease of analysis, each chain
of operations can consist up to two processing operations.

We adopt the notation X-Y to denote a sequence where the
patch was first edited using manipulation X, then subsequently
edited using manipulation Y (i.e. MF-RS corresponds to first ap-
plying median filtering, then applying resizing). Additionally, we
considered two different scenarios where images have been ma-
nipulated with and without redundant processing operations (i.e.
ME-MF corresponds to first applying median filtering, then ap-
plying the same median filtering operation).

In all our experiments, CNNs were trained for 36 epochs. We
set the batch size equal to 64 and the parameters of the stochastic
gradient descent as follows: momentum = 0.95, decay = 0.0005,
and a learning rate € = 1073 that decreases every three epochs by
a factor Yy = 0.5. Additionally, while training CNNs, their test-
ing accuracies on a separate testing dataset were recorded every
1,000 iterations to produce tables and figures in this section. Note
that training and testing are disjoint. We implemented all of our
CNNs using the Caffe deep learning framework [16]. We ran our
experiments using an Nvidia GeForce GTX 1080 GPU with 8GB
RAM. The datasets used in this work were all converted to the
Imdb format.

CNN-based residual features analysis

In our first set of experiments, we evaluated the performance
of our CNN to perform order of processing operations detection
when it is associated with different prediction residual feature ex-
tractors commonly used in forensics, i.e., the constrained convo-
lutional layer [1], the high-pass filter (HPF) used in [20, 3], and
the median filter residual (MFR) used in [9, 2]. In this part, we
excluded the redundant operations scenario. Additionally, to eval-
uate the impact of the JPEG re-compression on the CNN’s per-
formance we considered two scenarios when images were JPEG
re-compressed as well as uncompressed.

To conduct these experiments, we created an experimen-
tal grayscale image database that consisted of 296,000 training

Table 3: Order of operations detection rate in JPEG-compressed
(QF=90) images. Redundant operations were excluded.

Operations SRMQ1 CNN | CNN (ERT)
w/out redundant op. | 93.76% | 92.90% 94.19%
w/ redundant op. 85.82% | 85.66% 87.12%

patches and 52,000 testing patches of size 256x256 in the same
manner described above using 1,882 images. Training and testing
patches were created from two separate sets of images and were
edited using three types of image manipulations listed in Table 1
along with their corresponding all possible pairs of editing. This
resulted in 10 different processing classes including the unaltered
patches. Next, each grayscale patch was JPEG re-compressed us-
ing quality factor of 90.

Table 2 depicts the identification rate of CNN when associ-
ated with the three different choices of prediction error feature
extractors. From Table 2, one can observe that our proposed
CNN associated with a constrained convolutional layer outper-
forms the other choices of feature extractors (i.e., HPF and MFR
based CNNs) and can achieve 96.38% identification rate in un-
compressed images. Additionally, we can notice that when the
processing operations are followed by a JPEG compression our
constrained CNN can achieve 92.90% identification rate and out-
performs the other choices of CNN by at least 12.27%. The
constrained CNN has proven robust to the JPEG scenario since
its performance decreases by only 3.48% identification rate. By
contrast, CNN’s performance significantly deteriorates with other
choices of feature extractor and it can achieve 80.63% identifica-
tion with HPF and 72.54% identification rate with MFR feature
extractor.

These results demonstrate the advantage of using the con-
strained convolutional layer. In fact, the HPF and MFR based
approaches achieve a lower detection rate since they are a subop-
timal solution of the trained network with a constrained convolu-
tional layer. Thus, the constrained convolutional layer can cap-
ture image manipulation features that may not be captured using
a fixed feature extractor and can lead to significantly better per-
formance. This has been demonstrated particularly when editing
operations are followed by JPEG compression.

