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Abstract
The goal of quantitative steganalysis is to provide an

estimate of the size of the embedded message once an image
has been detected as containing secret data. For stegano-
graphic algorithms free of serious design flaws, such as
schemes based on least significant bit replacement, the most
competitive quantitative detectors have traditionally been
built as regressors in rich media models. Considering the
recent advances in binary steganalysis due to deep learning,
in this paper we use the features extracted from the activa-
tion of such CNN detectors for the task of payload esti-
mation. The merit of the proposed architecture is demon-
strated experimentally on steganographic algorithms oper-
ating both in the spatial and JPEG domain.

Introduction
Steganography is the art of communicating secret mes-

sages to another party by hiding the secrets in cover objects
so that an adversary monitoring the traffic cannot distin-
guish between genuine cover objects and objects carrying
secret data. Formally, steganography is considered broken
when the mere presence of the secret can be established.
Forensic analysts, however, are likely to benefit from ac-
cessing additional information, such as what algorithm was
used to hide the secret and how long the message is. While
steganalysis can be formulated as a binary hypothesis test,
determining the payload size is an estimation problem. Al-
though the output of a binary classifier could be mapped to
an approximate payload size, such estimators are rarely the
best. Conversely, the output of a quantitative steganalyzer
is not necessarily the best test statistic [23].

The objective of quantitative steganalysis is to esti-
mate the number of embedding changes, which can be
related to the message length after taking into consider-
ation the source coding applied during embedding [10].
Historically, the first accurate detectors of Least Signifi-
cant Bit (LSB) replacement were quantitative detectors,
such as RS analysis [12], Sample Pairs analysis (SPA) [9],
Triples analysis [18], and the Weighted-Stego (WS) de-
tector [11, 19, 6, 33]. These so-called structural attacks
are fundamentally possible because of the fixed polarity of
changes imposed by LSB replacement. In this case, de-
tection of stego signal applied to all pixels amounts to de-
tecting a known deterministic signal, which facilitates con-
struction of very accurate detectors and payload estima-
tors. This is because flipping the LSB changes the pixel
mean while the embedding operation of LSB matching
(also known as ±1 embedding) changes the variance while
preserving the pixel mean, which makes it much harder to
detect. Structural quantitative detectors are thus funda-

mentally limited and do not generalize to embedding based
on LSB matching.

An alternative and general approach to quantitative
steganalysis was proposed in [24] by formulating the prob-
lem of message-length estimation as a regression in a suit-
ably chosen representation of images (feature space). A
quantitative steganalyzer constructed in this way can be
built for an arbitrary embedding method, and its perfor-
mance generally depends on how sensitive the features are
to embedding and how detectable the embedding is using
binary classifiers. The price for such flexibility is the need
for a training phase in which the regressor is presented with
samples of features extracted from a database of stego im-
ages embedded with a range of payloads. The same paper
showed the benefit of using non-linear regressors, which
were implemented using support vector regression. The
complexity of training such regressors limited the dimen-
sionality of the feature space one could use to build the
payload size estimator. To permit the utilization of more
complex and high-dimensional image descriptors called rich
media models [13, 20, 4, 28, 8, 16, 27, 7], the authors of [21]
proposed a variant of a regression tree modified to reflect
the specifics of steganalysis and approximate the regression
function by a generalized additive model while improving
the quality of the fit sequentially in a gradient-descent man-
ner.

Recently, novel steganalysis detector architectures im-
plemented within the paradigm of deep Convolutional Neu-
ral Networks (CNN) have been proposed. The first ar-
chitecture with respectable performance employed Gaus-
sian activation function and a high-pass preprocessing
layer [25, 26]. The architecture proposed by Xu et
al. [31, 30] (XuNet) designed for steganalysis of spatial do-
main embedding algorithms achieved performance compa-
rable to classical steganalysis with rich media models and
the ensemble classifier [22]. A markedly better detection of
spatial-domain steganography was recently achieved with
an eight-layer network called the YeNet [32], which con-
stitutes the current state of the art to the best knowl-
edge of the authors (as of December 2017). For JPEG
steganalysis, two recently proposed architectures showed a
performance improvement over steganalysis with selection-
channel-aware Gabor Filter Residuals (GFR) [7]: XuNet
made aware of JPEG phase [5] and the deep architec-
ture with shortcut connections [29] proposed to detect J-
UNIWARD [17].

