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Abstract
The reliability of many digital forensic techniques can

be negatively affected by geometrical transforms applied to
the image under investigation because it breaks pixel-to-
pixel synchronization needed for example for forensic meth-
ods that rely on sensor fingerprints. The geometrical trans-
form typically needs to be detected and then its parameters
estimated to allow subsequent successful and reliable foren-
sic analysis. This paper focuses on blind detection of ro-
tation and estimation of the angle by which the image was
rotated. The proposed method utilizes the so-called Linear
Pattern (LP) as a global template. In particular, no side
information, such as watermark or the EXIF header, is re-
quired. The method is generally applicable whenever the
image under investigation had a sufficiently strong LP be-
fore rotation. The performance of the method is assessed
experimentally and by comparing to previous art. The main
advantage of the proposed method is its accuracy for esti-
mating small rotation angles (less than 3 degrees). It will
also work after resizing.

Introduction
Digital cameras have proliferated into mobile phones

and tablets in enormous numbers. These devices are ca-
pable of fast image processing. Easy to use software and
apps allow users to further manipulate the taken photos,
improve the layout by cropping, resize to smaller dimen-
sions to save bandwidth when sharing them and even do
much more. If the device does not have such software in-
stalled online tools are also available for free, such as at
fotor.com. One of typical mistakes a photographer makes
and wants to correct for is not having a straight horizon.
Rotating the image, often by a small angle, fixes the prob-
lem. Another scenario where rotation of images occurs is
during electronic image and video stabilization.

Images that have undergone geometric transforms, in
general, pose a challenge to camera identification based on
photo-response non-uniformity (PRNU), the camera fin-
gerprint. Matching these fingerprints is done by registra-
tion and correlation. Successful matching thus relies on
pixel-to-pixel synchronization. In case of rotated images, a
straightforward approach is the generalized likelihood ra-
tio test that maximizing the correlation coefficient com-
puted between the fingerprint estimated from the rotated
image and the reference fingerprint while sampling a range
of rotation angles [9]. This approach has several disad-
vantages. First, this time consuming process needs to be
repeated for each matching test with the same image and
different reference fingerprint. Second, with a denser sam-

pling of the rotation angle the detection threshold has to
be correspondingly increased to keep the false alarm rate
low [4]. With two or more geometric transforms applied to
the same image, the registration problem with noisy fin-
gerprints quickly becomes computationally intense. This
is when methods capable of blind estimation of the image
rotation angle can reduce the computational complexity
tremendously. By “blind” we mean that the image before
rotation is not accessible and the only data assumed to be
available is the image pixels.

Previous methods estimate the rotation angle from in-
terpolation artifacts detected in the Discrete Fourier Trans-
form (DFT) domain. Earlier work of this kind by Wei et
al. [11] analyzes the location of peaks in the spectrum of
the image edge map and determines the angle via closed-
form formulas. Vázquez-Padín et al. [10] applied cyclo-
stationarity theory for estimating the scaling factor and
the rotation angle. In 2014, Chen et al. built upon the
work of Vázquez-Padín et al. and proposed a more so-
phisticated spectrum-based method (SBM) [1]. All these
methods, however, work poorly for estimating small an-
gles, including the case when the image is not rotated. A
drawback of the SBM is its computational complexity as it
requires to compute a pseudoinverse of an 18× 18 matrix
as many times as there are pixels in a large square block
cropped from the image.

In this work, we propose to utilize a different forensic
entity called the linear pattern instead of interpolation ar-
tifacts. The LP was first recognized in the digital forensic
community in [2] where it was identified as a nuisance un-
desirable signal (a part of Non-Unique Artifact or NUA)
that had to be removed or suppressed to lower the false-
alarms in camera identification using sensor fingerprints.
The LP was shown to be a useful forensic entity by itself
in [3] for identifying the camera model or brand. It was also
used as a template for blind estimation of lens distortion
correction [5]. In this paper, the LP is used to estimate the
rotation angle of a rotated image.

The paper is organized as follows. The next section
introduces notation and contains a formal definition of the
linear pattern. The following section explains advantages
of the LP for image blind rotation estimation and outlines
the proposed method, which is then described in detail in
the following section. The experimental section presents
tests of the proposed LP-based method (LPM) on 48 un-
compressed images, comparing the results with SBM. The
tests continue with JPEG compressed rotated images and
downsized rotated images. The paper in concluded in the
final section.
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Preliminaries
Matrices will be denoted with bold capital letters, vec-

tors with lower-case bold letters, and scalars in lower-case
italic font. An 8-bit grayscale m× n image (m rows, n
columns) will be represented with a two-dimensional array
I ∈ {0, . . . ,255}mn with elements Iij , 1≤ i≤m, 1≤ j ≤ n.
Its noise residual is defined as W(I) = I− F (I), where
F is a denoising filter. Then, W is normalized to zero
mean and scaled to unit sample variance with samples wij ,
1≤ i≤m,1≤ j ≤ n.