Comparison with SRM-based approach

We compared our proposed CNN method to the spatial rich
model (SRMQ1) features [8] based approach using the ensemble
classifier in [12] in two scenarios where images were edited using
redundant and non redundant processing operations. To accom-
plish this, we first used the same experimental database that we
created in the previous set of experiments for the non redundant
operations scenario using the re-compressed image patches. Next,
we created a second experimental database for the redundant pro-
cessing operations scenario in the same manner described above.
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Table 4: Confusion matrix for identifying the order of processing operations using our ERT-based constrained CNN in JPEG re-
compressed images (QF=90) without redundant operations.
Predicted Class
UA MF GB RS MF-GB | GB-MF | MF-RS | RS-MF | GB-RS | RS-GB
UA 99.33% | 0.06% 0.1% 0.05% 0.00% 0.00% 0.02% 0.00% 0.00% 0.00%
MF 0.15% | 91.77% | 0.02% 0.02% 0.52% 2.12% 0.29% 5.10% 0.00% 0.02%
GB 0.00% 0.21% | 95.00% | 0.87% 0.42% 0.04% 0.04% 0.00% 0.06% 3.37%
RS 0.17% 0.00% 0.65% | 98.94% | 0.02% 0.00% 0.08% 0.08% 0.02% 0.04%
MF-GB | 0.00% 0.31% 0.19% 0.00% | 95.87% | 2.48% 0.02% 0.29% 0.42% 0.42%
GB-MF | 0.00% 1.44% 0.00% 0.02% 3.38% | 86.02% | 0.13% 8.87% 0.06% 0.08%
MF-RS | 0.02% 0.04% 0.00% 0.01% 0.00% 0.08% | 99.17% | 0.38% 0.21% 0.00%
RS-MF | 0.00% 3.54% 0.02% 0.00% 0.17% 9.38% 0.65% | 86.00% | 0.17% 0.06%
GB-RS | 0.00% 0.02% 0.00% 0.00% 0.40% 0.02% 0.96% 0.06% | 96.69% | 1.85%
RS-GB | 0.00% 0.10% 2.08% 0.06% 0.63% 0.13% 0.04% 0.23% 3.56% | 93.17%

True Class

Table 5: Confusion matrix for identifying the order of processing operations using SRMQI1 based approach [8] in JPEG re-compressed
images (QF=90) without redundant operations.
Predicted Class
UA MF GB RS MF-GB | GB-MF | MF-RS | RS-MF | GB-RS | RS-GB
UA 99.77% | 0.02% 0.02% 0.17% 0.00% 0.00% 0.00% 0.00% 0.02% 0.00%
MF 0.10% | 93.27% | 0.00% 0.04% 0.69% 1.71% 0.25% 3.79% 0.08% 0.08%
GB 0.00% 0.00% | 92.08% 1.58% 0.12% 0.00% 0.02% 0.00% 0.15% 6.06%
RS 0.44% 0.02% 0.98% | 97.98% 0.04% 0.00% 0.00% 0.00% 0.12% 0.42%
MF-GB | 0.00% 0.31% 0.27% 0.06% | 96.48% | 1.21% 0.21% 0.08% 0.67% 0.71%
GB-MF | 0.00% 1.73% 0.04% 0.02% 1.35% | 87.04% | 0.48% 9.29% 0.06% 0.00%
MF-RS | 0.02% 0.15% 0.00% 0.12% 0.08% 0.12% | 99.12% | 0.31% 0.06% 0.04%
RS-MF | 0.00% 3.71% 0.00% 0.06% 0.23% | 11.21% | 1.02% | 83.65% | 0.08% 0.04%
GB-RS | 0.00% 0.33% 0.08% 0.02% 0.56% 0.00% 0.35% 0.00% | 96.62% | 2.06%
RS-GB | 0.00% 0.27% 3.40% 0.13% 0.90% 0.00% 0.00% 0.00% 3.67% | 91.62%

True Class

Table 6: Confusion matrix for identifying the order of processing operations using our ERT-based constrained CNN in JPEG re-
compressed images (QF=90) with redundant operations.
Predicted Class

UA MF GB RS MF-MF | MF-GB | GB-MF | MF-RS | RS-MF | GB-GB | GB-RS | RS-GB | RS-RS

UA 99.78% | 0.00% | 0.00% | 0.19% | 0.00% | 0.00% | 0.083% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00%