In this paper, we adapt deep learning for quantitative
steganalysis in both spatial and JPEG domains. Our de-
sign, which we call the “bucket estimator,” starts by first
training a family of CNN detectors, each for a different
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Figure 1. Example of dataset preparation and training for J-UNIWARD with quality factor 75.

fixed payload, and then using their concatenated feature
maps as a feature on which a fully-connected network (re-
gressor) is trained by using the Mean Square Error (MSE)
as the loss function. This design came out as the best
performer among other natural choices. Experiments with
two steganographic algorithms in each domain are used to
show the merit of the proposed idea.

Bucket estimator
The most natural way to convert a binary classifier

built as a CNN into a quantitative regressor is to replace
the softmax loss function with the MSE and use the embed-
ded payloads as continuous-valued class labels. We have
experimented with different approaches, such as initializ-
ing the net weights with a pre-trained binary classifier, in-
cluding multiple stego images with different payloads into
the same mini-batch, adopting other loss functions, includ-
ing the relative estimation error, and expanding the fully
connected part of the regressor with different non-linear
activation functions. Even though we observed some im-
provement over the state of the art, the regression trees on
rich models [21], we were unable to match the performance
of the bucket estimator described next.

The approach that showed the most promise is based
on first constructing a bucket of k binary CNN detectors
Dαi trained on the cover class and the class of stego images
embedded with a fixed payload αi bpp, i = 1, . . . ,k. The
feature extraction part of these detectors (the last M ac-
tivation features connected to the classifier part, the fully
connected layers) were then concatenated into a k ×M di-
mensional feature vector and a payload regressor shown in
Figure 2 was trained on such “bucket features” of stego
images embedded with payloads α chosen uniformly ran-

Figure 2. Three-layer FNN payload regressor used in both stego domains.

α WOW PE S-UNI PE
0.1 0.2796 0.3452
0.2 0.2092 0.2626
0.3 0.1428 0.1861
0.4 0.1107 0.1324
0.5 0.0820 0.0997
0.6 0.0692 0.0764

Table 1. Detection error PE of individual binary detectors Dαi ,
i = 1, . . . ,6, trained for a range of payloads αi for WOW and
S-UNIWARD.
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WOW S-UNIWARD
Features used MSE MAE MSE MAE

0.1 0.0157 0.1006 0.0156 0.0983
0.2 0.0143 0.0954 0.0135 0.0896
0.3 0.0126 0.0882 0.0124 0.0863
0.4 0.0127 0.0889 0.0121 0.0850
0.5 0.0121 0.0857 0.0123 0.0858
0.6 0.0125 0.0871 0.0121 0.0847
All 0.0112 0.0816 0.0109 0.0789

Table 2. Performance of FNN regressors when using the feature
maps from one or six payload CNN detectors Dαi for WOW and
S-UNIWARD.

Bucket+FNN Bucket+RT SRM+RC+RT
Embedding MSE MAE MSE MAE MSE MAE

WOW .0109 .0789 .0104 .0777 .0151 .0966
SUNI .0112 .0816 .0109 .0808 .0145 .0922

Table 3. MSE and MAD of three different regressors for spatial
domain steganography: the bucket regressor, regression tree on
bucket regressor features, and regression tree on SRM features
transformed with random conditioning.

domly from some fixed interval I. The regressor is a three-
layer fully connected neural network (FNN) with2kM neu-
rons in each layer and an output neuron. This regressor
uses batch normalization and the ReLU non-linearity in all
non-output layers.

For spatial domain steganography, the detectors Dαi

were implemented as YeNets without the knowledge of
the selection channel (TLU CNN in the original publica-
tion [32]) because the payload is the unknown parameter
to be estimated. The dimensionality of the feature vector
– the concatenated feature maps before the classifier in a
YeNet – is M = 16×3×3 = 144. Since we selected a bucket
of k = 6 detectors trained for αi ∈ {0.1,0.2,0.3,0.4,0.5,0.6}
bpp, the resulting feature representation of images had di-
mensionality k ×M = 6×144 = 864. The image source was
the BOSSbase 1.01 database [1] downsampled to 256×256
using default ’imresize’ in Matlab. A random half of the
images (5000 cover and stego images) were used for training
the detectors Dα, where 4,000 pairs were used for training
and 1,000 pairs for validation. As in [32], downsampled im-
ages from BOWS2 [2] (all 10,000 of them) were added to
the training set to prevent the YeNet from overfitting. Out
of the remaining 5,000 BOSSbase cover-stego pairs, 3,000
of them were used to train the regressor and 2,000 were
used to assess the regressor’s accuracy. The 5,000 stego
images were each embedded with six payloads randomly
chosen from the interval I = [0.05,0.6], making the total
number of training and testing images 3,000 × 6 = 18,000
and 12,000, respectively. The regressor was a three-layer
fully connected network with 2 × 864 = 1,728 neurons in
each layer and an output neuron.