Linear Pattern derived from W is matrix L of size
m×n, such that the following two conditions are satisfied:

1. The average of each column and row of Z = W−L is
zero.

2. L = L(W) =
(
lij
)
is fully determined by its row and

column averages, i. e., lij = ri+cj for all i= 1, . . . ,m,
j = 1, . . . ,n.

The first condition implies that row r = (r1, r2, . . . , rm) and
column c = (c1, c2, . . . , cn) averages of L are the same as of
W,

ri = 1
n

n∑
j=1

lij = 1
n

n∑
j=1

wij ,

cj = 1
m

m∑
i=1

lij = 1
m

m∑
i=1

wij .

(1)

The definition of L is self-consistent because
m,n∑
i,j=1

wij = 0

and a the jth column average of L is

1
m

m∑
i=1

lij = 1
m

m∑
i=1

(ri+ cj) = 1
m

m∑
i=1

ri+ 1
m (mcj)

= 1
m

m∑
i=1

1
n

n∑
j=1

wij + cj = cj ,

(2)

By the same token, the average of the ith row is equal
to ri.

The pair of vectors [r,c] is a one-dimensional repre-
sentation of the LP. We define the energy of the LP as the
pair

[
‖r‖2,‖c‖2

]
, where ‖.‖ stands for the Euclidean norm.

We also define the normalized LP energy e(L),

e(L) = [er,ec] =
[
n/m‖r‖2,m/n‖c‖2

]
. (3)

The normalization coefficients n/m and m/n are jus-
tified in the following way. If W was random i.i.d. noise
then the expected normalized energy of the LP becomes
equal to 1. For the rows part, the expected normalized
energy becomes

E
{
n
m‖r‖

2}= E
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 1
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 (4)

+ 2
mn

E


m∑
i=1

 n∑
i 6=k

wijwik


= 1 + 0.

The 1 is due to the zero mean and unit variance prop-
erty and the zero due to the independence between wij and
wik for j 6= k. The same can be verified for the columns
part of the LP. For most images from digital cameras and
further processed images, at least one of the normalized
energies of the LP is larger than 1, er > 1 or ec > 1 or
both. The reason for it is that the neighboring elements
in the noise residual W are not independent, for example
due to color filter array interpolation.

In this work, the LP from color images is ob-
tained from W computed by converting the three resid-
uals WR,WG,WB, from the red, green, and blue color
channels, to one “grayscale“ m × n matrix W using
standard rgb→gray linear transform with coefficients
[0.2125, 0.7174, 0.0721] for red, green, and blue color chan-
nels. In this paper, we use the popular denoising filter
described in [7]. The noise parameter σ was optimized in
a small test and rounded to σ = 0.5, which is much smaller
than what is typically used for estimating camera sensor
fingerprint [6]. A small value of σ works better for JPEG
compressed images.

Linear pattern as a reference template
The linear pattern is introduced into the image during

its on-board camera signal and image processing. Filler
et al. [3] showed that features extracted from the LP can
help identify the camera model of the camera that took the
image. This observation suggests that the LP as defined in
Eq. 1 is an estimate of a LP that is introduced into every
image (of the same dimensions) the camera takes. Unlike
the PRNU noise, the LP is not unique for each camera.

An important property of the LP is its directionality,
at least within a 90 degree range with the possibility to be
expanded to a 180 degree range depending on whether the
horizontal direction can be distinguished from the vertical
direction. In this paper, we exploit this property for rota-
tion estimation. Another useful property is its robustness
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to scaling. This opens up a possibility for fast camera iden-
tification from rotated, scaled, and cropped images using
the PRNU and the LP. Instead of doing a multidimen-
sional search for all parameters of the geometric transform
at once, it will be possible to first recover the rotation us-
ing the proposed LP-based method (LPM) and then find
the scaling factor that maximizes the cross-correlation [4].
Such experiments are left for future work.