MF 0.03% | 44.86% | 0.00% | 0.00% | 46.78% | 0.66% | 0.03% | 0.19% 1.62% | 0.28% | 5.47% | 0.00% | 0.06%

GB 0.00% 0.00% | 89.47% | 0.28% 0.00% 5.62% 0.00% 0.12% 0.03% 0.00% 0.00% 0.00% 4.47%

RS 0.03% 0.06% 0.47% | 98.34% | 0.00% 0.00% 0.97% 0.00% 0.00% 0.06% 0.00% 0.00% 0.06%

MF-MF | 0.03% | 44.89% | 0.00% | 0.00% | 46.78% | 0.66% | 0.03% | 0.19% 1.62% | 0.28% | 5.47% | 0.00% | 0.06%

MF-GB | 0.00% | 0.00% | 0.12% | 0.00% | 0.00% | 92.34% | 0.00% | 0.84% | 0.083% | 0.00% | 0.00% 1.03% | 5.62%

GB-MF | 0.00% | 0.00% | 0.06% | 0.06% | 0.00% | 0.00% | 96.69% | 0.03% | 0.03% | 0.083% | 0.083% | 1.75% 1.31%

True Class

MF-RS | 0.00% | 0.00% | 0.06% | 0.00% | 0.06% | 7.00% | 0.00% | 89.72% | 2.16% | 0.00% | 0.25% | 0.38% | 0.38%

RS-MF | 0.00% | 0.38% | 0.03% | 0.00% | 0.69% | 0.34% | 0.00% | 3.78% | 83.50% | 0.16% | 11.03% | 0.00% | 0.09%

GB-GB | 0.00% | 0.09% | 0.00% | 0.06% | 0.03% | 0.00% | 0.16% | 0.00% | 0.03% | 99.31% | 0.25% | 0.06% | 0.00%

GB-RS | 0.00% 1.00% | 0.00% | 0.00% 1.19% | 0.08% | 0.19% | 0.12% | 8.09% | 0.88% | 88.28% | 0.03% | 0.19%

RS-GB | 0.00% 0.00% 0.00% 0.00% 0.00% 0.44% 0.19% 0.06% 0.00% 1.16% 0.03% | 96.88% | 1.25%

RS-RS | 0.00% 0.00% | 0.16% 0.00% | 0.00% 9.62% | 0.22% 0.12% 0.00% 0.00% 0.16% | 2.00% | 87.72%
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Table 7: Confusion matrix for identifying the order of processing operations using SRMQI1 based approach [8] in JPEG re-compressed
images (QF=90) with redundant operations.