For JPEG steganography, we used the VNet [5]
with a bucket of k = 6 detectors for payloads αi ∈
{0.1,0.2,0.3,0.4,0.5,0.6} bpnzac (bits per non-zero AC
DCT coefficient). The VNet was modified in comparison
to the original publication [5] in the following manner. To

reduce the feature sparsity and decrease the feature di-
mensionality of the bucket, the number of features was
reduced from 512 to 256. The resulting feature dimension-
ality for training the regressor was thus 6 × 256 = 1536.
Similarly, the regressor was a three-layer fully connected
network with 3,072 neurons in each layer and an output
neuron. The image source was the BOSSbase 1.01 (the
original 512×512 images) compressed with quality factors
75 and 95 because we could afford to train the VNet for
the original non-resized BOSSbase images. Since the VNet
is smaller, it does not benefit from adding BOWS2 images
as much as YeNet, which is why we only trained on BOSS-
base images in contrast to the spatial domain. As in the
spatial domain, a random half of BOSSBase images were
used for training each binary classifier Dα with 4,000 pairs
for training and 1,000 pairs for validation. and the other
3,000 and 2,000 were used for training and assessing the
regressor. The training and testing libraries for the regres-
sor were also constructed in a similar way as in the spatial
domain. An example of the dataset preparation and the
training of the binary classifiers and the regressor is shown
schematically in Figure 1 for J-UNIWARD, quality factor
75.

The YeNet and VNet were trained with data augmen-
tation (random rotation and mirroring applied to images).
The training hyperparameters were kept the same as in the
corresponding publications [32, 5] with one exception. In
order to maximize the feature diversity, when trainining
the binary CNN detector for each payload, the networks
were initialized with different random seeds and all trained
from scratch (curriculum training as in [5] and [32] was not
used). Additionally, the training and validation sets have
been split with different random seeds as well.

For the regressor, a simple minibatch stochastic gra-
dient descend was used. The momentum and weight decay
were fixed to 0.9 and 0.01, respectively. The learning rate
for all parameters was chosen logarithmically spaced be-
tween 10−4 and 10−6 for 100 epochs. The minibatches
were formed by 150 images with different payloads origi-
nating from 25 cover images. In other words, each mini-
batch contained 25 subsets of 6 features corresponding to
six stego images, each with a different payload. The convo-
lution kernels were initialized with a zero-mean Gaussian
distribution with standard deviation 0.01 and all biases
were disabled.

Experiments
This section reports the results of all experiments.

Two steganographic algorithms were tested in each em-
bedding domain. In addition, two JPEG quality factors
were used for JPEG images. Two measures of statistical
spread were used to compare the bucket regressor with re-
gression trees with rich models – the MSE and the Mean
Absolute Error (MAE). We note that a trivial estimator
that always outputs the mean payload from the considered
range I = [0.05,0.6] has MSE = (0.6 − 0.05)2/12 = 0.252
and MAE = (0.6 − 0.05)/4 = 0.138, respectively.
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Figure 3. True vs. estimated payload for the bucket regressor. Upper left WOW, right S-UNIWARD. Bottom left: J-UNIWARD, right UED, both quality
factor 75.

Spatial domain
In the spatial domain, two content-adaptive em-

bedding algorithms were selected for the experiments –
WOW [15] and S-UNIWARD [17].

Table 1 shows the performance of six individual de-
tectors Dα in terms of the minimal total probability error
under equal priors1

PE = min
PFA

1
2

(PFA + PMD) (1)

for both embedding algorithms. The scatter plot of the
bucket payload regressor utilizing the feature maps from
all six detectors is shown in Figure 3 top. Table 2 shows
the gain of the bucket regressor compared to the regressors
built from features of a single binary classifier Dαi . It
shows that using the bucket of features helps decrease the
estimation error.

In Table 3, we provide the comparison between the
bucket regressor and previous art. The first column shows
the performance of the bucket regressor as described in this
text, the second shows the errors of the regression trees [21]
built with features extracted from all individual CNN de-
tectors, while the third column contains the performance
of the regression tree trained on SRM features normalized
with random conditioning (RC) [3]. The bucket regressor

1PFA and PMD are the false-alarm and missed-detection
rates.

enjoys about 30% smaller MSE than regression trees with
randomly conditioned SRM. The FNN regressor performs
approximately the same as the regression tree (the first
versus the second column). We selected the SRM because
the selection-chanel-aware maxSRM [8] cannot be applied
because the payload is not known.