Every image processing has some effect on the LP.
What is important for our blind estimation of rotation an-
gle is the observation that after image rotation by a small
angle, the normalized energy of the LP approaches 1 or a
smaller value (see Figure 1). This is the result of random-
like values in the noise residual W in other than vertical
and horizontal directions. The original linear pattern was
rotated along with the image. The LP energy computed
from an image that was already rotated tends to be lower
than before the rotation. We can see from Figure 1 that
rotation quickly eliminates most of the LP energy. After
rotating it back to the original position, the LP energy in-
creases. Once we make the same plot computed from an
image that was already rotated by angle α (and cropped to
remove padding), the peak energy clearly marks the angle
of rotation with the opposite sign (see Figure 2 and Fig-
ure 3 in case of JPEG compressed rotated image). This
proves that the LP can survive two rotations (forth and
back) of the image, both with interpolation and rounding
pixels to 8-bit values. The above two cases shown in the
figures represent a) an uncompressed digital image with a
very strong LP, and b) a heavily compressed image with
much weaker LP.

The initial to-be-detected rotation in our example was
carried out with bicubic interpolation. Figure 4 shows the
same experiment as in Figure 2 (b), using three different
interpolations for rotations by angle β ∈ [−5,5]. Bilinear
and bicubic methods decrease the LP energy, which creates
a false peak in the energy plot at β = 0. The same effect
occurs no matter what the initial rotation method was (not
shown here). For this reason and for its computational
efficiency, it is important to implement the proposed search
method using the nearest neighbor interpolation.

Depending on the image origin, its LP may be strong,
i. e., having energy larger that 1, in either the row or the
column direction or in both. Among many options how to
merge these two parts of the LP when searching for the ro-
tation angle, we choose the simple addition that defines the
objective function G(β) = er(β) +ec(β), computed from the
image after rotating it by β degrees. We next describe the
step-by-step algorithm for blind rotation angle estimation.

Description of the method
The method for estimation of the rotation angle from

a (possibly) rotated image consists of six steps:

Step 1: Compute the noise residual W from the in-
spected image I, W = I−F (I), where F is the denoising
filter [7]. Normalize W to zero mean and unit sample vari-
ance.

a)

b)
Figure 1. Example of a linear pattern energy computed for a range of rota-
tion angles for a) uncompressed image of size 1704×2272 from Canon_S40
b) 1080×1920 HD video frame recorded by Kindle Fire tablet.

Step 2: For the search interval b= [β1,β2] of rotation
angles, and for a chosen step s, take samples αi, i= 1, . . . ,n
separated by s from interval b.

Step 3: Rotate W by angle αi using the nearest
neighbor interpolation to obtain Wi. Crop to remove
padding.

Step 4: Compute L(Wi), and e(L(Wi)) =
[er(αi),ec(αi)] using Eq. 1 and 3.

Repeat Steps 3 and 4 for i= 1, . . . ,n.
Step 5: Compute the function G(β) = er(β) + ec(β)

sampled at β = αi, i= 1, . . . ,n.
Step 6: Fit a second-order polynomial P (β) through

the G(β) data. Find the estimate −α̂ of the image rotation
angle α as the largest positive outlier

α̂= argmax
β1≤β≤β2

G(β)−P (β).

Notice that we do not rotate the image itself during
the search. It is much faster to compute the noise residual
just once and rotate only that. We found no loss in the
performance of the method compared to rotating the image
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a)

b)
Figure 2. Linear pattern energy computed for a range of rotation angles
for the image previously rotated by α = −2.8 degrees for a) raw image b)
HD video frame.

in Step 3. The data regression as part of the peak detection
in Step 6 is needed mainly when β2 > 5. The objective
function tends to increase if the image size after cropping
decreases.

A typical width of the peak is about a quarter degree
for images with resolution a few million pixels, suggest-
ing that the maximum size of the sampling step should be
much smaller than 0.25 degree. Note that the peak width
is proportional to the image width (or height).

Special cases
Two problems require attention before discussing rou-

tine tests. The first is the phenomenon we call the mirror
peak. The second is a scenario involving double rotation
that can be taken as an experimental proof that the LPM,
unlike SBM, does not use post-rotation interpolation arti-
facts.

Mirror peak problem
Upon closer inspection of Figure 2, one can observe

that the plot exhibits an (unexpected) secondary mirror
peak. A more detailed investigation reveals that the LP

a)

b)
Figure 3. Linear pattern energy computed for a range of rotation angles
for an image rotated by -2.8 degrees and JPEG compressed at 95% quality
a) raw image b) HD video frame, for a range of rotation angles.