Predicted Class

UA MF GB RS MF-MF | MF-GB | GB-MF | MF-RS | RS-MF | GB-GB | GB-RS | RS-GB | RS-RS

UA 99.93% | 0.00% | 0.00% | 0.06% | 0.00% | 0.00% | 0.03% | 0.00% | 0.00% | 0.00% 0.00% 0.00% | 0.00%

MF 0.00% | 26.46% | 0.00% | 0.00% | 68.21% | 0.12% | 0.09% | 0.31% 1.40% | 0.25% 3.00% 0.06% | 0.03%

GB 0.00% | 0.00% | 91.75% | 1.40% | 0.00% | 3.37% | 0.06% | 0.03% | 0.00% | 0.03% 0.00% 0.06% | 3.28%

RS 0.25% | 0.00% | 0.93% | 98.00% | 0.00% | 0.00% | 0.65% | 0.00% | 0.00% | 0.00% 0.00% 0.00% | 0.15%

2| MF-MF | 0.00% | 26.12% | 0.00% | 0.00% | 68.59% | 0.12% | 0.09% | 0.31% 1.40% | 0.25% 3.00% 0.06% | 0.03%
S MF-GB | 0.00% | 0.06% | 2.31% | 0.00% | 0.00% | 87.96% | 0.00% 1.06% | 0.03% | 0.03% 0.00% 1.15% | 7.37%
S| GB-MF | 0.00% | 0.08% | 0.12% | 0.40% | 0.00% | 0.00% | 98.34% | 0.03% | 0.00% | 0.03% 0.00% 0.56% | 0.46%
= MF-RS | 0.00% | 0.28% | 0.15% | 0.06% | 0.03% | 0.81% | 0.00% | 96.15% | 1.15% | 0.25% 0.06% 0.53% | 0.50%
RS-MF | 0.00% 1.12% | 0.08% | 0.00% | 0.50% | 0.00% | 0.00% 1.81% | 86.65% | 0.46% 9.40% 0.00% | 0.00%
GB-GB | 0.00% | 0.15% | 0.00% | 0.06% | 0.03% | 0.00% | 0.31% | 0.00% | 0.00% | 99.00% | 0.34% 0.06% | 0.03%
GB-RS | 0.00% 1.90% | 0.00% | 0.03% 1.25% | 0.00% | 0.09% | 0.21% | 10.90% | 0.87% | 84.68% | 0.00% | 0.03%
RS-GB | 0.00% | 0.34% | 0.00% | 0.00% | 0.09% 1.00% | 0.75% | 0.37% | 0.03% | 0.43% 0.00% | 95.65% | 1.31%
RS-RS | 0.00% | 0.03% | 2.87% | 0.03% | 0.00% | 10.50% | 0.65% | 0.78% | 0.00% | 0.00% 0.00% | 2.62% | 82.50%

To do this, we built a grayscale image database that con-
sisted of 769,600 training patches and 41,600 testing patches
pixel sized 256x256 using 3,900 images from the Dresden Im-
age Database [14]. Note that the training and testing patches were
created from two separate sets of images. Each grayscale patch
was edited using the three processing operations listed in Table 1
as well as all possible pairs of operations without excluding the re-
dundant operations. This resulted in 13 different processing oper-
ations including the unaltered patches. Subsequently, each patch
was JPEG compressed using a quality factor of 90.

Table 3 shows the results of our experiments using our con-
strained CNN and the SRM method to perform order of process-
ing operations detection in re-compressed images. From Table 3,
we can observe that one can improve CNN’s performance using
the deep features approach [11] by training an extremely random-
ized trees classifier. In all our experiemnts we used 800 trees
to train the ERT classier. Noticeable, our ERT-based CNN can
achieve 94.19% identification rate without redundant operations,
which is particularly high. Also, we can notice that our ERT-based
CNN approach outperforms the SRM method in both scenarios
(i.e., redundant and non redundant operation scenarios).

Tables 4 and 5 contain the confusion matrices of respectively
our ERT-based CNN and the SRM method with excluding the re-
dundant processing operations. Due to space constraints, we only
present the confusion matrix of our approach using the ERT clas-
sifier. From Table 4, one can notice that our approach can typi-
cally achieve higher than 91% detection accuracy with different
types of image manipulations. Furthermore, we can observe that
editing operations followed by median filtering are hard to detect.
More specifically, the Guassian blur operation and resizing oper-
ation both followed by a median filtering (i.e., GB-MF and RS-
MF) were detected with respectively 86.02% and 86% identifica-
tion rates. This is mainly because the median filtering operation
is forensically destructive to the former processing operations.

From Table 5, we can also notice that similarly to our ap-
proach it is challenging to detect image manipulations followed
by median filtering using the SRM method. Additionally, we can
observe that our ERT-based CNN approach outperforms the SRM
method in detecting the different types of image manipulation typ-

ically by at least 1%, namely GB, RS, GB-MF, RS-MF and RS-
GB. These results demonstrate the advantage of using our CNN-
based approach over the SRM method. In what follows we present
our results for the redundant processing operations scenario.

Tables 6 and 7 depict the confusion matrices of respectively
our ERT-based CNN and the SRM method in redundant process-
ing operations scenario. From Table 6, we can notice that our
ERT-based CNN approach can detect the different types of im-
age manipulations with an identification rate typically higher than
83%. Similarly to our previous experiments for non redundant
processing operations scenario, it is challenging to detect image
manipulations followed by median filtering. One can observe that
it is also challenging to detect median filtering which gets sig-
nificantly confused with the redundant median filtering operation
(i.e., MF-MF). This is because median filtering is idempotent such
that the composition of median filtering operations is equivalent
to a single median filtering operation.