JPEG domain
For JPEG domain, J-UNIWARD [17] and UED-

JC [14] were tested at JPEG quality 75 and 95.
Table 4 shows the performance of individual detectors

Dαi in terms of PE for for both algorithms and quality
factors. The scatter plot of the bucket payload regressor
utilizing the feature maps from all six detectors is shown in
Figure 3 bottom. Table 5 shows the gain in terms of MSE
and MAE of using the bucket features versus the regressor
trained only on features from a single binary classifier Dαi .

In Table 6, we compare the performance of the bucket
regressor (the first column), the regression tree on features
used by the bucket regressor (the second column), and
the regression tree implemented with GFR features [27].
Again, since the payload is to be estimated, it was not pos-
sible to use the selection-channel-aware GFR features [7].

Similar to the spatial domain, the bucket regressor
provides about 30% smaller MSE than regression trees
trained with the GFR model. As shown in Tables 6 and
3, the FNN regressor on bucket feature maps has a similar
performance as a regression tree on the same features.
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α JUNI 75 PE JUNI 95 PE UED 75 PE UED 95 PE
0.1 0.4040 0.4725 0.2450 0.4340
0.2 0.2480 0.4285 0.1070 0.3095
0.3 0.1430 0.3485 0.0550 0.2180
0.4 0.0795 0.2960 0.0330 0.1480
0.5 0.0460 0.2125 0.0150 0.0850
0.6 0.0240 0.1310 0.0080 0.0455

Table 4. Detection error PE of individual detectors trained for a range of payloads for J-UNIWARD and UED-JC.

JUNI 75 JUNI 95 UED 75 UED 95
Features used MSE MAE MSE MAE MSE MAE MSE MAE

0.1 0.0124 0.0872 0.0196 0.1145 0.0077 0.0672 0.0201 0.1152
0.2 0.0096 0.0757 0.0196 0.1148 0.0059 0.0583 0.0154 0.0986
0.3 0.0090 0.0732 0.0183 0.1089 0.0060 0.0592 0.0139 0.0926
0.4 0.0085 0.0712 0.0181 0.1096 0.0063 0.0609 0.0125 0.0867
0.5 0.0088 0.0726 0.0174 0.1068 0.0062 0.0608 0.0120 0.0855
0.6 0.0090 0.0731 0.0175 0.1071 0.0064 0.0612 0.0116 0.0840
All 0.0082 0.0689 0.0165 0.1032 0.0052 0.0549 0.0107 0.0799

Table 5. Performance of CNN regressors when using the feature mapes from one or six payload detectors Dαi for J-UNIWARD and
UED-JC and quality factors 75 and 95.

Bucket+FNN Bucket+RT GFR+RT
Embedding MSE MAE MSE MAE MSE MAE

JUNI 75 .0082 .0689 .0080 .0694 .0126 .0883
JUNI 95 .0165 .1032 .0160 .1026 .0251 .1247

UED-JC 75 .0052 .0549 .0053 .0556 .0072 .0659
UED-JC 95 .0107 .0799 .0100 .0779 .0165 .1011

Table 6. MSE and MAD of three different regressors for two
JPEG embedding algorithms and two quality factors: the bucket
regressor, regression tree on bucket regressor features, and re-
gression tree on GFR features.

Conclusions
Quantitative steganalysis deals with the problem of

estimating the length of the secret message. In this paper,
we propose a new approach to building quantitative ste-
ganalyzers (payload estimators) by leveraging the recent
progress in binary steganalysis using deep CNNs. A fam-
ily of such binary classifiers is constructed for a range of
fixed payload sizes. The feature maps outputted by such
network detectors right before the fully-connected classifier
part of the network are concatenated and used as an input
into a non-linear regressor implemented with a three-layer
fully connected network. This “bucket” estimator provides
about 30% reduction in the mean square error of the pay-
load estimator when compared with previous art – regres-
sion trees on rich media models. This level of improvement
was observed in both the spatial and JPEG domain.

In general, the accuracy of the bucket regressor is
strongly related to the performance of the binary detec-
tors. It is to be expected that further advancements in bi-
nary steganalysis will lead to corresponding improvements
of payload regressors.

All code used to produce the results in this paper,
including the network configuration files are available from
http://dde.binghamton.edu/download/.
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