energy suddenly increases after rotating the rotated image
by the same angle again. The magnitude of this secondary
peak increases with a smaller rotation angle and almost
matches in magnitude the main peak as α→0 (not shown
in the figure). Thus, with small rotation angles, α can be
confused for −α if the sampling of G(β) is not sufficiently
dense (i. e., the step s is not sufficiently small) during
the exhaustive search. The culprit is a strong periodic
LP with a two-pixel period. We illustrate the process of
the mirror peak formation on an example with the column
part of the LP composed of a perfect periodic signal with
period 2 shown in Figure 5(a), top. Black represents -1
and white +1. The plot in the same Figure 5(a) below is
of vector c, the mean values of the LP columns. A small
rotation by just 2 degrees (part (b) in the figure) makes the
new calculated LP having a very small amplitude, which
is desired. But when rotating by an additional 2 degrees
(part (c) in the figure), due to the period 2, the amplitude
increases almost to the original value. If the same LP is
rotated once by 2 + 2 = 4 degrees, the aliasing does not
occur and the amplitude stays small. The effect becomes
less pronounced if rotating by a larger angle.
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(a) Nearest neighbor

b) Bilinear

c) Bicubic

Figure 4. Normalized LP energy e(L) of a rotated video frame at angles
β using a) nearest neighbor, b) bilinear, c) bicubic interpolation. The the
image is a video frame of dimensions 1080× 1920. The initial rotation by
2.8 degrees was executed with bicubic interpolation.

Test # Method α(1) α(2) = 2.6 degrees
1 True angle 13.333 α(1) +α(2) = 15.933

SBM 13.330 2.577
LPM 13.330 15.950

2 True angle −1.123 α(1) +α(2) = 1.477
SBM −1.119 2.577
LPM −1.140 1.430

Table 1. Double rotation test with an uncompressed image
from Canon_S40 (resolution 1704 × 2272).

The mirror peak phenomenon confuses the SBM at
angles less than 2 degrees (see the columns with small an-
gles in Table 4). The LPM is resistant to it as long as the
sampling step s is sufficiently small (s= 0.025 in our tests).

It is worth noting that there is an ambiguity once the
range of possible rotations exceeds 90 degrees. If the LPM
finds the estimate α̂ then other plausible rotations are α̂+
90, α̂− 90, and α̂+ 180. Rotations by a multiple of 90
degrees cannot be distinguished unless a side information
about the camera is available.

Double rotation
An interesting scenario, although not very common

in practice, involves images rotated twice, first by angle
α(1) and subsequently by α(2). Experimenting with an un-
compressed image rotated by α(1), both methods correctly
detect it. After the second rotation, the SBM, however,
only finds this second angle while the LPM determines the
total rotation. The two methods thus represent two differ-
ent tools. If camera identification is the primary purpose
for undoing the rotation then the LPM is the right choice.

Experiments
Having reproducibility of experiments in mind, we

choose the FAU dataset of 48 original test images provided
by Friedrich-Alexander-Universität, Erlangen-Nürnberg,
Germany.1 These images are in the 8-bit PNG format.
The origin of the images is unknown to us. Their resolu-
tion spans from small 533×800 to the largest 3900×2613.
We list the image dimensions along with normalized energy
of their LP for the first 20 test images in Table 2.

Camera identification using PRNU works best when
pixel-to-pixel synchronization is achieved. Estimating the
rotation to stay within one pixel difference at a distance
of 1200 pixels from the image center requires better than
0.05 degree precision for the angle estimate. We take this
value as one of two thresholds (the second is 0.1 degrees) for
evaluating the success rate of our estimation. For improved
accuracy, two stages of the search were implemented. The
search interval in all experiments with small angles below
5 degrees is set to b = [−5,5], s = 0.025, while for larger
angles b= [0,45], s= 0.05. The step is then set to s= 0.01
during the second, refining stage, searching within 1 degree

1https://www5.cs.fau.de/research/data/image-
manipulation/

IS&T International Symposium on Electronic Imaging 2018
Media Watermarking, Security, and Forensics 2018 158-5



(a) (b)

(c) (d)

Figure 5. Origin of the “mirror peak” in the plot in Figure 2. (a) Original
(simulated) LP, (b) LP rotated by 2 degrees, (c) LP rotated by 2 degrees
twice, (d) LP rotated by 4 degrees. (All rotations are done with the nearest
neighbor interpolation.)