From Table 7, we can notice that the SRM method achieved
lower identification rate in detecting different types of manipu-
lations. Noticeably, our ERT-based CNN outperforms the SRM
method in detecting the following operations: MF, MF-GB, MF-
RS, GB-RS, RS-GB, and RS-RS. All taken together, these re-
sults demonstrate again the advantage of our approach over the
SRM method in both scenarios (without and with redundant oper-
ations). In the following set of experiments, we show how one can
significantly improve CNN’s performance by using a larger scale
of training dataset. It is worth mentioning that in these experi-
ments we extracted the spatial rich model features (i.e., SRMQ1)
through a multi-threaded (using eight threads) implementation
which took 17 hours per 100,000 image patches. This makes the
SRM feature extraction extremely challenging, if not infeasible,
using a very large database.

Effect of training set size

In general, a CNN’s performance is dependent on the size
and quality of the training set [22, 7]. Therefore we created a
large training dataset for both scenarios, i.e., without and with
redundant processing operations. To conduct these experiments,
we collected 14,800 images from the Dresden Image Database.
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Table 9: Confusion matrix for identifying the order of processing operations using our constrained CNN in JPEG re-compressed images
(QF=90) without redundant operations; Constrained CNN was trained using 2,368,000 training image patches.

Table 8: Testing accuracy with two different training data sizes in JPEG re-compressed images (QF=90)

without redundant op.

with redundant op.

#. training patches

296,000

2,368,000

769,600

3,078,400

Accuracy

92.90%

96.38%

85.66%

95.46%

Predicted Class

UA MF GB RS MF-GB | GB-MF | MF-RS | RS-MF | GB-RS | RS-GB

UA 99.85% | 0.00% | 0.10% | 0.06% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00%

MF 0.04% | 90.50% | 0.08% | 0.04% | 0.31% | 3.63% | 0.06% | 5.27% | 0.00% | 0.08%

GB 0.00% | 0.04% | 96.63% | 0.02% | 0.35% | 0.00% | 0.00% | 0.00% | 0.00% | 2.96%

é RS 0.06% | 0.00% | 0.00% | 99.83% | 0.00% | 0.00% | 0.08% | 0.02% | 0.02% | 0.00%
% MF-GB | 0.00% | 0.00% | 0.02% | 0.02% | 96.77% | 2.67% | 0.02% | 0.06% | 0.00% | 0.44%
E GB-MF | 0.00% | 0.21% | 0.08% | 0.02% 1.92% | 94.37% | 0.04% | 3.29% | 0.02% | 0.06%
MF-RS | 0.00% | 0.00% | 0.00% | 0.04% | 0.00% | 0.00% | 99.94% | 0.02% | 0.00% | 0.00%
RS-MF | 0.00% 1.06% | 0.02% | 0.04% | 0.12% | 8.52% | 0.71% | 89.44% | 0.04% | 0.06%
GB-RS | 0.00% | 0.02% | 0.00% | 0.02% | 0.06% | 0.02% | 0.96% | 0.10% | 98.52% | 0.31%
RS-GB | 0.00% | 0.00% 1.44% | 0.02% | 0.23% | 0.02% | 0.06% | 0.12% | 0.08% | 98.04%

Next, we created 256 x256 grayscale patches in the same manner
we described above. Each training image patch was edited using
the same types of operations we used for both scenarios in all
the previous experiments. We then JPEG re-compressed every
training patch in both training datasets using a quality factor of
90.

In total, we created 2,368,000 training patches for the non
redundant operations scenario and 3,078,400 training patches for
the redundant operations scenario. Subsequently, we trained our
proposed CNN to perform order of processing operations detec-
tion using these large scale training datasets in the same manner
we described in the experimental setup Section. We evaluated
the performance of our proposed method using the same testing
datasets that we created in the previous set of experiments. In
order to assess the impact of the training dataset size on CNN’s
performance we reported the identification rates using only the
softmax layer.

Table 8 depicts the results of our experiments for the non
redundant and redundant operation scenarios. From Table 8, one
can notice that the identification rate has significantly improved in
both scenarios. Noticeably, we can observe that in the redundant
operations scenario the identification rate has improved by 9.8%
when we increased the number of training image patches from
769,600 to 3,078,400. These results demonstrate that the order
of processing operations detection task is challenging and requires
a significant large amount of training patches. These results also
demonstrate that CNN’s performance is dependent of the size of
the training dataset.

Table 9 shows the confusion matrix of our approach in non
redundant processing operations scenario. From Tables 9 and 4,
we can notice that using a larger number of training image patches
one can improve the identification rate typically for all the types
of processing operations except for median filtering. Addition-
ally, the identification rate for the processing operations followed
by median filtering has significantly improved. Noticeably, we
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can achieve 8.35% higher identification rate for Gaussian blur fol-
lowed by median filtering using larger amount of training data.

Table 10 contains the confusion matrix of our approach in
redundant processing operations scenario. From Tables 10 and 6,
we can notice that similarly to the non redundant operations sce-
nario one can improve the identification rate typically for all the
types of processing operations using a larger number of train-
ing image patches except for the following three operations: RS-
GB, GB-GB, and GB-MF. Additionally, the identification rate for
the processing operations followed by median filtering has sig-
nificantly improved. Noticeably, we can achieve 51.53% higher
identification rate for median filtering followed by median filter-
ing using larger amount of training data. Taken all together, these
results demonstrate again that the challenging order of process-
ing operations detection task requires a large amount of training
patches to have a better data representation for every type of im-
age manipulation.

Experimental results summary

In our experiments, we investigated the ability of our CNN-
based approach to forensically detect the order of processing op-
erations in JPEG re-compressed images. First, we experimentally
demonstrated that CNNs associated with the constrained convo-
lutional layer are good candidates to extract low-level prediction
error features and to determine the order in which a processing
chain have been applied to an image. Specifically, when CNN is
associated with the constrained convolutional layer it outperforms
the other choices of CNN associated with different low-level fea-
ture extractors, namely the fixed HPF and the MFR feature extrac-
tor, by at least 12.27% identification rate in JPEG re-compressed
images. These results suggest that the fixed low-level feature ex-
tractors may learn suboptimal features as opposed to our adaptive
constrained convolutional layer which can lead to significantly
better performance in JPEG re-compressed images.

Next, we compared our CNN-based approach to the SRM



Table 10: Confusion matrix for identifying the order of processing operations using our constrained CNN in JPEG re-compressed images

(QF=90) with redundant operations; Constrained CNN was trained using 3,078,400 training image patches.
Predicted Class

UA MF GB RS MF-MF | MF-GB | GB-MF | MF-RS | RS-MF | GB-GB | GB-RS | RS-GB | RS-RS

UA 99.97% | 0.00% | 0.00% | 0.08% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00%