Image filename Rows Columns er ec
’barrier’ 2592 3888 3.99 12.81

’beach_wood’ 2448 3264 7.71 6.50
’berries’ 2014 3039 4.78 4.10
’bricks’ 2592 3888 4.53 6.72
’cattle’ 854 1280 1.28 1.31

’central_park’ 2448 3264 0.70 2.15
’christmas_hedge’ 2014 3039 18.63 14.85

’clean_walls’ 754 1024 1.16 1.05
’dark_and_bright’ 2592 3888 7.15 8.09

’disconnected_shift’ 3888 2592 6.79 7.51
’egyptian’ 2014 3039 1.74 1.42
’extension’ 2592 3888 2.14 6.10
’fisherman’ 2448 3264 0.54 0.96
’fountain’ 2448 3264 6.52 5.66

’four_babies’ 2000 3008 1.25 0.63
’giraffe’ 533 800 2.07 2.83
’hedge’ 2448 3264 13.89 13.68
’horses’ 2014 3039 9.40 5.96

’japan_tower’ 2448 3264 6.87 5.29
’jellyfish_chaos’ 2592 3888 4.54 17.49

... ... ... ... ...
Table 2. Dimensions and LP energy of test images from FAU
dataset (the first 20).

around the peak of G(β).
The SBM implementation2 lets us choose the size of

the image middle square portion that enters the computa-
tions. We tested two options, 512×512 for which process-
ing of one image took 160 sec, and 720× 720, taking 316
sec when run on Intel Dual Xeon 2.93 GHz (6 core). In
comparison, running the LPM for a 720×1280 image took
17.2 sec (with n= 500 in Step 2).

Rotation angles in the experiments are unevenly dis-
tributed within the interval [0,45], with an added angle
of −1.22 degrees for rotation in opposite direction. More
tests are performed for small angles as we anticipate them
to be more frequently occurring in practice. The purpose
of the unconventional choice of the set of angles is to make
it convincing that the estimation methods do not work for
special values only, such as for integer degrees.

Uncompressed images
In the first test, uncompressed images are rotated by

α degrees clockwise using bicubic interpolation, rounded
to 8-bit and cropped to its valid rectangular part remov-
ing all padded areas. As shown in Table 3 (shortened to
fit the first 20 images), the LPM is highly reliable and
very precise for most images. This table shows the success
rate with which the angle was estimated with 0.1-degree
accuracy, i.e. the estimation error δ = |α̂−α| ≤ 0.1. The
LPM can not correctly estimate rotation angles for image
’clean_walls’ because maxe(L) is close to 1.

Taking the statistical significance of the peak that lead
to the estimate α̂, we can for example discard the estimates
that are not backed up by significant peaks. The success
rate “With confidence” in Table 3 is based on the signifi-

2Available for download from github.com
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α → -1.22 0 0.55 1.11 2.77 3.88 4.44 11.66 21.66 31.66 41.66
’barrier’ -1.22 -0.01 0.55 1.11 2.76 3.89 4.44 11.66 21.66 31.68 41.66

’beach_wood’ -1.22 0.01 0.55 1.11 2.76 3.88 4.44 11.66 21.66 31.65 41.65
’berries’ -1.22 -0.01 0.55 1.11 2.78 3.88 4.44 11.66 21.66 31.66 41.65
’bricks’ -1.22 -0.01 0.55 1.11 2.76 3.88 4.44 11.66 21.66 31.66 41.66
’cattle’ -1.24 -0.04 0.55 1.13 2.93 3.88 4.43 11.67 37.60 31.66 28.07

’central_park’ -1.21 0.01 0.55 1.11 2.78 3.89 4.45 30.10 21.66 31.65 41.67
’christmas_hedge’ -1.22 -0.01 0.55 1.11 2.78 3.89 4.44 11.66 21.66 31.66 41.65

’clean_walls’ 4.35 0.19 -0.07 -0.08 -1.20 -2.80 3.63 44.25 36.91 31.15 41.78
’dark_and_bright’ -1.22 -0.01 0.55 1.11 2.78 3.88 4.44 11.66 21.66 31.66 41.66

’disconnected_shift’ -1.21 -0.01 0.55 1.11 2.78 3.89 4.44 11.66 21.66 31.66 41.65
’egyptian’ -1.21 -0.01 0.55 1.11 2.76 3.88 4.44 11.66 21.66 31.66 41.63
’extension’ -1.22 0.01 0.55 1.10 2.78 3.88 4.45 11.66 21.66 31.69 41.66
’fisherman’ -1.22 -0.01 0.55 1.11 2.78 3.89 4.43 38.20 40.09 31.67 41.66
’fountain’ -1.21 0.01 0.55 1.11 2.78 3.88 4.44 11.65 40.10 31.65 41.66

’four_babies’ -1.22 0.01 0.55 1.12 2.78 3.88 4.45 11.66 21.67 31.66 41.66
’giraffe’ -1.21 -0.07 0.55 1.13 2.75 3.84 4.45 11.63 21.67 31.69 41.75
’hedge’ -1.21 -0.01 0.55 1.11 2.78 3.89 4.44 11.66 21.66 31.65 41.66
’horses’ -1.21 -0.01 0.55 1.11 2.76 3.89 4.44 11.66 21.66 31.66 41.64