MF 0.03% | 87.19% | 0.00% | 0.00% | 4.81% | 0.56% | 2.59% | 0.03% | 4.53% | 0.25% | 0.00% | 0.00% | 0.00%

GB 0.00% | 0.00% | 93.00% | 0.00% | 0.00% | 0.06% | 0.00% | 0.00% | 0.00% | 4.53% | 0.00% | 2.41% | 0.00%

RS 0.03% | 0.00% | 0.00% | 99.78% | 0.00% | 0.00% | 0.00% | 0.00% | 0.03% | 0.00% | 0.08% | 0.00% | 0.12%

2| MF-MF | 0.00% | 0.75% | 0.00% | 0.00% | 98.31% | 0.06% | 0.38% | 0.09% | 0.41% | 0.00% | 0.00% | 0.00% | 0.00%
S MF-GB | 0.00% | 0.00% | 0.00% | 0.00% | 0.44% | 97.28% | 0.69% | 0.00% | 0.00% 1.38% | 0.03% | 0.19% | 0.00%
£| GB-MF | 0.00% | 0.31% | 0.06% | 0.03% | 1.69% | 3.94% | 89.53% | 0.00% | 4.38% | 0.00% | 0.03% | 0.03% | 0.00%
= MF-RS | 0.00% | 0.00% | 0.00% | 0.06% | 0.00% | 0.00% | 0.00% | 99.69% | 0.09% | 0.00% | 0.03% | 0.00% | 0.12%
RS-MF | 0.00% | 0.78% | 0.03% | 0.083% | 0.81% | 0.41% | 6.81% | 0.25% | 90.59% | 0.06% | 0.09% | 0.00% | 0.12%
GB-GB | 0.00% | 0.06% | 0.09% | 0.00% | 0.00% 1.06% | 0.00% | 0.00% | 0.03% | 94.97% | 0.09% | 3.69% | 0.00%
GB-RS | 0.00% | 0.00% | 0.00% | 0.00% | 0.08% | 0.00% | 0.00% | 0.28% | 0.06% | 0.06% | 99.44% | 0.06% | 0.06%
RS-GB | 0.00% | 0.00% | 0.31% | 0.00% | 0.00% | 0.47% | 0.00% | 0.00% | 0.00% | 7.44% | 0.41% | 91.34% | 0.03%
RS-RS | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.03% | 0.00% | 0.00% | 0.00% | 0.00% | 99.97%

method in two scenarios: (1) without redundant processing oper-
ations and (2) with redundant processing operations. Results of
these experiments showed that our proposed ERT-based CNN can
achieve higher identification rate in both scenarios. This demon-
strates that our CNN-based data driven approach can capture or-
der of manipulation traces that the hand-designed SRM features
based method cannot detect. Furthermore, experiments showed
that it is challenging to detect image manipulations when they
are followed by median filtering for both approaches, i.e. ERT-
based CNN and SRM. This was expected since the median filter-
ing is commonly known for being forensically destructive. That
is, many forensic fingerprints left in images by different types of
image manipulation can potentially be hidden/erased by the me-
dian filtering operation.

In response to this, we trained our proposed CNN with a
larger scale training dataset. Results of these experiments showed
that one can significantly improve CNN’s performance when us-
ing a larger scale of training dataset. Noticeably, we can achieve
9.8% higher identification rate in the redundant processing oper-
ations scenario when we increased the total number of training
image patches from 769,600 to 3,078,400. Training the CNN
with a larger amount of data has also significantly improved the
detection rate of processing operations followed by median filter-
ing. These experiments suggest that the order of processing oper-
ation task requires a large amount of training data to capture the
manipulation fingerprints left by different types of single editing
operations as well as chains of editing operations.

Conclusion

In this paper, we proposed a data-driven approach to per-
forming order of processing operations detection in JPEG re-
compressed images. Traditional approaches to order of process-
ing operations detection rely on theoretical analysis of parametric
models which may not be accurate enough. Instead, our proposed
method is able to learn directly from data the cumulative effect
induced by a sequence of processing operations. Specifically, we
cast the order of processing detection as a classification problem
where each sequence of manipulations corresponds to a new class
of ordered chain of editing operations. To accomplish this, we

used a constrained CNN, which employs a constrained convolu-
tional layer, to directly extract from data low-level pixel relation-
ships that capture the unique forensic fingerprints induced by each
ordered chain of processing operations. Our CNN-based detector
can be scalable and generic to detect editing chains with multiple
types and number of editing operations.

We first evaluated the performance of our CNN-based de-
tector with different low-level feature extractors commonly used
in forensics. Next, we compared our constrained CNN based
method to the spatial rich model approach in redundant and
non redundant operation scenarios. Results of these experiments
demonstrated that our proposed method outperforms the SRM in
both scenarios (i.e., redundant and non redundant operations). Fi-
nally, we experimentally demonstrated that one can significantly
improve CNN’s performance at performing order of operations
detection by using a larger amount of training image patches. Par-
ticularly, in redundant operations scenario we can achieve 9.8%
higher detection rate using a significantly larger training dataset.
This suggests that the order of processing operations detection
task requires a large amount of data to train a CNN given the
challenging scenarios that we considered in our experiments.
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