’japan_tower’ -1.21 -0.01 0.55 1.11 2.78 3.88 4.44 11.66 21.66 5.09 41.65
’jellyfish_chaos’ -1.22 0.01 0.55 1.11 2.78 3.88 4.44 11.66 21.66 31.66 41.65

... ... ... ... ... ... ... ... ... ... ... ...
Success count 45/48 47/48 45/48 45/48 44/48 44/48 45/48 36/48 37/48 45/48 44/48

With confidence 43/43 45/45 42/43 43/43 43/43 43/44 43/44 33/41 36/42 44/45 42/45
Table 3. LPM applied to full dimension images (the first 20 test images shown). Estimates with δ > 0.1 are in italic.

cance level of 10−5 (assuming a Gaussian distribution for
G(β)−P (β)). This rate for example excludes estimates for
the test image ’clean_walls’ due to lack of peaks. There
are still a few errors due to occasional occurrence of false
peaks.

The SBM works best and better than the LPM for
large angles with the exception of α= 41.66 in which case
the larger block size (720) helps. The SBM always fails to
find 0-degree and 0.55 degree rotations. This suggests that
rotations by less than 1 degree is beyond the capability
of this method. Then, we see a high number of incorrect
estimations involving digits 1,7, and 9, particularly angles
7.17, 7.19, and 17.09 (and 1.79 for image ’fountain’). Incor-
rect “guesses” are not random, they tend to fall on a small
subset of angles that somehow depend on the true rota-
tion angle. We hypothesize that these errors are due to
misinterpreting CFA interpolation peaks in the frequency
domain. In their original work [1], test images from the
Dresden database were downsampled by a factor of 2 in
order to remove CFA artifacts that would otherwise cause
the confusion. The test set is also narrowed down by choos-
ing just one camera, the Nikon D200, from which all the
test images were sampled from.

A summary of the results are in Table 5 and Figure 6.
The value in the first column by “SBM” means the block
size, “LPM 720” denotes the LPM applied to the cropped
rotated image of size 720× 1280 (whenever the original
image size was not smaller) and “LPM max” denotes the
LPM applied to the maximum rectangular image size with
padded areas removed. The LPM always performed bet-
ter with the largest cropped size and yet much faster than
“SBM 512.” The success rate is evaluated for δ ≤ 0.1 and

Figure 6. Success rates of the LPM and SBM (δ ≤ 0.1).

for δ ≤ 0.05 degrees.
In order to emphasize the ability of the LPM to pro-

duce precise estimations for small angles |α| ≤ 3, more tests
in this range are shown in Table 6. The average success
count with confidence (as above) was 42.8. The success
rate with confidence is shown in the table after dividing
the success counts by the number of all cases with statis-
tically significant peaks.

Down-sampling by 2
This downsampling factor was chosen for two reasons.

First, it is commonly applied to decrease the filesize of dig-
ital photos. The number of pixels matches the number of
green pixels in the most common RGGB-type CFA. Sec-
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α → -1.22 0 0.55 1.11 2.77 3.88 4.44 11.66 21.66 31.66 41.66
’barrier’ 1.23 24.86 -0.67 -1.12 2.80 3.92 4.48 11.62 21.66 31.67 41.60

’beach_wood’ -1.23 -3.47 -3.47 1.12 2.80 3.92 4.48 11.62 21.66 31.67 17.09
’berries’ 1.23 39.98 9.83 1.12 2.80 3.92 4.48 11.62 21.66 31.67 17.09
’bricks’ -1.23 35.05 7.14 1.12 2.80 3.92 4.48 11.62 21.66 31.67 17.09
’cattle’ 1.23 7.14 7.14 7.14 7.17 7.18 7.19 21.68 21.66 31.67 41.68

’central_park’ -1.23 -5.60 -2.80 1.12 2.80 3.92 4.48 11.73 21.66 31.67 17.09
’christmas_hedge’ -1.23 -14.50 -43.01 1.12 2.80 3.92 4.48 11.62 21.66 31.67 17.09

’clean_walls’ -1.23 -2.80 -0.67 1.12 2.80 3.92 4.48 11.73 21.66 31.67 41.60
’dark_and_bright’ 1.23 -5.72 0.67 1.12 2.80 3.92 4.48 11.73 21.66 31.67 41.60

’disconnected_shift’ -1.23 1.46 -0.67 1.12 2.80 3.92 4.48 11.73 21.66 31.67 41.60
’egyptian’ -1.23 -0.781 7.39 1.12 2.80 3.92 4.48 11.62 21.66 31.67 17.09
’extension’ -1.23 3.36 3.36 -1.12 2.80 3.92 4.48 11.62 21.66 31.67 17.09
’fisherman’ -1.23 -26.36 7.14 1.12 7.17 3.92 7.19 11.62 21.66 31.67 17.09
’fountain’ 1.79 -1.79 1.79 1.79 1.79 1.79 1.80 11.73 21.66 31.67 41.60

’four_babies’ -1.23 4.24 7.14 -1.12 7.17 3.92 7.19 11.62 21.66 31.67 17.09
’giraffe’ 1.23 7.25 7.14 1.12 7.17 3.92 7.19 11.75 21.66 31.67 41.67
’hedge’ -1.23 -7.14 7.14 7.14 7.17 7.18 7.19 11.73 21.66 31.67 41.60
’horses’ -1.23 -2.46 6.25 -1.12 2.80 3.92 4.48 11.62 21.66 31.67 17.09

’japan_tower’ -1.23 -3.02 -3.13 1.12 2.80 3.92 4.48 11.62 21.66 31.67 41.67
’jellyfish_chaos’ 1.23 3.58 7.14 1.12 7.17 3.92 7.19 21.68 21.66 31.67 -24.18

... ... ... ... ... ... ... ... ... ... ... ...
Success count 28/48 0/48 0/48 28/48 33/48 40/48 31/48 41/48 48/48 48/48 20/48

Table 4. SBM, block size 512. Estimates with δ > 0.1 are in italic.

α → -1.22 0 0.55 1.11 2.77 3.88 4.44 11.66 21.66 31.66 41.66
SBM 512 28 (28) 0 (0) 0 (0) 28 (28) 33 (33) 40 (40) 31 (31) 41 (41) 48 (48) 48 (48) 20 (20)
SBM 720 17 (17) 0 (0) 0 (0) 21 (21) 36 (36) 31 (27) 35 (34) 46 (45) 39 (38) 47 (46) 45 (45)
LPM 720 36 (35) 43 (40) 37 (36) 36 (35) 40 (39) 38 (38) 40 (40) 28 (28) 34 (34) 44 (43) 41 (41)
LPM max 45 (45) 47 (44) 45 (44) 45 (45) 44 (44) 44 (44) 45 (45) 36 (36) 37 (38) 45 (45) 44 (41)

Table 5. The number of correct angle estimations with error δ ≤ 0.1 degree and with δ ≤ 0.05 (in parentheses), out of 48.

ond, all images in the original work [1] were downsampled
this way, yet before rotation. The success count of the
SBM dropped on average more that twice, see Table 7.

Resizing by factor 0.8
This is the most damaging post-rotation processing

among all presented in this work. Coincidentally, signs of
resampling by factor 4/5 with bicubic interpolation ker-
nel are the hardest to detect among all resampling factors
(shown by Pasquini and Böhme in 2017 [8]). Most incor-
rect estimates obtained from the SBM carried systematic
errors. This confirms that resizing can be considered as
an effective attack on the SBM [1]. The LPM succeeds in
roughly 50% of tests. One exception is at zero (no rota-
tion) where the LPM dealt really well with it at success
rate 47/48 (Table 8 and Figure 7(b)).

JPEG compression
JPEG compression suppresses the LP and decreases

its energy. Therefore, a drop in performance of both tested
methods is expected.

Setup: Images are first JPEG compressed at 90% qual-
ity, then rotated by a small angle of 2.77 degrees (with
bicubic interpolation) and finally JPEG compressed with
quality factors between 80 and 100 or saved uncompressed.
This is a single angle test.

The LPM performs better than the SBM only for
JPEG quality factors larger than 90 (Table 9). When the
SBM estimate is incorrect it is mostly confused for the an-
gle of −14.62 degrees, which could be caused by the first
compression interpolation peaks in DFT.

Discussion
The main limitation of the LPM could be the lens dis-

tortion correction automatically performed in long zoom
compact cameras at the short end of the zoom. This cor-
rection is a geometric transform that distorts the linear
pattern. If the distortion is severe, the LPM may fail if the
lens distortion transform is not undone.

Although it is possible to implement the LPM using
Radon transform, it may not work correctly or be faster,
depending on what interpolation the transform does and
how it handles padding. For example, the Matlab (R2016a)
implementation is not suitable.

Conclusions
Estimating rotation angle using the proposed LP-

based method without any reference signal or side infor-
mation is possible and efficient in terms of computation
speed and the likelihood of obtaining the correct estimate
with high precision. The LPM is robust to image resizing
and rather higher quality JPEG compression.
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α → -3 -2.6 -2.2 -1.8 -1.4 -1 -0.6 -0.2 0 0.2 0.6 1 1.4 1.8 2.2 2.6 3
δ ≤ .1 45 44 45 45 46 44 46 43 47 43 45 44 45 46 44 45 43
δ ≤ .05 44 44 44 44 46 44 45 42 44 43 45 44 45 46 44 44 43
δ ≤ .2 46 45 46 46 47 44 47 45 48 44 45 44 46 47 45 47 45
With confidence .98 .98 1 1 .98 1 1 .95 1 .98 .98 1 1 1 1 1 1

Table 6. The number of correct angle estimations (out of 48) by the LPM at maximum available image size for small angles.

α → -1.22 0 0.55 1.11 2.77 3.88 4.44 11.66 21.66 31.66 41.66
SBM 512 4 (4) 0 (0) 0 (0) 8 (8) 16 (15) 14 (13) 14 (14) 18 (13) 26 (26) 27 (26) 13 (7)
SBM 720 10 (10) 0 (0) 0 (0) 9 (9) 16 (16) 22 (18) 22 (22) 27 (27) 28 (28) 27 (27) 27 (26)
LPM 720 29 (24) 38 (34) 30 (26) 28 (27) 28 (27) 30 (28) 25 (23) 21 (21) 20 (12) 21 (15) 14 (14)
LPM max 34 (32) 42 (38) 36 (34) 37 (36) 32 (31) 34 (32) 31 (30) 23 (20) 19 (16) 22 (19) 15 (12)

Table 7. The number of correct angle estimations with error δ ≤ 0.1 degree and with δ ≤ 0.05 (in parentheses), out of 48. Resized
factor d= 0.5, i. e., downsampling by 2.

(a)

(b)
Figure 7. Success rates for resized images, a) downsampling by factor of
2, b) resizing at 0.8 (δ ≤ 0.1).

Figure 8. Success rates for JPEG images rotated by 2.77 degrees and
recompressed at varying JPEG quality or uncompressed (shown at quality
101) (δ ≤ 0.1).

The main advantage of LPM is in estimating small
rotation angles where methods based on analysis of DFT
signal (spectral methods) mostly fail. Because the LPM
works with the signal that has already been present in the
image before rotation it is independent from the spectral
based methods that rely on artifacts introduced at the final
stage of image rotation. Therefore weaknesses of these dif-
ferent methods do not coincide. They could be combined
for best performance.

Beside the general forensic purpose, reversing rota-
tion of rotated frames in a hand-shake stabilized video will
likely increase the quality of camera PRNU-based finger-
print extraction for source camera identification [9]. We be-
lieve that a combination of LP-based and PRNU-based ap-
proaches can improve and/or speed-up re-synchronization
of traces of PRNU from individual video frames before av-
eraging them into the final PRNU estimate.
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α → -1.22 0 0.55 1.11 2.77 3.88 4.44 11.66 21.66 31.66 41.66
SBM 512 1 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
SBM 720 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
LPM 720 19 (17) 46 (43) 20 (19) 19 (19) 15 (15) 18 (17) 24 (21) 11 (11) 16 (14) 28 (25) 25 (25)
LPM max 29 (29) 47 (44) 31 (30) 26 (26) 27 (27) 32 (31) 34 (34) 22 (21) 22 (21) 35 (34) 30 (30)

Table 8. The number of correct angle estimations with error δ ≤ 0.1 degree and with δ ≤ 0.05 (in parentheses), out of 48. Resized
factor d= 0.8, nearest neighbor interpolation.

JPEG quality → 80 85 90 95 96 97 98 99 100 Uncompressed
SBM, 512 16 (16) 24 (24) 31 (31) 20 (19) 10 (10) 8 (8) 5 (5) 4 (4) 4 (4) 4 (4)
SBM 720 33 (33) 36 (36) 40 (40) 39 (39) 31 (31) 25 (25) 13 (13) 9 (9) 8 (8) 8 (8)
LPM 720 10 (10) 9 (8) 19 (15) 26 (25) 25 (24) 25 (22) 26 (25) 28 (27) 30 (29) 31 (29)
LPM max 13 (13) 19 (18) 30 (29) 42 (41) 42 (41) 42 (41) 42 (42) 43 (43) 43 (43) 43 (43)

Table 9. The number of correct angle estimations (out of 48) with error δ ≤ 0.1 degree (with (δ ≤ 0.05 in parentheses) for JPEG
images compressed at 90% quality before rotation and recompressed at a range of qualities after rotation by 2.77 degrees.
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